Reaction of 2-methylnaphthalene with hexachlorocyclopentadiene and structural characterization of a new addition-substitution product

Da-Ming Du,^(1,2) Feng Xue,⁽¹⁾ Henry N. C. Wong,^{(1)*} and Thomas C. W. Mak⁽¹⁾

Received December 20, 1996

2-Methylnaphthalene undergoes Diels-Alder addition and substitution with hexachlorocyclopentadiene to give two products, 1,2,3,4,5,6,7,8,13,13,14,14-dodecachloro-1,4,4*a*,4*b*,5,8,8*a*,12*b*-octahydro-10-methyl-1,4;5,8-dimethanotriphenylene 1 and 1,2,3,4,5,6,7,8,13,13,14,14-dodecachloro-1,4,4*a*,4*b*,5,8,8*a*,12*b*-octahydro-10-(1',2',3',4',5'-pentachlorocyclopentadienyl)methyl-1, 4;5,8-dimethanotriphenylene 2. The molecular structure of 2 has been characterized by X-ray crystallography: C₂₆H₉Cl₁₇, monoclinic, space group P2₁/c, with a = 15.316(3), b = 13.698(3), c = 16.116(3) Å, $\beta = 96.113(3)^{\circ}$, and Z = 4.

KEY WORDS: 2-Methylnaphthalene; hexachlorocyclopentadiene; crystal structure.

Introduction

Hexachlorocyclopentadiene shows an unexpected tendency to undergo the Diels-Alder reaction with many dienophiles at temperatures between 20°C and 200°C. It condenses even with simple olefins, which normally do not react with diene, and also with polynuclear aromatic hydrocarbons such as naphthalene and anthracene.¹ The condensation is probably the most extensively investigated reaction of the diene and has furnished a variety of new compounds which are not accessible by other methods.²

The diene reactions of hexachlorocyclopentadiene with naphthalene and its derivatives offer a route for a relatively facile synthesis of monosubstituted naphthalenes in the β -position¹ and disubstituted naphthalenes in the 2,3-positions.³ Look reported⁴ that when one mole of 2-methylnaphthalene and two moles of hexachlorocyclopentadiene were heated at 150–155°C for 7 days,

the 1:2 adduct 1,2,3,4,5,6,7,8,13,13,14,14-dodecachloro-1,4,4a,4b,5,8,8a,12b-octahydro-10-methyl-1,4;5,-8-dimethanotriphenylene **1** was obtained. The resulting reaction product can be used for further novel synthesis of 3-bromo-2-methylnaphthalene.³ In the present work, we describe the reaction of 2-methylnaphthalene and hexachlorocyclopentadiene to give the adduct **1** and a new compound 1,2,3,4,5,6,7,8,13,13,14,14-dodecachloro-1,4,4a,4b,5,8,8a,12b-octahydro-10-(1',2',3',-4',5'-pentachloro-cyclopentadienyl)methyl-1,4;5,8,-dimethanotriphenylene **2**, which was structurally characterized by X-ray crystallography.

Experimental

Synthesis

A mixture of 218 g (0.8 mol) hexachlorocyclopentadiene and 57 g (0.4 mol) 2-methylnaphthalene was heated for 7 days at $150-155^{\circ}$ C. Excess hexachlorocyclopentadiene and 2-methylnaphthalene were distilled off under vacuum. The mixture was cooled to give a thick oil, which was recrystallized from acetone-methanol (1:1) to give 11.8 g product 2 (yield

⁽¹⁾ Department of Chemistry, The Chinese University of Hong Kong Shatin, New Territories, Hong Kong, P.R. China.

⁽²⁾ On sabbatical leave from Chemistry Department of Shandong University, Jinan, P.R. China.

^{*} To whom correspondence should be addressed.

8%): m.p. 232–234°C; IR(KBr) 1603, 1503, 1437, 1254, 1075, 915, 850, 782 cm⁻¹; ¹H NMR (CDCl₃, 250MHz) δ 3.41(s, 2H), 3.50(d, J = 9.1Hz, 2H), 3.90(t, J = 9.1Hz, 2H), 7.13(d, J = 8.3Hz, 1H), 7.50(s, 1H), 7.63(d, J = 8.3Hz, 1H); mass spectram, m/e(%) M⁺ 924(0.44), 378(16), 237(13), 141(100). Anal. Calcd for C₂₆H₉Cl₁₇: C, 33.80; H, 0.98; Cl, 65.22. Found: C, 33.94; H, 1.10; Cl, 65.12.

