Benzisoxazole- and Benzisothiazole-3-carboxamides as Potential Atypical **Antipsychotic Agents**

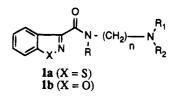
Nicholas J. Hrib,*,† John G. Jurcak,† Kendra L. Burgher,‡ Paul G. Conway,‡ Harold B. Hartman,‡ Lisa L. Kerman,[‡] Joachim E. Roehr,[‡] and Ann T. Woods[‡]

Neuroscience Strategic Business Unit, Hoechst-Roussel Pharmaceuticals, Inc., Somerville, New Jersey 08876

Received December 13, 1993*

A series of benzisoxazole- and benzisothiazole-3-carboxamides has been prepared and tested for potential antipsychotic activity. In general, the compounds showed an affinity for dopamine D_2 and serotonin 5HT_{2A} and 5HT_{1A} receptors. Several members of this series have demonstrated activity in animal models predictive of potential antipsychotic activity. In addition, compounds 18, 19, 22, 27, 28, 43, and 44 have also shown a potential for reduced EPS liability as suggested by the ratio of activity seen in mesolimbic-mediated vs nigrostriatal-mediated behavioral assays.

Introduction


All clinically-effective antipsychotic agents have been shown to inhibit postsynaptic dopaminergic neurotransmission.^{1,2} However, most of these agents are typical, i.e., show some propensity for the development of extrapyramidal side effects (EPS), either acutely (dystonia, pseudo-Parkinsonism) or on chronic administration (Tardive Dyskinesia).³ Clozapine, an atypical antipsychotic, is almost totally devoid of EPS liability. However, a small percentage of clozapine patients are at risk for the development of agranulocytosis, a potentially fatal blood disorder. In the United States, treatment with clozapine is restricted to a small, closelymonitored population of treatment-refractory patients.⁴

Many theories have been advanced to explain the atypical pharmacological profile of clozapine. One hypothesis, that a combination of serotonin $5HT_{2A}$ / dopamine D₂ receptor antagonism in a proper ratio is necessary for atypicality, has received much attention of late. Antipsychotic drugs which show a reduced propensity for the development of EPS have demonstrated a higher affinity for the $5HT_{2A}$ receptor than the D₂ receptor.⁵ The ratio of activities at these receptors has been advanced as an explanation for the atypical profile of clozapine.⁶ Clozapine also shows a higher affinity for the $5HT_{1A}$ receptor than for the D_2 receptor. The 5HT_{1A} receptor has also been implicated in the activity of atypical antipsychotic agents,⁷ and 5HT_{1A} agonists 8-OH-DPAT, buspirone, and ipsaspirone have been found to reverse haloperidol-induced catalepsy,⁸ and in fact a combination of 5HT_{1A} agonism and D_2 antagonism was the basis for the design of a series of potential atypical antipsychotic agents.⁹

With these considerations in mind, we prepared a series of benzisothiazole- and benzisoxazole-3-carboxamides of the general structure 1. These compounds were designed to interact with serotonin $5HT_{1A}$ and $5HT_{2A}$ receptors and, to a lesser extent, with dopamine D_2 receptors. We began with the expectation that compounds which possessed an aryl- or aroylpiperidine or -piperazine moiety would demonstrate the dopamine D₂ antagonist activity required of an antipsychotic

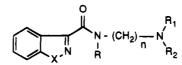
agent. We then needed to incorporate some structural feature of serotonin itself and felt that a 6,5-fused heterocyclic ring such as benzisoxazole or benzisothiazole would serve well as a mimic for the tryptamine indole ring. The carboxamide linkage would serve as a versatile functional system for generating a variety of structural analogues.

Many of these compounds have shown activity in an animal model predictive of potential antipsychotic activity. In addition, several members of this series have shown a potential for reduced extrapyramidal side effect liability. The synthesis of these compounds and details of their structure-activity relationships are presented below.

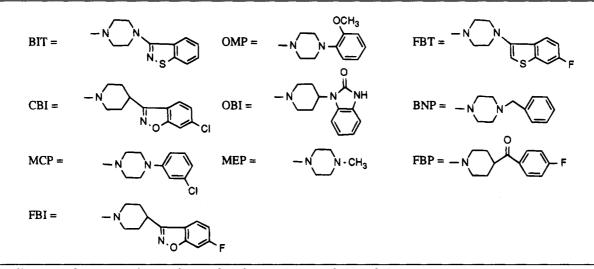
Chemistry

The synthesis of the target compounds **1a**,**b** (Table 1) proceeds through the intermediacy of the key benzisothiazole- and benzisoxazole-3-carboxylic acid chlorides 2a (X = S) and 2b (X = 0). These compounds are prepared by variations of literature procedures, as illustrated in Schemes 1 and 2.

Preparation of the benzisothiazole-3-carboxylic acid chlorides is outlined in Scheme 1. Thiophenol is acylated with oxalyl chloride to provide the intermediate aid chloride 3. This intermediate is isolated and, without further purification, treated with AlCl₃ in an intramolecular Friedel-Crafts reaction to give the thioisatin 4, previously prepared by Papa, Schwenk, and Ginsburg.¹⁰ Compound 4 is dissolved in aqueous ammonium hydroxide and treated dropwise with aqueous hydrogen peroxide to provide in one step the known 1,2benzisothiazole-3-carboxamide 5.¹¹ Saponification of 5 with aqueous hydroxide gives carboxylic acid 6a which is heated with thionyl chloride to give acid chloride $2a^{11}$ $(\mathbf{X} = \mathbf{S})$ (Scheme 1).


Synthesis of the benzisoxazole moieties begins with nitrophenylacetic acid 7 which is esterified to provide 8. Nitrosation of 8 with isoamyl nitrite provides the oxime ester 9; this compound is cyclized upon treatment

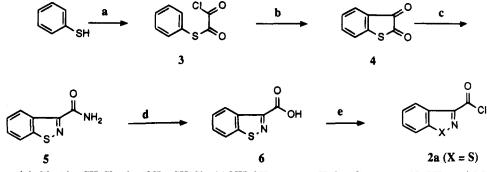
^{*} Author to whom correspondance should be addressed. † Department of Chemical Research.


