Tetrahedron 72 (2016) 6578-6588

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Pheromone synthesis. Part 260: Synthesis of (\pm) -(*anti*-1,2-dimethyl-3-methylenecyclopentyl)acetaldehyde, the racemate of the female-produced sex pheromone of the pineapple mealybug (*Dysmicoccus brevipes*), and its *syn*-isomer^{\approx}

Kenji Mori*

Photosensitive Materials Research Center, Toyo Gosei Co., Ltd, 4-2-1 Wakahagi, Inzai-shi, Chiba, 270-1609, Japan

A R T I C L E I N F O

Article history: Received 19 July 2016 Received in revised form 23 August 2016 Accepted 24 August 2016 Available online 25 August 2016

Keywords: Dysmicoccus brevipes Ireland—Claisen rearrangement Monoterpene aldehyde Pheromone Ring-closing metathesis

ABSTRACT

 (\pm) -(*anti*-1,2-Dimethyl-3-methylenecyclopentyl)acetaldehyde, the racemate of the female-produced sex pheromone of the pineapple mealybug, was synthesized in four different ways. Ireland–Claisen rearrangement or conjugate addition was employed for the construction of the quaternary carbon center, while ring-closing olefin metathesis or cationic cyclization was used for the construction of the five-membered carbocycle.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Recent studies by Millar and co-workers culminated in the identifications of three monoterpenes **A**, **B** and **C** (Fig. 1) with a five-membered carbocycle as the sex pheromones of the mealybugs.² In 2005, **A** was identified as the pheromone of the obscure mealybug (*Pseudococcus viburni*).³ Then in 2007, the pheromone of the grape mealybug (*Pseudococcus maritimus*) was shown to be **B**.⁴ Finally in 2009, **C** was proved to be the pheromone of the longtailed mealybug (*Pseudococcus longispinus*).⁵ Their unique structures including stereochemistry were all confirmed by syntheses.²

In Japan, Tabata et al. are working on the identification of the female produced sex pheromone of the pineapple mealybug [*Dysmicoccus brevipes* (Cockerell), Homoptera: Pseudococcidae], which is a pest infesting pineapples in Okinawa.⁶ Dr. Tabata asked me to synthesize samples with the proposed structure **1** of the pheromone (Tabata, J. personal communication). My synthesis

Fig. 1. Structures of the mealybug pheromones. **A**: the obscure mealybug (*Pseudococcus viburni*); **B**: the grape mealybug (*Pseudococcus maritimus*); **C**: the longtailed mealybug (*Pseudococcus longispinus*); **1**: the pineapple mealybug (*Dysmicoccus brevipes*). The structures depicted for *anti-* and *syn-***1** show relative configuration.

provided both (\pm) -*anti*- and *syn*-**1**. Their NMR and GC–MS comparisons with the natural pheromone as well as their bioassay established the structure of the pheromone as *anti*-**1**, although its absolute configuration still remains unknown.⁷

This paper describes in detail the synthesis of (\pm) -anti- and syn-**1** as achieved by several different approaches.

 $^{\,^{\}star}$ For Part 259, see Ref. 1. This work was orally reported by K.M. as a part of his lecture at International Chemical Ecology Conference 2016 (July 5, 2016) in Iguassu Falls, Brazil.

^{*} Fax: +81 3 3816 6889; e-mail address: kjk-mori@arion.ocn.ne.jp.

2. Results and discussion

2.1. Retrosynthetic analyses of 1

Fig. 2 shows the retrosynthetic analyses of **1**, all of which could be realized later to give (\pm) -**1**. The most direct route to **1** is route (a), making the ring first and then generating the quaternary carbon center. Conjugate addition of allylsilane⁸ is employed as the key step for conversion of the known **E** to **1** via **D**. This route was examined first, and gave both (\pm) -anti- and syn-**1** used for the identification of the natural pheromone.⁷

(b) Ireland-Claisen rearrangement and ring-closing olefin metathesis

Fig. 2. Retrosynthetic analyses of 1.

Practical difficulties encountered in the course of the realization of route (a) forced me to adopt route (b) as the more reliable one. Ireland's ester-enolate Claisen rearrangement⁹ and Grubbs's ringclosing olefin metathesis^{10,11} serve as the two key reactions. The five-membered ring is to be closed by olefin metathesis ($\mathbf{G} \rightarrow \mathbf{F}$), and the quaternary carbon center is to be constructed by Ireland–Claisen rearrangement ($\mathbf{I} \rightarrow \mathbf{H} \rightarrow \mathbf{G}$). Ester **J** will give **I** in two steps.