The mother liquor was chromatographed on silica gel with hexane eluate to give 1, which was recrystallized from hexane-methanol to give 33 g of pure product 1 (yield 30%): m.p. 154–156°C (lit.⁴ 155–158°C); ¹H NMR (CDCl₃, 250MHz) δ 2.35(s, 3H), 3.50 (d, J =9.3 Hz, 2H), 3.94 (t, J = 9.3 Hz, 2H), 7.08 (d, J =8.1 Hz, 1H), 7.51 (s, 1H), 7.58 (d, J = 8.1Hz, 1H).

Crystal data of compound 2

Information concerning crystallographic data and structure determination of compound 2 is summarized

in Table 1. Diffraction intensities were collected at 294 K on a Rigaku AFC7R diffractometer using MoK α radiation ($\lambda = 0.71073$ Å) in the variable ω -scan mode.⁵ The raw data were processed with a learned-profile procedure, and empirical absorption correction based on ω -scan data was also applied.⁶

All the hydrogen atoms were located from difference Fourier maps, assigned isotropic thermal parameters, held stationary, and included in structure-factor calculations in the last stage of full-matrix leastsquares refinement. All calculations were performed on a PC 486 computer with the SHELXTL/PC program package.^{7,8} Analytic expressions of neutral-atom scattering factors were employed, and anomalous dispersion corrections were incorporated.⁹

Results and discussion

The thermal reaction of hexachlorocyclopentadiene and 2-methylnaphthalene gave the known 2:1

	·
Molecular formula	C ₂₆ H ₉ Cl ₁₇
Formula weight	924.06
Color/Shape	Colorless needles
Crystal system	Monoclinic
Space group	$P2_1/c$
Unit cell dimensions	a = 15.316(3) Å
	$b = 13.698(3) \text{ Å } \beta = 96.113(3)^{\circ}$
	c = 16.116(3) Å
Volume	3362(2) Å ³
Ζ	4
Density (calculated)	1.826 mg/m ³
Absorption coefficient	1.408 mm ⁻¹
<i>F</i> (000)	1816
Crystal size	$0.10 \times 0.15 \times 0.40 \text{ mm}^3$
θ range for data collection	2.0 to 25.0°
Index ranges	$0 \le h \le 18, 0 \le k \le 16,$
	$-19 \le l \le 19$
Reflections collected	6139
Independent reflections	$5904 (R_{int} = 0.0301)$
Observed reflections	$3111 [I > 2\sigma(I)]$
Absorption correction	Empirical
Transmission factors	0.949 to 1.000
Refinement method	Full-matrix least-squares on F
Program used	Siemens SHELXTL PLUS (PC version)
Goodness-of-fit on F^2	1.33
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0437, wR2 = 0.0451
R indices (all data)	R1 = 0.1126, wR2 = 0.0506
Extinction coefficient	0.00002(2)
Largest diff. peak and hole	0.44 and $-0.40 \text{ e} \text{ Å}^{-3}$

 Table 1. Crystallographic Data and Structure Refinement of Compound 2

adduct 1 and a new addition-substitution product 2. Compound 2 is probably generated in the present reaction by formation of cyclopentadienyl and naphthalenemethyl radicals and their combination, or by naphthalenemethyl radical attack on hexachlorocyclopentadiene with elimination of a Cl atom.¹⁰ The molecular structure of compound 2 is consistent with its NMR, MS, IR spectrum and elemental analysis.

The fractional atomic coordinates and equivalent isotropic temperature factors for the crystal structure of compound **2**, along with their estimated standard deviations, are presented in Table 2. The selected bond lengths and bond angles are listed in Table 3.

The molecular structure of compound 2 is shown in Fig. 1. The two addition moieties of hexachlorocyclopentadiene are fused to the central ring in the expected *trans* conformation, which reduces steric hindrance. The average bond length of the C-Cl bonds on the unsaturated C atoms is significantly shorter than that of C-Cl bonds on the saturated C atoms, and the average Δ C-Cl value is 0.065 Å. The longest C-Cl