[‡] Department of Biological Research.

^{*} Abstract published in Advance ACS Abstracts, June 15, 1994.

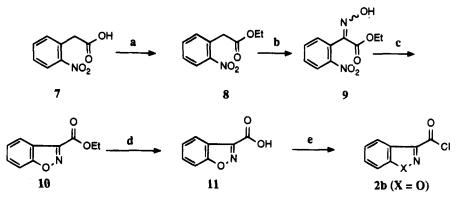
Table 1. Benzisoxazole- and Benzisothiazole-3-carboxamides

compd no.	Х	R	n	$NR^{1}R^{2} - \alpha$	formula ^b	mp, °C	method of preparation
17	s	н	2	BIT	$C_{21}H_{21}N_5OS_2$	160-163	A
18	\mathbf{s}	н	4	BIT	$C_{23}H_{25}N_5OS_2$ ·HCl·0.5H ₂ O	203 - 205	В
19	\mathbf{S}	CH_3	4	BIT	$C_{24}H_{27}N_5OS_2$ ·HCl	210 - 211	С
20	\mathbf{S}	H	4	OMP	$C_{23}H_{28}N_4O_2S\cdot 2HCl$	175 - 178	В
21	\mathbf{S}	CH_3	4	OMP	$C_{24}H_{30}N_4O_2S \cdot 2HC \cdot 0.5H_2O$	169 - 171	С
22	\mathbf{s}	н	2	OMP	$C_{21}H_{24}N_4O_2S\cdot 2HCl$	205 - 208	Α
23	0	Н	2	OMP	$C_{21}H_{24}N_4O_3$	107 - 110	Α
24	\mathbf{s}	CH_3	3	OMP	$C_{23}H_{28}N_4O_2S\cdot 2HCl$	166 - 169	С
25	\mathbf{S}	н	3	OMP	$C_{22}H_{26}N_4O_2S$ ·2HCl	191-194	Α
26	s	CH_3	4	FBT	$C_{25}H_{27}FN_4OS_2$ ·HCl	183 - 185	С
27	0	н	2	FBT	$C_{22}H_{21}FN_4O_2S$ ·HCl	225 - 228	А
28	0	CH_3	4	FBT	$C_{25}H_{27}FN_4O_2S$ ·HCl	145 - 147	С
29	\mathbf{S}	H	3	CBI	$C_{23}H_{23}ClN_4O_2S$ ·HCl	221 - 223	A
30	\mathbf{S}	Н	2	CBI	$C_{22}H_{21}ClN_4O_2S$	132 - 134	Α
31	\mathbf{S}	н	2	OBI	$C_{22}H_{23}N_5O_2S$	174 - 177	Α
32	s	н	2	BNP	$C_{21}H_{24}N_4OS \cdot 2HCl \cdot 0.5H_2O$	207 - 210	А
33	\mathbf{s}	H	2	MCP	$C_{20}H_{21}ClN_4OS$	115 - 117	А
34	\mathbf{s}	н	2	MEP	$C_{15}H_{20}N_4OS \cdot 2HCl$	227 - 230	А
35	S	Н	2	FBP	$C_{22}H_{22}FN_3O_2$ ·HCl·0.5H ₂ O	188 - 190	Α
36	s	CH_3	4	FBP	$C_{25}H_{28}FN_3O_2S$ ·HCl	148 - 150	С
37	0	$CH(CH_3)_2$	3	FBP	$C_{26}H_{30}FN_3O_3$ ·HCl· $0.5H_2O$	177 - 179	D
38	0	CH_3	3	FBP	$C_{24}H_{26}FN_3O_3$	85-87	С
39	0	CH_3	2	FBP	C ₂₃ H ₂₄ FN ₃ O ₃ •HCl	218 - 221	D
40	s	CH_3	3	FBP	$C_{24}H_{26}FN_3O_2S$ ·HCl	189-191	С
41	\mathbf{S}	CH_3	2	FBP	$C_{23}H_{24}FN_3O_2S$ ·HCl-0.5H ₂ O	214 - 217	D
42	0	$CH(CH_3)_2$	2	FBI	$C_{25}H_{27}FN_4O_3$	118 - 120	D
43	\mathbf{s}	CH_3	2	FBI	$C_{23}H_{23}N_4O_2S$ ·HCl·0.5H ₂ O	211 - 214	D
44	0	CH_3	2	FBI	$C_{23}H_{23}FN_4O_3$	94 - 97	D
45	\mathbf{s}	CH_3	4	FBI	$C_{25}H_{27}FN_4O_2S$ ·HCl	204 - 205	С


^a All compounds gave satisfactory elemental analyses $(\pm 0.4\%)$ for C, H, and N.

with base to yield 1,2-benzisoxazole-3-carboxylic acid ester **10b**. Hydrolysis of **10b** with strong acid provides the known carboxylic acid **11b**,¹² which on heating with thionyl chloride provides acid chloride **2b** (X = O) (Scheme 2).

The target compounds 1a,b were prepared from intermediates 2a,b by one of the four general methods illustrated in Scheme 3. Some targets were prepared by utilizing the procedure described by Amoretti *et al.*,¹¹ namely by treatment of acid chlorides 2a,b with primary (haloalkyl)amines to provide (haloalkyl)amides 12a,b. Alkylation of 12a,b with various secondary amines provides secondary amide targets 1a,b (Method A). Other targets were prepared by direct treatment of acid chlorides **2a**,**b** with primary alkylamines **13** to give targets **1a**,**b** (method B).


A number of tertiary amide targets were prepared via a procedure which began with treatment of acid chlorides **2a,b** with simple alkylamines to give secondary amides **14a,b**. Formation of the amide anions with base followed by alkylation with dihaloalkanes provides the (haloalkyl)amides **15a,b**. Alkylation with various amides provides tertiary amide targets **1a,b** (method C).