In future it will be necessary to prepare both the enantiomers of *anti*-**1** so as to determine the absolute configuration of the natural pheromone. Route (c) can be used for that purpose, because the resolution of **N** may be feasible to give the enantiomers of **N**. The Ireland–Claisen rearrangement of acetate **M** via **L** gives **K**, which is structurally equivalent to **F** in route (b). Accordingly, **K** can readily be converted to **1**. It must be mentioned that the construction of the quaternary center in cyclopentanoids by means of route (c) was

first reported by Jäger and co-workers in their polycyclopentanoid synthesis,¹² and then Zou and Millar in their synthesis of the pheromone C.¹³

The rest of the present paper details the realization of these three retrosynthetic analyses to achieve three different syntheses of **1** as well as a formal synthesis of **1** via **K**.

2.2. First synthesis of the pheromone 1

The first synthesis of **1** was accomplished as shown in Scheme 1. Synthesis of the starting material, 2,3-dimethyl-2-cyclopenten-1one (**2**) have been reported repeatedly.^{14–18} Polyphosphoric acid (PPA)-mediated cyclization of 4-methyl-4-hexenoic acid was most reliable to give over 10 g of **2**.^{12,14} Methylation of the enol phosphate of 2-methyl-1,3-cyclopentanedione with Me₂CuLi was also a good method to prepare **2**.¹⁵ Isopropylmagnesium chloride-promoted unilateral addition of MeMgBr to 2-methyl-1,3-cyclopentanedione according to Yuan et al.¹⁹ afforded **2**, but in a low yield of 14% after distillation.

Scheme 1. First synthesis of (\pm) -*anti*-**1**. Reagents: (a) CH₂=CHCH₂TMS, TiCl₄, CH₂Cl₂, -78 to -30 °C; then SiO₂ chromatography (12%); (b) OsO₄, NMO, *t*-BuOH, Me₂CO,H₂O (58%); (c) Tebbe reagent, toluene, THF; (d) NaIO₄, THF, H₂O; then SiO₂ chromatography (18%, two steps); (e) AgNO₃/SiO₂ chromatography.

Conjugate addition of allyltrimethylsilane to **2** was achieved according to Hosomi and Sakurai,⁸ employing TiCl₄ as the catalyst. The desired allylated ketone **3** (diastereomer ratio=ca. 1:1) was obtained in 12% yield after SiO₂ chromatography. Although the yield was quite unsatisfactory, **3** could be obtained repeatedly, confirming the reproducibility of the reaction. An attempt was made to increase the yield by employing InCl₃ as the catalyst,²⁰ which unfortunately did not work at all. Additional unsuccessful attempts were made to construct the quaternary carbon center by means of copper(I)-catalyzed conjugate addition to **2** of allyl Grignard reagent in the presence of conventional Cul or CuBr/Me₂S, LiCl and TMSCl.²¹ Conjugate addition of dimethyl malonate to **2** in the presence of NaOMe in MeOH was not fruitful, either.

Dihydroxylation of the allylated ketone **3** with OsO_4 and *N*-methylmorpholine *N*-oxide (NMO)²² yielded dihydroxy ketone **4**, which was treated with excess Tebbe reagent²³ to give methylenated diol **5**. Finally, cleavage of the glycol system of **5** with NalO₄ afforded a crude oil (540 mg), which was purified by SiO₂ chromatography to give 132 mg of **1** (44.4% GC purity) as a stereoisomeric mixture. The overall yield of **1** was 0.6% based on **2** (four steps).

The mixture could be further purified by $AgNO_3/SiO_2$ chromatography²⁴ to separate (±)-*anti*-**1** from its *syn*-isomer. After the separation, the ¹H NMR spectra of the two isomers were compared, and the relative configuration of the two methyl groups was studied by NOESY to find out NOE in the case of the later eluting isomer. Accordingly, the later eluting one must be (\pm) -*syn*-**1**, while the earlier eluting one was (\pm) -*anti*-**1**. The retention time (t_R) of (\pm) -*anti*-**1** was identical to that of the natural pheromone. The ¹H, ¹³C NMR and MS spectra of (\pm) -*anti*- and (\pm) -*syn*-**1** were different from each other (see 4.6), and the spectra of (\pm) -*anti*-**1** was identical to those of the natural pheromone. The structure and the relative configuration of the natural pheromone was therefore determined as *anti*-**1**.

Field bioassay of the synthetic (\pm) -*anti*- and (\pm) -*syn*-1 as well as their mixture was carried out by Dr. J. Tabata at National Agriculture and Food Research Organization, Japan. The racemic *anti*-1 was bioactive as the pheromone of *D. brevipes*, while *syn*-1 was devoid of bioactivity. Fortunately, *syn*-1 did not inhibit the pheromone activity of (\pm) -*anti*-1.⁷ Therefore, a stereoisomeric mixture 1 of the two isomers can be used sufficiently for the practical purpose of population monitoring or communication disruption.

2.3. Construction of the quaternary carbon center by means of Ireland–Claisen rearrangement

Since it was difficult to improve the miserable 10-12% yield of the conjugate allylation step ($2 \rightarrow 3$, Scheme 1), efforts were made to employ Ireland–Claisen rearrangement for the construction of the quaternary carbon center (Scheme 2).