Table 2. Atomic Coordinates (\times 10⁴) and Equivalent Isotropic Displacement Coefficients ($\mathring{A}^2 \times 10^3$)

	xla	y/b	zlc	U(eq)"
Cl(1)	3485(1)	1212(1)	4389(1)	45(1)
CI(2)	1489(1)	1502(1)	4952(1)	56(1)
CI(3)	923(1)	-567(2)	5947(1)	67(1)
CI(4)	2504(1)	-2198(1)	5832(1)	60(1)
CI(5)	2558(1)	-1002(1)	3975(1)	52(1)
CI(6)	4232(1)	-1095(1)	4931(1)	53(1)
CI(7)	4096(2)	-2097(1)	7860(1)	74(1)
Cl(8)	5418(1)	-231(2)	7557(1)	87(1)
Cl(9)	4645(1)	1776(1)	8494(1)	69(1)
CI(10)	2834(1)	1185(1)	9289(1)	54(1)
CI(11)	2344(1)	-1253(1)	8856(1)	57(1)
Cl(12)	4043(1)	-865(1)	9691(1)	69(1)
CI(13)	650(1)	5219(1)	7496(1)	55(1)
CI(14)	1800(1)	5361(1)	5799(1)	71(1)
CI(15)	496(1)	3827(2)	4546(1)	86(1)
Cl(16)	-515(1)	2310(2)	5757(2)	99(1)
CI(17)	124(2)	2817(1)	7780(1)	81(1)
C(1)	3567(4)	514(4)	6057(3)	29(2)
C(2)	3347(4)	-503(4)	6417(3)	33(2)
C(3)	3016(4)	-558(4)	7282(3)	35(2)
C(4)	2651(4)	386(4)	7654(3)	30(2)
C(5)	2317(4)	2139(4)	7446(3)	36(2)
C(6)	2446(4)	3064(4)	7123(3)	37(2)
C(7)	3008(4)	3138(4)	6510(3)	38(2)
C(8)	3389(4)	2332(4)	6194(3)	36(2)
C(9)	3241(3)	1398(4)	6501(3)	29(2)
C(10)	2727(4)	1316(4)	7161(3)	32(2)
C(11)	3089(4)	443(4)	5131(3)	31(2)
C(12)	2113(4)	509(4)	5220(3)	34(2)
C(13)	1891(4)	-298(4)	5585(3)	38(2)
C(14)	2703(4)	-950(4)	5717(3)	37(2)
C(15)	3150(4)	-659(4)	4932(3)	38(2)
C(16)	3744(4)	-891(4)	7961(4)	43(2)
C(17)	4461(4)	-120(5)	7992(4)	48(2)
C(18)	4163(4)	662(5)	8345(4)	41(2)
C(19)	3234(4)	450(4)	8526(3)	35(2)
C(20)	3345(4)	-650(4)	8766(4)	44(2)
C(21)	2001(4)	3944(4)	7484(4)	45(2)
C(22)	1114(4)	4187(4)	6994(3)	37(2)
C(23)	1161(4)	4432(4)	6090(4)	43(2)
C(24)	655(4)	3830(5)	5610(4)	51(3)
C(25)	220(4)	3174(5)	6136(5)	53(3)
C(26)	465(4)	35/1(4)	0933(4)	47(2)

" Equivalent isotropic U defined as one third of the trace of the orthogonalized U_{μ} tensors.

bond is Cl(13)-C(22) at 1.812 Å. It is noted that the bond length of Cl(13)-C(22) is significantly longer than the average length (1.757 Å) of other C-Cl bonds on the saturated C atoms, which is probably caused by repulsion exerted by the neighboring Cl(14) and Cl(17) atoms.