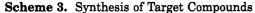
Finally, some tertiary amide targets could not be obtained by alkylation of secondary amides as in method C. These were obtained by acylation of the appropriate Scheme 1. Synthesis of Benzisothiazole-3-carboxylic Acid Chlorides $(2a, X = S)^{a}$

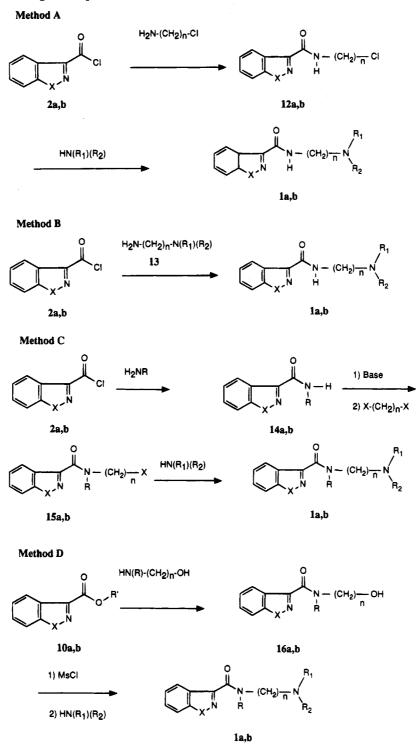
^a Reagents: (a) oxalyl chloride, CH₂Cl₂; (b) AlCl₃, CH₂Cl₂; (c) NH₄OH, aqueous H₂O₂; (d) aqueous NaOH; (e) SOCl₂.

Scheme 2. Synthesis of Benzisoxazole-3-carboxylic Acid Chlorides $(2b, X = O)^{a}$

^a Reagents: (a) EtOH, H₂SO₄, toluene reflux; (b) isoamyl nitrite, NaOEt, EtOH; (c) NaH, diglyme; (d) 70% H₂SO₄; (e) SOCl₂.

amino alcohols to provide (hydroxyalkyl)amides **16a,b**. These compounds were converted to the mesylates *in situ* by treatment with methanesulfonyl chloride; displacement of the methanesulfonyl group with secondary amines provided tertiary amide targets **1a,b** (method D).


Results and Discussion


All compounds in this series were evaluated in vitro for affinity at the seroton $5HT_{1A}$, $5HT_{2A}$, dopamine D_2 , and α_1 receptors (Table 2). Concurrently, targets were screened for potential antipsychotic activity in a behavioral model, the inhibition of apomorphine-induced climbing in mice (CMA)^{13,14} (Table 3). This behavior is mediated by the limbic dopaminergic pathway, which has been associated with the therapeutic effects of antipsychotic agents. Compounds which proved most potent in this assay were then examined for their ability to inhibit apomorphine-induced stereotypy in rats (APO-S).¹⁵ This is a single-dose assay which has been recognized as a rapid and efficient method for detecting potential EPS liability. The potential for extrapyramidal side effects has been linked to activation of the nitrostriatal dopamine system.¹⁶ The inhibition of apomorphine-induced stereotypy in rats is a behavioral assay mediated by this dopaminergic pathway.¹⁷ Therefore, an agent which demonstrates potential atypical antipsychotic activity should be active in the climbing-mouse assay (mediated by the limbic dopaminergic pathway) and weak or inactive in inhibiting agonist-induced rat stereotypy (Table 4). Indeed, while haloperidol is potently active in both these assays, clozapine displays only weak activity in the stereotypy model even at high doses.

Structure-Activity Considerations. The majority of targets in this series show greater *in vitro* affinity for the dopamine D_2 receptor than clozapine. Compound **45**, which showed the highest D_2 affinity (72.6 nM) was a member of the subgroup of compounds which showed the greatest potency *in vivo*. Conversely, those compounds with extremely weak D_2 affinity were only weakly active in the CMA assay.

Like clozapine, many members of the series possessed higher affinity for the serotonin $5HT_{2A}$ and/or $5HT_{1A}$ receptors than for the D₂ receptor. A ratio of D₂/ $5HT_{2A}$ affinity greater than 1 has been correlated with reduced liability for EPS in a series of antipsychotic agents.⁵ Of the compounds with reasonable dopamine D₂ affinity, ratios of D₂/ $5HT_{2A}$ affinity were highest with compounds **43** and **44**. The substitution of a benzisothiazolecarboxamide for a benzisoxazolecarboxamide did not drastically affect the *in vitro* affinities of direct analogues except in one case, namely compounds **38** vs **40**, where the change reduced dopamine D₂ receptor affinity 3-fold, with a concomitant reduction in *in vivo* activity.

Most of the compounds also showed potent affinity for the α_1 receptor. There have appeared in the literature reports linking a combination of dopamine D₂ and α_1 receptor antagonism to potential atypical antipsychotic activity; for example the concurrent administration of haloperidol with prazosin has been reported to produce electrophysiological effects on dopamine neuron subpopulations identical to those observed with repeated clozapine administration alone.¹⁸ However, in this series of compounds the observed potential for atypicality was found to be more consistent with affinity for 5HT_{1A} or 5HT_{2A} receptors along with dopamine D₂ affinity. Since the compounds do possess potent α_1

receptor affinity, they will be evaluated for cardiovascular liability. The lead compounds tested to date, 18, 19, and 22, show no toxicity in rats at doses up to 80 mg/kg ip.

For good *in vivo* activity in this series, the presence of an aroyl or aryl moiety directly bonded to position 4 of the substituent piperidine or piperazine was required. However, three exceptions to this observation were chlorinated compounds **29**, **30**, and **33**. The binding of **33** to the D₂ receptor was exceptionally weak and could acccount for the reduced activity. However, D₂ binding of **29** and **30** is almost identical to that of compound 40, which remains potent in the CMA. In comparing direct analogues, a two- or four-carbon chain length was found to be slightly superior to a three-carbon chain, cf. compounds 20 and 22 vs 25, and 21 vs 24.

