1-Methyl-1-phenylphosphiranium Triflate: Synthesis, Structure and Reactivity

David C. R. Hockless, Mark A. McDonald, Michael Pabel and S. Bruce Wild*

Research School of Chemistry, Institute of Advanced Studies, Australian National University, Canberra, ACT 0200, Australia

1-Phenylphosphirane reacts with methyl triflate to give 1-methyl-1-phenylphosphiranium triflate, which reacts with acetylenes to give the corresponding phosphirenium salts.

The chemistry of three-membered phosphorus heterocycles is a burgeoning field of considerable interest.¹ Although saturated phosphiranes are accessible by a variety of routes, and tertiary phosphines are readily alkylated to give stable phosphonium ions, the synthesis and characterisation of a phosphiranium salt has yet to be reported. In 1969 the structures **1a** (phosphiranium) or **1b** (λ^5 -phosphirane) were assigned to the product of the reaction between chlorodiethylphosphine and acrylonitrile on the basis of analytical, IR and ¹H NMR data.² In other work, phosphiranium salts were proposed as products of the reaction between certain 9-phosphabicyclo[6.1.0]phosphines and trialk-yloxonium salts, although only melting points were given.³

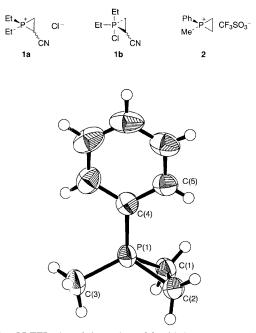
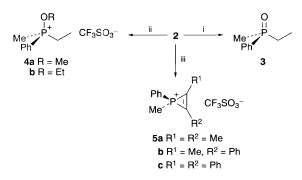



Fig. 1 An ORTEP plot of the cation of **2** with key atoms numbered. Selected interatomic distances (Å) and angles (°), and torsion angle (°), are as follows: P–C(1) 1.761(4), P–C(2) 1.756(5), P–C(3) 1.779(5), P–C(4) 1.763(4), C(1)–C(2) 1.533(6), P–C(1)–C(2) 64.0(3), C(1)–C(2)–P 64.3(3), C(1)–P–C(2) 51.7(2), C(1)–P–C(3) 118.8(3), C(2)–P–C(3) 117.6(3), C(1)–P–C(4) 119.1(2), C(2)–P–C(4) 119.1(2), C(1)–P–C(4)–C(5) –48.0(4).

Scheme 1 Reagents and conditions: i, H_2O , 5 min; ii, MeOH or EtOH, 5 min; iii, $RC \equiv CR$ in CH_2Cl_2 , 1 week

intermediates in the solvolysis of (2-chloroethyl)diphenylphosphine,⁴ in the reaction of the bis[α -bromobenzyl]diphenylphosphonium cation with triethylamine,⁵ in Ramberg–Bäcklund type reactions of phosphonium salts,⁶ and in eliminations of 1,2-phosphinoylalcohols.⁷ Theoretical calculations indicate that the phosphiranium ion [H₂PCH₂CH₂]⁺ is of lower energy than the primary phosphine H₂PCH₂CH₂.⁸ Here, we report that 1-methyl-1-phenylphosphiranium trifluoromethanesulfonate **2** is readily prepared from 1-phenylphosphirane and methyl trifluoromethanesulfonate (methyl triflate), and that the salt is a convenient precursor of substituted phosphirenium salts by reaction with acetylenes.

Treatment of 1-phenylphosphirane9 (8.37 mmol) in benzene (30 ml) with methyl triflate (16.80 mmol) at 20 °C affords, after 3 h, colourless crystals of pure 2 in 73% yield, having mp 75-78 °C (decomp.).[†] The salt can be stored for several weeks under argon without decomposition. Spectroscopic data for 2,‡ in particular the high-field shift of the phosphorus resonance (δ_{p} -96.79), support the proposed structure. The crystal and molecular structures of the salt have been determined and the structure of the cation of 2 is shown in Fig. 1.§ The phosphoruscarbon bonds in the phosphiranium ion are shorter by ca. 0.06 Å and the carbon–carbon bond are ca. 0.02 Å longer than the corresponding bonds in the neutral complexes fac-[Mo- $(CO)_3(PhPCH_2CH_2)_3]^9$ and $[W(CO)_5(PhPCH_2CH_2)]^{.10}$ The phosphorus-carbon distances in 2 are also shorter than those in the related four-membered 1,1-di-tert-butylphosphetanium ion, viz. 1.81 Å (av.).¹¹ The C(1)-P-C(2) angle in 2 of 51.7(2)° compares with the angles of $48.88(16)^{\circ}$ and $48.6(7)^{\circ}$ in the molybdenum and tungsten complexes, respectively.