		-	
Bond lengths (Å)			
Cl(1) - C(11)	1.750(6)	C(3) - C(4)	1.554(8)
Cl(2) - C(12)	1.692(6)	C(3) - C(16)	1.545(8)
CI(3) - C(13)	1.691(6)	C(4) - C(10)	1.513(7)
C1(4) - C(14)	1.749(6)	C(4) - C(19)	1.584(7)
C1(5) - C(15)	1.768(6)	C(6)-C(21)	1.529(8)
C1(6) - C(15)	1.763(6)	C(11) - C(12)	1.519(8)
C1(7) - C(16)	1.749(6)	C(11) - C(15)	1.547(8)
CI(8) - C(17)	1.698(7)	C(12) - C(13)	1.314(8)
Cl(9)-C(18)	1.701(7)	C(13) - C(14)	1.527(8)
Cl(10)-C(19)	1.750(6)	C(14) - C(15)	1.553(8)
Cl(11) - C(20)	1.761(7)	C(16)-C(17)	1.520(9)
Cl(12) - C(20)	1.764(6)	C(16)-C(20)	1.530(9)
Cl(13)-C(22)	1.812(6)	C(17)-C(18)	1.317(9)
Cl(14)-C(23)	1.703(7)	C(18)-C(19)	1.510(9)
Cl(15)-C(24)	1.707(6)	C(19)-C(20)	1.560(8)
Cl(16)-C(25)	1.701(7)	C(21)-C(22)	1.534(8)
Cl(17)-C(26)	1.693(7)	C(22)-C(23)	1.505(9)
C(1) - C(2)	1.560(7)	C(22)-C(26)	1.491(9)
C(1) - C(9)	1.518(7)	C(23)-C(24)	1.322(9)
C(1) - C(11)	1.593(7)	C(24)-(25)	1.446(10)
C(2)-C(3)	1.536(8)	C(25)-C(26)	1.326(10)
C(2)-C(14)	1.544(8)		
Bond angles (°)			
C(2) - C(1) - C(9)	116.3(5)	C(12)-C(11)-C(15)	99.2(4)
C(2) - C(1) - C(11)	101.4(4)	C(11)-C(12)-C(13)	107.3(5)
C(9) - C(1) - C(11)	110.4(4)	C(12)-C(13)-C(14)	108.0(5)
C(1) - C(2) - C(3)	119.2(4)	C(13)-C(14)-C(15)	99.1(4)
C(1) - C(2) - C(14)	103.2(4)	C(11)-C(15)-C(14)	92.3(4)
C(2) - C(3) - C(4)	118.5(4)	C(3) - C(16) - C(20)	102.3(5)
C(4) - C(3) - C(16)	103.6(4)	C(17) - C(16) - C(20)	100.0(5)
C(3) - C(4) - C(10)	116.5(5)	C(16) - C(17) - C(18)	107.3(6)
C(3) - C(4) - C(19)	101.3(4)	C(17) - C(18) - C(19)	107.7(5)
C(6) - C(5) - C(10)	121.8(6)	C(4) - C(19) - C(20)	101.7(4)
C(5) - C(6) - C(7)	117.3(5)	C(18) - C(19) - C(20)	98.9(5)
C(6) - C(7) - C(8)	121.8(5)	C(16) - C(20) - C(19)	92.3(4)
C(7) - C(8) - C(9)	121.0(6)	C(6) - C(21) - C(22)	112.4(5)
C(1) - C(9) - C(10)	122.4(5)	C(23) - C(22) - C(26)	101.7(5)
C(8) = C(9) = C(10)	118.0(5)	C(22) - C(23) - C(24)	110.0(6)
C(4) = C(10) = C(9)	123.4(5)	C(23) - C(24) - C(25)	108.9(6)
C(3) - C(10) - C(9)	119.8(5)	C(24) - C(25) - C(26)	109.8(6)
C(1) - C(11) - C(12)	105.4(4)	C(22) - C(26) - C(25)	109.6(6)
C(1) - C(11) - C(15)	102.8(4)		

 Table 3. Selected bond lengths (Å) and bond angles (°) of compound 2

Acknowledgment

The work described in this paper was supported by a grant from the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No. CUHK 456/95P).

Fig. 1. Molecular structure of compound 2 with atom labeling. The thermal ellipsoids are drawn at the 35% probability level.

Supplementary material. Crystallographic data (excluding structure factors) for the structure reported in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication no. CCDC-1003/5437. Copies of available material can be obtained, free of charge, on application to the Director, CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44-(0)1223-336033 or e-mail: deposit@ccdc.cam.ac.uk).

References

- Danish, A.A.; Silverman, M.; Tajima, Y.A. J. Am. Chem. Soc. 1954, 76, 6144.
- 2. Ungnade, H.E.; Mobee, E.T. Chem. Revs. 1958, 58, 249.
- Look, M.; Cerrito, E.; Padgett, W.M., II U. S. 3480646 (1969). Chem. Abstr. 1965, 62, 503b.
- Look, M. U.S. 3177246 (1965). Chem. Abstr. 1965, 63, p4227e.
- 5. Sparks, R.A. In Crystallographic Computing Techniques; Ahmed, F.R., Ed.; Munksgaard: Copenhagen, 1976; p 452.
- Kopfmann, G.; Huber, R. Acta Crystallogr. Sect A 1968, 24, 348.
- Sheldrick, G.M. In *Computational Crystallography*; Sayre, D., Ed.; Oxford University Press: New York, 1982; p 506.
- Sheldrick, G.M. In Crystallographic Computing 3: Data Collection, Structure Determination of Proteins, and Databases; Sheldrick, G.M.; Kruger, C.; Goddard, R., Eds.; Oxford University Press: New York, 1985; p 175.
- Ibers, J.A.; Hamilton, W.C. International Tables for X-ray Crystallography, Vol. 4, Kynoch Press: Birmingham, UK (now attributed by Kluwer Academic Press: Dordrecht, The Netherlands), 1974; pp 55, 99, 149.
- Freidlina, R.Kh.; Belyavskii, A.B.; Velichko, F.K. Izv. Akad. Nauk. SSSR, Ser. Khim. 1967, 407.