By far the most critical factor to the activity in this series was the choice of substituent on the piperidine or piperazine ring. Compounds with substituted phenyl moieties (compounds 20-25 and 33) as a class were less potent than those substituted with aroyl systems (compounds 35-40); these in turn were generally less potent than targets with a bicyclic heteroaryl substituent. The greatest potency in the CMA was observed with com-

т	ah	le	2.	In	Vitro	Activity
	a.v.			110	1	110011109

	displacement of ligand binding (IC ₅₀ , μ M)				
compd no.	D_2 receptor ^a	$5 HT_{2A}$ receptor ^b	5HT _{1A} receptor ^c	α_1 receptor ^d	
17	0.169 (0.069-0.415)	0.475 (0.137-1.64)	0.098 (0.048-0.2)	0.019 (0.016-0.023)	
18	0.36 (0.195-0.656)	0.201 (0.107-0.378)	0.018 (0.013-0.024)	0.005 (0.0021-0.0106)	
19	0.208 (0.16-0.27)	0.013 (0.01-0.173)	0.0186(0.0147 - 0.0234)	0.0058 (0.0012-0.0288)	
20	0.271(0.160 - 0.4598)	0.724(0.0826 - 6.34)	0.0023 (0.0018-0.0031)	0.0064(0.0055 - 0.0074)	
21	0.136 (0.1056-0.1746)	0.125 (0.037-0.421)	0.004 (0.0033-0.0057)	0.0033(0.0014 - 0.0079)	
22	0.283 (0.225-0.356)	0.55(0.183 - 1.658)	0.0039 (0.0019-0.0081)	0.0041(0.0012 - 0.014)	
23	0.473 (0.362-0.617)	0.391 (0.059-2.57)	0.021(0.0157 - 0.0284)	0.0021(0.0005 - 0.0081)	
24	0.541 (0.409-0.718)	1.65(0.797 - 3.41)	0.149 (0.113-0.198)	0.0107(0.0086 - 0.0134)	
25	0.193 (0.105-0.357)	3.11(0.562 - 17.2)	0.0847 (0.0609-0.118)	0.0183 (0.0141-0.0238)	
26	0.671 (0.369-1.22)	0.232 (0.0469-1.15)	0.3662(0.1834 - 0.7312)	0.0063 (0.0041-0.0097)	
27	1.3687(0.7091 - 2.642)	0.3089 (0.09-1.06)	1.0376(0.4265 - 2.5244)	>10	
28	0.9259(0.7155 - 1.1984)	0.1879(0.0777 - 0.454)	0.1278 (0.101-0.161)	0.0032(0.00097 - 0.0107)	
29	0.7391 (0.2082-2.6239)	0.115(0.055 - 0.241)	3.7153 (3.005-4.5935)	0.0938(0.0587 - 0.1498)	
30	0.7116(0.376 - 1.346)	0.215 (0.073-0.6298)	3.4521(2.8288 - 4.2126)	0.239 (0.034-1.68)	
31	5.589(2.021 - 15.45)	0.641(0.136 - 3.02)	4.7336 (3.6167-6.1955)	0.0398(0.0309 - 0.0511)	
32	>10	>10	1.8776(1.4128 - 2.4954)	2.57(1.76 - 3.76)	
33	3.191 (0.8779-11.59)	0.726(0.264 - 1.99)	0.0516(0.0406 - 0.0722)	0.0815(0.0297 - 0.223)	
34	>10	>10	>10	>10	
35	0.2856(0.1273 - 0.641)	0.017 (0.013-0.023)	0.92(0.7185 - 1.1781)	0.0157(0.0081 - 0.0304)	
36	$0.2456\ (0.1002 - 0.6018)$	0.0302(0.0223 - 0.041)	0.3389(0.1726 - 0.666)	0.0032(0.001 - 0.0102)	
37	0.8042(0.6172 - 1.0478)	0.29 (0.0717-1.17)	2.3 (0.86-6.3)	0.124(0.0953 - 0.162)	
38	2.3779(1.9077 - 2.9641)	0.1234(0.0963 - 0.158)	6.65 (3.06-14.4)	0.043(0.0314 - 0.0584)	
39	0.584(0.3524 - 0.9679)	0.027 (0.02-0.037)	1.79(0.549-5.84)	0.1082(0.0851 - 0.1376)	
40	0.7166(0.5347 - 0.9603)	0.068 (0.052-0.09)	4.67 (3.11-7.01)	$0.00611 \ (0.002 - 0.0183)$	
41	0.5489(0.1237 - 2.4349)	0.051(0.383 - 0.0676)	2.5 (1.9-3.2)	0.0753 (0.0572-0.099)	
42	0.2034(0.1137 - 0.3641)	0.0297(0.225 - 0.039)	0.21 (0.16-0.27)	0.0055 (0.0026-0.0116)	
43	0.264(0.19 - 0.3668)	0.0328(0.00487 - 0.22)	0.82(0.42 - 1.6)	0.0094(0.0095 - 0.0194)	
44	0.197(0.147 - 0.264)	0.0176 (0.013-0.024)	0.44 (0.35-0.56)	0.104(0.0326 - 0.333)	
45	0.0726 (0.0567-0.093)	0.013(0.0096 - 0.0165)	0.1596 (0.1214-0.2099)	0.174(0.127 - 0.237)	
cloz	1.61(1.24 - 2.07)	0.072(0.055 - 0.0944)	1.0155(0.7418 - 1.3901)	0.032(0.025 - 0.042)	
hal	0.0327(0.0236 - 0.0454)	0.129 (0.07-0.239)	7.079 (4.94-10.113)	0.0825 (0.0769-0.089)	
risp	0.037 (0.024-0.047)	0.0026 (0.0019-0.004)	0.95 (0.75-1.22)	0.0029 (0.0016-0.0052)	

^a Versus [³H]spiroperidol in striatum. ^b Versus [³H]spiroperidol in cortex. ^c Versus [³H]-8-OH-DPAT in hippocampus. ^d Versus [³H]WB-4101 in whole brain minus cerebellum.