The salt **2** is moderately stable to the atmosphere but reacts with water to give (\pm)-ethylmethylphenylphosphine oxide **3**¹² and with primary alcohols to form the (\pm)-alkoxyphosphonium salts **4a**,**b** (Scheme 1). In neat triflic acid, however, **2** appears to be stable indefinitely. Treatment of **2** with dimethyl- or methylphenyl-acetylene in dichloromethane affords over 1 week the corresponding substituted phosphirenium salts **5a** and (\pm)-**5b** in high yield, thereby effecting the formal transfer of the methylphenylphosphenium ion from ethylene to the alkynes. The reaction with diphenylacetylene is less efficient giving *ca*. 50% of the known phosphirenium salt **5c**, having δ_P –109.2 in [²H₂]dichloromethane [lit.¹³ δ_P –109.9].

Received, 2nd November 1994; Com. 4/06711H

Footnotes

† Satisfactory elemental analyses were obtained.

[‡] Selected spectroscopic data for 2: ¹H NMR (299.9 MHz, CD₂Cl₂; all J in Hz) δ 2.45 (d, ²J_{HP} 18.3, 3 H, CH₃), 2.36–2.57 (m, 4 H, CH₂CH₂), 7.61–7.90 (m, 5 H, Ph); ¹³C{¹H} NMR (75.4 MHz, CD₂Cl₂) δ 3.10 (d, ¹J_{CP} 51.6, CH₃), 7.82 (d, ¹J_{CP} 6.6, CH₂CH₂); ³¹P{¹H} NMR (121.4 MHz, CD₂Cl₂, ref. H₃PO₄) δ -96.79; FAB MS *m*/z 151 (C₉H₁₂P, [M – OTf]⁺). For 4a: ¹H NMR (299.9 MHz, CD₂Cl₂) δ 1.26 (dt, ³J_{HP} 20.4, ³J_{HH} 7.8, 3 H, PCH₂CH₃), 2.44 (d, ²J_{HP} 12.6, 3 H, PCH₃), 2.60–2.82 (m, 2 H, PCH₂CH₃), 3.93 (d, ³J_{HP} 12.6, 3 H, PCH₃), 7.60–7.95 (m, 5 H, Ph); ¹³C{¹H} NMR (75.4 MHz, CD₂Cl₂) δ 5.12 (d, ³J_{CP} 4.4, CH₂CH₃), 8.09 (d, ¹J_{CP} 63.6, PCH₃), 19.18 (d, ¹J_{CP} 67.0, PCH₂CH₃), 57.06 (d, ²J_{CP} 7.7, POCH₃); ³¹P{¹H} NMR (121.4 MHz, CD₂Cl₂, ref. H₃PO₄) δ 89.63; FAB MS *m*/z 183 (C₁₀H₁₆OP, [M –