_

Table 3. In Vivo Actvitiy:	Inhibition of apomorphine-induced
climbing (mouse)	

compd	ED_{50}	
no.	mg/kg ip [po]	
32	>20	
33	>20	
34	>20	
	0.04 (0.01 4.10)	
	3.64(3.21-4.18)	
36	8.2 (7.8-8.7)	
27	20.2 (16.9-24.2)	
37	20.2(10.9-24.2)	
38	>20	
	20	
	13.4(12.6 - 14.3)	
40	7.7 (3.3-18.0)	
41	8.0 (3.7-17.0)	
	1.3(0.63 - 2.90)	
	1.7 (1.5-1.9)	
	1.3(0.98-1.60)	
45	1.5 (1.30-1.60)	
\pm 1.77 (6) [2	3.2 (21.1-25.9)]	
0.194 ± 0.056 (2) $[0.28 (0.27 - 0.29)]$		
2 (0.047-0.0	77) [0.28 (0.25–0.30)]	
	$\begin{array}{c} \text{no.} \\ \hline \textbf{32} \\ \hline \textbf{33} \\ \hline \textbf{34} \\ \end{pmatrix} \begin{array}{c} \textbf{35} \\ \textbf{36} \\ \hline \textbf{37} \\ \hline \textbf{38} \\ \end{pmatrix} \\ \begin{array}{c} \textbf{39} \\ \textbf{40} \\ \textbf{41} \\ \textbf{42} \\ \textbf{43} \\ \textbf{44} \\ \textbf{45} \\ \pm 1.77 \ \textbf{(6)} \ \textbf{[2]} \\ \textbf{4} \pm 0.056 \ \textbf{(2)} \end{array}$	

^a Values are mean $ED_{50} \pm SEM(n)$ or ED_{50} and 95% confidence limits. ^b ED_{50} not determined but greater than screening dose of 20 mg/kg ip.

pounds bearing a (6-fluorobenzisoxazol-3-yl)piperidine moiety, *i.e.*, compounds **42**, **43**, **44**, and **45**. Compound **45** in fact showed a 10-fold greater affinity for the D_2

Table 4.	Potential for	Atypical	Antipsychotic	Activity in vivo.

	ED ₅₀ , mg/kg, or % inhibition at dose administered ip		
compd no.	inhibition of apomorphine-induced climbing (mouse)	inhibition of apomorphine-induced stereotypy (rat)	
18 19	$8.3 (7.6-9.0)^a$ 2.49 (2.05-3.01)	17% at 40 39.2 (32.1-47.8)	
20 21 22	7.24 (6.7–67.8) 9.61 (9.19–10.06) 6.3 (4.7–9.0)	83% at 40 100% at 40 51.8 (41.7–64.3)	
25 26 27	13.0 (12.05-14.04) 4.5 (4.28-4.73) 4.9 (4.4-5.6)	17% at 40 33.0 (27.4–39.9) 17% at 40	
28 35	5.0 (4.7–5.4) 3.64 (3.21–4.18)	52.0 (39.8-67.8) 25.7 (19.9-33.1)	
36 43 44	8.2 (7.8-8.7) 1.7 (1.5-1.9) 1.3 (0.98-1.60)	60% at 40 50% at 13 33% at 13	
45 clozapine	$\begin{array}{c} 1.5 \ (1.30 - 1.60) \\ 9.10 \pm 1.77 \ (6) \end{array}$	67% at 10 33% at 40	
haloperidol risperidone	$\begin{array}{c} 3.10 \pm 1.17 (0) \\ 0.194 \pm 0.056 (2) \\ 0.06 (0.047 - 0.077) \end{array}$	$\begin{array}{c} 33.7 \ \text{at 40} \\ 0.576 \pm 0.148 \ (2) \\ 3.2 \ (2.1 - 4.8) \end{array}$	

^a Values are mean $ED_{5-} \pm SEM(n)$, ED_{50} and 95% confidence limits, or percent inhibition at dose.

receptor and a 3-fold increase in potency in the CMA assay over its benzo[b]thiophene analogue, compound **26**.

With regard to the potential for atypicality, good-toexcellent ratios of CMA/APO-S activity (and thus potential for atypicality) were found for compounds 18, 19, 22, 27, 28, 43, and 44. These represent a diverse set of chemical entities which vary in chain length, amide substituent, and aryl-piperidine or -piperazine moiety.

Potential Atypical Antipsychotic Agents

Therefore, the structural requirements for potential atypical antipsychotic activity in this series are not obvious. Interestingly, of the compounds demonstrating potential atypicality, all showed a higher affinity for the $5HT_{2A}$ or the $5HT_{1A}$ receptor, or both, than for the D_2 receptor. This observation would appear to add support to the involvement of serotonin in the mechanism of action of atypical antipsychotics.

Conclusions

A series of benzisothiazole- and benzisoxazole-3carboxamides has been prepared and submitted for biological evaluation. Many members of this series displayed a higher affinity for serotonin $5HT_{2A}$ and/or $5HT_{1A}$ receptors than for dopamine D₂ receptors, a biochemical profile consistent with potential atypical antipsychotic activity. In vivo, a number of target compounds showed potential antipsychotic activity in an animal model, namely the inhibition of apomorphineinduced mouse climbing.

In addition, some compounds (18, 19, 22, 27, 28, 43, and 44) also displayed a potential for atypicality in animal models *in vivo*. These compounds were more active in behavioral assays mediated by the limbic dopaminergic system (inhibition of apomorphine-induced mouse climbing) than in assays mediated by the nigrostriatal dopaminergic system (inhibition of apomorphine-induced stereotypy in rats). Further preclinical evaluation of the leading compounds in this series, including evaluation in chronic-dosing regimens, is in progress.

Experimental Section

All structures are supported by their IR (Perkin-Elmer 547) and ¹H NMR (Varian XL-200) spectra. Melting points were determined on a Thomas-Hoover capillary apparatus and are uncorrected. Mass spectra were determined on a Finnigan 4000 GC-MS equipped with an INCOS data system. Elemental analyses were performed by Oneida Research Services, Inc., Whitesboro NY, or Robertson Microlit Laboratories, Inc., Madison, NJ.

The following examples are illustrative of the methods used to prepare the target compounds.

Method A: N-[2-[1-(2-Methoxyphenyl)-4-piperazinyl]ethyl]-1,2-benzisothiazole-3-carboxamide Dihydrochloride (22). A mixture of 1,2-benzisothiazole-3-[N-(2-chloroethyl)carboxamide] (15a, $\mathbf{R} = \mathbf{H}$, $\mathbf{X} = \mathbf{Cl}$, n = 2) (2.24 g, 9.3 mmol), prepared according to the method of Amoretti et al., 11 and 1-(omethoxyphenyl)piperazine (1.8 g, 9.3 mmol) in 100 mL of dry 1-methyl-2-pyrrolidinone was heated with stirring to 120 °C under N_2 . After 24 h the mixture was cooled to room temperature and poured into saturated aqueous Na₂CO₃. This aqueous phase was extracted with Et₂O, and the combined organic extracts were combined, dried over MgSO4, and concentrated in vacuo. The residue was chromatographed on silica using Et₂O as eluent. The fractions containing desired product were combined and concentrated, and the residual oil was taken up in Et₂O. The bis-HCl salt of the product was precipitated by the addition of HCl in Et₂O and recrystallized from Et₂O/CH₂Cl₂ to provide 1.3 g (2.8 mmol, 31%), mp 205-208 °C, homogeneous by TLC (silica, EtOAc, $R_f = 0.58$). The IR (CHCl₃), NMR (CDCl₃), and mass spectrum ($M^+ = 423$, EI, 70 eV) were in agreement with the structure. ¹H NMR (200 MHz, CDCl₃): 3.40-3.62 (m, 4 H), 3.64-3.98 (m, 4 H), 3.98 (s, 3 H), 4.12 (dd, J = 5.6 and 11.2, 2 H), 4.42 (br s, 2 H), 6.98 (d, J = 8.3, 1 H), 7.02 (d, J = 7.0 Hz, 1 H), 7.27 (m, 2 H), 7.50-7.68 (m, 3 H), 7.98 (d, J = 8.6 Hz, 1 H), 8.63 (m, 1 H),8.90 (d, J = 8.6 Hz, 1 H), 13.35 (br s, 1 H).

Method B: N-[4-[1-(1,2-Benzisothiazol-3-yl)-4-piperazinyl]butyl]-1,2-benzisothiazole-3-carboxamide Hydrochloride Hemihydrate (18). A mixture of 1,2-benzisothiazole-3-carboxylic acid chloride (2.6 g, 13.2 mmol), 1-(1,2-benzisothiazol-3-yl)-4-(4-aminobutyl)piperazine (3.45 g, 11.9 mmol), and triethylamine (5 mL, 35.9 mmol) in 100 mL of sieve-dried toluene was heated to 80 °C with stirring overnight. After 24 h the mixture was cooled to room temperature and added to water. The organic phase was drawn off, and the aqueous phase was extracted with EtOAc. The EtOAc extracts and the toluene phase were combined and dried over MgSO₄. The organic phase was then filtered and concentrated in vacuo and the residue chromatographed on silica using EtOAc eluent. The fractions containing the desired product were combined and concentrated to provide an oil which was taken up in Et₂O. The HCl salt of this amine was precipitated by the addition of ethereal HCl, recrystallized from CH₂Cl₂/Et₂O, and dried (0.1 mmHg, refluxing iPrOH temperature) to provide the product as a hemihydrate, mp 203-205 °C, homogeneous by TLC (silica, 10:90 CH₃OH:EtOAc, $R_f = 0.55$). The IR (CHCl₃), NMR (CDCl₃), and mass spectrum ($M^+ = 451$, EI, 70 eV) were consistent with the structure. The yield was 1.6 g (3.2 mmol, 27%). ¹H NMR (200 MHz, CDCl₃): 1.80 (m, 2 H), 2.04 (m, 2 H), 3.18 (m, 4 H), 3.56 (m, 4 H), 4.10 (m, 4 H), 7.30-7.62 (m, 4 H), 7.70 (t, J = 6.3 Hz, 1 H), 7.82 (m, 2 H), 7.98 (d, J = 7.9Hz, 1 H), 8.92 (d, J = 8.1 Hz, 1 H), 12.9 (br s, 2 H).

Method C: N-Methyl-N-(4-bromobutyl)-1,2-benzisoxazole-3-carboxamide (15b1, $\mathbf{R} = \mathbf{CH}_3$, $\mathbf{X} = \mathbf{Br}$, n = 4). To a suspension of sodium hydride (1.09 g, 60% dispersion in oil) and dimethylformamide (10 mL), cooled in an ice bath, was added a solution of N-methyl-1,2-benzisoxazole-3-carboxamide (prepared analogously to the benzisothiazolecarboxamides described previously)¹¹ (4.38 g) and dimethylformamide (10 mL) with stirring at a rate such as to maintain gentle evolution of hydrogen. After the addition was complete, the reaction mixture was stirred at ice bath temperature for 10 min. The ice bath was removed, and the mixture was added dropwise to a solution of 1,4-dibromobutane (7.8 mL) and dimethylformamide (10 mL) with stirring. This mixture was stirred at ambient temperature overnight; water (250 mL) was then added. The mixture was extracted with ether, and the combined extracts were washed with water and saturated sodium chloride, dried over anhydrous sodium sulfate, and filtered. The filtrate was concentrated, and the residue was chromatographed on silica gel using 5% ethyl acetate:dichloromethane eluent. The appropriate fractions were collected and evaporated to give 4.28 g (55%) of N-methyl-N-(4-bromobutyl)-1,2-benzisoxazole-3-carboxamide as an oil. ¹H NMR (200 MHz, CDCl₃, mixture of amide rotamers): δ 1.73-2.1 (m, 4H), 3.22 (s, 1.5H), 3.33 (s, 1.5H), 3.35-3.46 (m, 1H), 3.52 (t, J = 6.7 Hz, 1H), 3.60 - 3.80 (m, 2H), 7.33 - 7.47 (m, 1H), 7.53 - 3.60 - 3.80 (m, 2H), 7.33 - 7.47 (m, 1H), 7.53 - 3.60 - 3.80 (m, 2H), 7.33 - 7.47 (m, 1H), 7.53 - 3.60 - 3.80 (m, 2H), 7.33 - 7.47 (m, 1H), 7.53 - 3.60 - 3.80 (m, 2H), 7.33 - 7.47 (m, 1H), 7.53 - 3.60 - 3.80 (m, 2H), 7.33 - 7.47 (m, 2H), 7.53 - 3.60 - 3.80 (m, 2H), 7.33 - 7.47 (m, 2H), 7.53 - 3.60 - 3.80 (m, 2H), 7.33 - 7.47 (m, 2H), 7.53 - 3.80 - 3.80 (m, 2H), 7.53 - 3.80 - 3.80 (m, 2H), 7.53 - 3.80 - 3.80 - 3.80 - 3.80 (m, 2H), 7.53 - 3.80 -7.72 (m, 2H), 8.00 (d, J = 8.7 Hz, 1H).