OTf]+'). For 4b: ¹H NMR (200.0 MHz, CD₂Cl₂) δ 1.24 (dt, ³J_{HP} 20.6, ³*J*_{HH} 7.7, 3 H, PCH₂CH₃), 1.43 (tm, ³*J*_{HH} 6.5, 3 H, OCH₂CH₃), 2.42 (d, ²*J*_{HP} 12.8, 3 H, PCH₃), 2.53–2.83 (m, 2 H, PCH₂CH₃), 4.09–4.35 (m, 2 H, OCH₂CH₃), 7.60–7.95 (m, 5 H, Ph); ¹³C{¹H} NMR (50.3 MHz, CD_2Cl_2) δ 5.14 (d, ${}^2J_{CP}$ 5.2, PCH_2CH_3), 8.52 (d, ${}^1J_{CP}$ 63.5, PCH_3), 16.22 (d, ³J_{CP} 7.1, OCH₂CH₃), 19.49 (d, ¹J_{CP} 66.8, PCH₂CH₃), 67.86 (d, ²J_{CP} 7.9, POCH₃); ³¹P{¹H} NMR (81.0 MHz, CD₂Cl₂, ref. H₃PO₄) δ 86.12. For 5a: ¹H NMR (300.1 MHz, CD₂Cl₂) δ 2.30 (d, ²J_{HP} 17.2, 3 H, PCH₃), 2.34 (d, ³J_{HP} 16.2, 6 H, CCH₃), 7.45–7.90 (m, 5 H, Ph); ¹³C{¹H} NMR (50.3 MHz, CD₂Cl₂) δ 7.48 (d, ¹J_{CP} 55.1, PCH₃), 10.42 (d, ²*J*_{CP} 1.7, CCH₃); ³¹P{¹H} NMR (81.0 MHz, CD₂Cl₂, ref. H₃PO₄) δ -103.58; FAB MS m/z 177 (C₁₁H₁₄P, [M - OTf]⁺⁻). For (±)-5b: ¹H NMR (200.0 MHz, CD₂Cl₂) δ 2.59 (d, ²J_{HP} 17.0, 3 H, PCH₃), 2.74 (d, ³J_{IIP} 17.2, 3 H, CCH₃), 7.20–8.05 (m, 10 H, Ph); ¹³C{¹H} NMR (50.3 MHz, CD₂Cl₂) δ 7.86 (d, ¹J_{CP} 55.0, PCH₃), 11.64 (s, CCH₃); ³¹P{¹H} NMR (81.0 MHz, CD₂Cl₂, ref. H₃PO₄) δ -104.80; FAB MS m/z 239 $(C_{16}H_{16}P, [M - OTf]^{+\cdot}).$

§ *Crystal data* for 2: C₁₀H₁₂F₃O₃P₃S, $M_r = 300.23$, colourless plates from dichloromethane, space group $P2_1/c$, a = 6.675(3), b = 27.585(9), c = 7.271 Å, $\beta = 104.88(4)^\circ$, U = 1294.0(9) Å³, Z = 4; $D_c = 1.541$ g cm⁻³, μ (Cu-Kα) = 37.62 cm⁻¹. Rigaku AFC6R diffractometer; T = 213 K, $\omega - 2\theta$ scan method. A total of 1995 unique data were collected in the range of $3 \le 2\theta \le 120.1^\circ$ of which 1412 $[I > 3\sigma(I)]$ were used for the refinement. The structure was solved by direct methods and expanded by Fourier techniques and refined anisotropically by a full-matrix procedure, R = 0.043. Atomic coordinates, bond lengths and angles, and thermal parameters have

J. CHEM. SOC., CHEM. COMMUN., 1995

been deposited at the Cambridge Crystallographic Data Centre. See Information for Authors, Issue No. 1.

References

- 1 F. Mathey, Chem. Rev., 1990, 90, 997.
- 2 K.-D. Gundermann and A. Garming, Chem. Ber., 1969, 102, 3023.
- 3 G. Märkl and B. Alig, Tetrahedron Lett., 1982, 23, 4915.
- 4 N. Neamati-Mazraeh and S. P. McManus, *Tetrahedron Lett.*, 1987, **28**, 837.
- 5 R. Breslow and L. A. Deuring, *Tetrahedron Lett.*, 1984, **25**, 1345. 6 N. J. Lawrence and F. Muhammad, *Tetrahedron Lett.*, 1994, **35**,
- 5903.
 7 N. J. Lawrence and F. Muhammad, J. Chem. Soc., Chem. Commun., 1993, 1187.
- 8 C. F. Rodriquez and A. C. Hopkinson, J. Mol. Struct. (Theochem), 1987, 152, 69.
- 9 Y. B. Kang, M. Pabel, A. C. Willis and S. B. Wild, J. Chem. Soc., Chem. Commun., 1994, 475.
- 10 J.-T. Hung, S.-W. Yang, G. M. Gray and K. Lammertsma, J. Org. Chem., 1993, 58, 6786.
- 11 D. J. Brauer, A. J. Ciccu, G. Heßler and O. Stelzer, *Chem. Ber.*, 1992, **125**, 1987.
- 12 K. M. Pietrusiewicz, M. Zablocka and J. Monkiewicz, J. Org. Chem., 1984, 49, 1522.
- 13 A. Marinetti and F. Mathey, J. Am. Chem. Soc., 1985, 107, 4700.