N-Methyl-N-[4-(1-(6-fluorobenzo[b]thiophene-3-yl)-4piperazinyl)-butyl]-1,2-benzisoxazole-3-carboxamide Hydrochloride (28). A mixture of N-methyl-N-(4-bromobutyl)-1,2-benzisoxazole-3-carboxamide (15b1, $\mathbf{R} = \mathbf{CH}_3$, $\mathbf{X} = \mathbf{Br}$, n= 4) (4.22 g, 0.0136 mol), 1-(6-fluorobenzo[b]thiophene-3-yl)piperazine (3.89 g, 0.0165 mol), potassium carbonate (5.00 g, 0.0362 mol), sodium iodide (0.80 g), and acetonitrile (200 mL) was heated at 75 °C for 17 h under nitrogen. The reaction was filtered, the insolubles were washed with dichloromethane, and the filtrate was concentrated under reduced pressure. The residue was taken up in dichloromethane, washed with 5% sodium hydroxide (100 mL) and water (100 mL), and dried (sodium sulfate), and the solvent was evaporated under reduced pressure. The crude product was purified via chromatography on silica gel, using 7.5% methanol in ethyl acetate as eluant, to give 3.58 g of a viscous liquid ($R_f = 0.43, 7.5\%$ methanol in ethyl acetate, silica gel). The hydrochloride salt of the amine was prepared. Recrystallization from ethanol/ ethyl acetate gave 2.1 g (31%) of a beige powder, mp 145–147 The IR (CHCl₃), NMR (CDCl₃, 200 MHz), and mass °C. spectrum (M^+ = 466, EI, 70 eV) were consistent for the assigned structure. ¹H NMR (200 MHz, CDCl₃; mixture of amide rotamers): δ 1.80–2.76 (m, 4H), 3.00–3.83 (m, 15 H), 6.76 (s, 1 H), 7.06-7.23 (m, 1 H), 7.37-7.73 (m, 5 H), 7.93-8.06 (m, 1 H), 12.9 (br s, 1 H).

Method D: N-(1-Methylethyl)-N-(2-hydroxyethyl)-1,2benzisoxazole-3-carboxamide (16b1, R = iPr, n = 2). A mixture of ethyl 1,2-benzisoxazol-3-carboxylate (10 g, 0.052 mol), 2-[(1-methylethyl)amino]ethanol (16.1 g, 0.16 mol), and toluene (80 mL) was heated to 140 °C in a stainless steel bomb for 4 h. The resulting solution was diluted with ether (50 mL), washed with 5% NaHCO₃ (50 mL), water (50 mL), and brine (50 mL), dried (sodium sulfate), and concentrated under reduced pressure. The resulting brown liquid was chromatographed on silica gel (elution with 60% ethyl acetate in hexanes) to give 10.6 g (81%) of an off-white solid ($R_f = 0.37$, silica gel, 75% ethyl acetate in hexanes). Recrystallization of the solid from dichloromethane/hexanes afforded white crystals, mp 92-94 °C. The IR (CHCl₃), ¹H NMR (CDCl₃, 200 MHz), and MS (M + 1 = 249, CI, 70 eV) were consistent for the assigned structure. ¹H NMR (200 MHz, CDCl₃; mixture of amide rotamers, ratio 3.2:1): δ 1.26 and 1.38 (2 d, J = 6.7Hz, 6 H), 2.96 (t, 5.3 Hz, OH), 3.60-4.00 (m, 4H), 4.51-4.81 (m, 1H), 7.31-7.49 (m, 1H), 7.53-7.70 (m, 2H), 7.93 and 8.00 (2 d, J = 7.3 Hz, 1H).

N-(1-Methylethyl)-N-[2-[1-(6-fluoro-1,2-benzisoxazol-3yl)-4-piperadinyl]ethyl]-1,2-benzisoxazole-3-carboxamide (42). Under a nitrogen atmosphere methanesulfonyl chloride (3.7 g, 0.032 mol) was rapidly added to a 0 °C solution of N-(1-methylethyl)-N-(2-hydroxyethyl)-1,2-benzisoxazole-3carboxamide (16b1, $\mathbf{R} = i\mathbf{Pr}$, n = 2) (8.00 g, 0.0322 mol), triethylamine (3.27 g, 0.32 mol), and tetrahydrofuran (150 mL), and the resulting mixture was stirred at 0 °C for 30 min. To the mixture was added a suspension of 4-(6-fluoro-1,2-benzisoxazol-3-yl)piperidine (7.8 g, 0.035 mol), triethylamine (6.5 g, 0.065 mol), and tetrahydrofuran (60 mL) rapidly, and the mixture was heated at reflux for 12 h. Water was added to dissolve the insolubles and the solution concentrated under reduced pressure. The residue was taken up in dichloromethane (150 mL), washed with 10% NaOH (100 mL) and water (100 mL), dried (sodium sulfate), and concentrated under reduced pressure. The residue was chromatographed on silica gel (elution with 80% ethyl acetate in hexanes) to give 5.92 g of a beige solid. Recrystallization of the solid from ether afforded 2.3 g (16%) of fine white needles, mp 118-120 °C ($R_f = 0.33$, ethyl acetate, silica gel). The IR (CHCl₃), ¹H NMR (CDCl₃, 200 MHz), and MS ($M^+ = 450$, EI, 70 eV) were consistent with the assigned structure. ¹H NMR (200 MHz, CDCl₃; mixture of amide rotamers): δ 1.28 and 1.40 (2 d, J =7.4 Hz, 6 H), 1.73-3.33 (m, 11 H), 3.66-3.83 (m, 2H), 4.58 and 4.77 (2 m, 1 H), 6.93–7.13 (m, 1 H), 7.16–7.30 (m, 1 H), 7.33-7.46 (m, 1 H), 7.53-7.77 (m, 3 H), 7.87-8.03 (m, 1H).

In Vitro Studies. Receptor binding assays were performed according to previously reported procedures.¹⁹

Apomorphine-Induced Climbing in Mice. This method is a modification of Protais et al.¹³ and Costall et al.¹⁴ Male CD-1 mice (18-30 g) were individually placed in wire-mesh stick cages $(4 \times 4 \times 10 \text{ in.})$ and were allowed 1 h for adaptation. Animals (8/dose group) received either distilled water or test drugs ip 30 or 60 min prior to apomorphine challenge (1.5 mg/kg sc). Animals were then observed for climbing behavior for 30 min. ED₅₀ values were calculated by linear regression analysis.

Apomorphine-Induced Stereotypy in Rats. The procedure is a modification of Janssen et al.¹⁵ Male Wistar rats (150-250 g) were dosed ip with distilled water or test compounds (6-10/dose group). After 50 min, apomorphine (1.5 mg/kg sc) was administered and the rats were placed in individual opaque plastic cages ($40 \times 22 \times 18$ cm). After 10 min, the rats were observed for the presence of continuous stereotyped licking or sniffing behavior.

Acknowledgment. We wish to thank Anastasia Linville of the Physical Methods Department for spectroscopic data and Toni Ann Wettlaufer, Roy Corbett, and Sharon Hardiman for additional biological assays. We also wish to thank Hoechst-Roussel Scholars Crystal Williams and Alrich Gray of Howard University for preparing two of the target compounds.

References

- (1) Marder, S. R.; Wirshing, W. C.; Van Putten, T. Drug treatment of schizophrenia-overview of recent research. Schizophrenia Res. 1991, 4, 81-90.
- Davis, K. L.; Kahn, R. S.; Ko, G.; Davidson, M. Dopamine in Schizophrenia: A Review and Reconceptualization. Am. J. Psychiatry **1991**, 148, 1474–1486.
- (3) Remington, G. Pharmacotherapy of Schizophrenia. Can. J. Psychiatry 1989, 34, 211-220.
- Fitton, A.; Heel, R. C. Clozapine A Review of its Pharmacological Properties, and Therapeutic Use in Schizophrenia. Drugs 1990, 40, 722.
- (5) Meltzer, H. Y.; Matsubara, S.; Lee, J.-C. Classification of Typical and Atypical Antipsychotic Drugs on the basis of Dopamine D-1, D-2, and serotonin₂ pK_i values. J. Pharmacol. Exp. Ther. 1989, 251, 238-246.
- (6) Meltzer, H. Y.; Bastani, B.; Ramirez, L.; Matsubara, S. Clozapine: New Research on Efficacy and Mechanism of Action. Eur. Arch. Psychiatr. Neurol. Sci. 1989, 238, 332–339
- (7) Ahlenius, S.; Antipsychotic-like Properties of the 5HT1A Agonist B-OH-DPAT in the Rat. Pharmacol. Toxicol. 1989, 64, 3-5.
- B. Grand M. B. C. B. Service and Service Parameters of Service Parameters and erazine Derivatives as Potential Atypical Antipsychotic Agents. J. Med. Chem. **1991**, 34, 1860–1866
- (10) Papa, D.; Schwenk, E.; Ginsburg, H. F. Reductions with Nickel-Aluminum Alloy and Aqueous Alkali. Part VII. Hydrogenolysis of Sulfur Compounds. J. Org. Chem. 1949, 14, 723-731. (11) Amoretti, L.; Catellani, P. L.; Impicciatore, M.; Cavaggioni, A.
- Proprieta Biologiche di Composti 1,2-Benzisotiazolici. (Biological Properties of 1,2-Benzisothiazole Compounds.) Il Farmaco-Ed. Sci. 1972, 27, 855-869. (12) Kemp, D. S.; Paul, K. G.; The Physical Organic Chemistry of
- Benzisoxazoles. III. The Mechanism and the Effects of Solvents on Rates of Decarboxylation of Benzisoxazole-3-carboxylic acids. J. Am. Chem. Soc. **1975**, 97, 7305-7312. (13) Costall, B.; Naylor, R. J.; Nohira, V. Climbing behavior induced
- by apomorphine in mice: a potent model for the detection of neuroleptic activity. *Eur. J. Pharmacol.* **1978**, *50*, 39.
- (14) Protais, P.; Constentin, J.; Schwartz, J. Climbing Behavior Induced by Apomorphine in Mice: A Simple Test for the Study of Dopamine Receptors in Striatum. Psychopharmacology 1976, 50, 1-6.
- (15) Janssen, P. A. J.; Niemegeers, C. J. C.; Jageneau, A. H. M. Apomorphine-antagonism in Rats. Arzneim-Forsch. 1960, 10, 1003-1005.
- (16) Lowe, J. A., III; Seeger, T. F.; Vinick, F. J.; Atypical Antipsychotics-Recent Findings and New Perspectives. Med. Res. Rev. 1988, 8, 475–497.
- (17) Moore, N. C.; Gershon, S. Which Atypical Antipsychotics are Identified by Screening Tests? Clin. Neuropharmacol. 1989, 12, 167 - 184
- (18) Chiodo, L. A.; Bunney, B. S. Possible Mechanisms by which (10) Onlog D. A., Dinkey, D. O. Tokine international structure of the activity of Two Subpopulations of Midbrain Dopamine Neurons. J. Neurosci. 1985, 5, 2539-2544.
 (19) Huger, F. P.; Smith, C. P.; Chiang, Y.; Glamkowski, E. G.; Ellis, D. B. Pharmacological Evaluation of HP 370, A Potential Atypical
- Antipsychotic Agent: 2. In Vitro Profile. Drug Dev. Res. 1987, 1, 169.
- (20) Presented in part in poster format at the 203rd American Chemical Society National Meeting, San Francisco, CA, April 1992; Abstract MEDI 92.