Scheme 2. Synthesis of **11**. Reagents: (a) $(EtO)_2P(O)CHMeCO_2Et$, NaH, THF (95%); (b) LiAlH₄, Et₂O; (c) Ac₂O, DMAP, C₅H₅N (94%, two steps); (d) LiN(*i*-Pr)₂, TMSCl, THF; heat at 70 °C, 4 h; MeOH; then dil HCl (86%); (e) K₂CO₃, Mel, DMF (66%).

The required substrate **9** for the rearrangement was synthesized from commercially available 5-hexen-2-one (**6**). Treatment of **6** with triethyl 2-phosphonopropanoate and NaH in THF furnished **7** as an E/Z mixture. The dienoic ester **7** was reduced with LiAlH₄ to give **8**, which was acetylated to afford **9**. The acetate **9** was treated with LiN(*i*-Pr)₂ and TMSCI to give TMS-enolate (**H** in Fig. 2), which was heated at 70 °C for 4 h to effect the rearrangement.⁹ The TMS group was removed by methanolysis, and the resulting acid **10** could be isolated in 86% yield. Methylation of **10** with K₂CO₃ and MeI afforded methyl ester **11** in 66% yield. Its ¹H NMR spectrum was consistent with the structure **11**, exhibiting three 3H singlets at δ =1.19, 2.07 and 3.62 together with signals due to five olefinic protons. The overall yield of the acid **10** was 77% based on **6** (four steps).

2.4. Second synthesis of the pheromone 1

The next thing to do was to execute the ring-closing olefin metathesis of **11** and subsequent conversion of the product **12** to **1** (Scheme 3). Treatment of **11** with 0.3 mol % of the second generation Grubbs catalyst (Grubbs II)^{10,11} in refluxing CH₂Cl₂ gave **12** with a single olefinic proton (δ =5.31) in 76% yield. Hydroboration–oxidation of the double bond of **12** with BH₃·SMe₂ followed by Jones CrO₃ afforded **13** in 47% yield. The next step, methylenation of the CO group of **13**, was problematic, because its

facile enolization rendered conventional methylenation with $Ph_3P=CH_2$ impractical. Accordingly, attempts were made to employ Ando's new olefination reagent [1-methyl-2-(methyl-sulfonyl)benzimidazole (**14**)]²⁵ for the methylenation.

Scheme 3. Second synthesis of (\pm) -**1.** Reagents: (a) Grubbs II (0.3 mol %), CH₂Cl₂, reflux, 2 h (76%); (b) BH₃·SMe₂, Et₂O; then Jones CrO₃, Me₂CO (47%); (c) **14**, NaHMDS, DMF (27%; 51% based on the consumed **13**); (d) LiAlH₄, Et₂O (quant.); (e) NaOCl·5H₂O, Bu₄NHSO₄, azadol, H₂O, CH₂Cl₂ (63% after distillation); (f) 3,5-dinitrobenzoyl chloride, DMAP, C₅H₅N; then recrystallization from EtOAc/hexane.

When sodium hexamethyldisilazide (NaHMDS) was added to a solution of **13** and **14** in DMF, the desired **15** was obtained. The yield, however, was only 27% (or 51% based on the consumed **13**) with a substantial amount of the recovered **13**, reflecting the large extent of enolization prior to the nucleophilic addition of the anion derived from **14**. When *t*-BuOK was used as the base instead of NaHMDS,²⁵ the product (28% yield) was not **15** but the corresponding *tert*-butyl ester generated by the nucleophilic attack of *t*-BuO⁻ to the ester CO group.

Reduction of the ester **15** with LiAlH₄ furnished alcohol **16**, which was oxidized with sodium hypochlorite pentahydrate²⁶ and azadol²⁷ to give a stereoisomeric mixture of **1** [*anti/syn*=1:1.3; 669 mg (78% GC purity)]. The overall yield of **1** was 2.4% based on **6** (10 steps). The present route enabled the preparation of **1** useful for further field bioassays.

Since the separation of (\pm) -*anti*-**1** from (\pm) -*syn*-**1** by AgNO₃/SiO₂ chromatography was rather tedious, separation of (\pm) -*anti*- and (\pm) -*syn*-**16** was attempted. 3,5-Dinitrobenzoate **17** of the stereo-isomeric mixture **16** was first prepared. Unfortunately, its fractional crystallization failed, and neither pure (\pm) -*anti*-**17** nor (\pm) -*syn*-**17** could be secured. Chromatographic separation over SiO₂ of a stereoisomeric mixture of the alcohol **16** was more fruitful, and almost pure (\pm) -*anti*-**16** (*anti*/*syn*=97:3) and (\pm) -*syn*-**16** (*anti*/*syn*=4:96) could be obtained. Their separate derivatizations to the corresponding 3,5-dinitrobenzoates gave (\pm) -*anti*-**17** as leaflets, mp 55–56 °C, and (\pm) -*syn*-**17** as prisms, mp 58–59 °C. Their ¹³C NMR

spectra confirmed their high purities (see 4.17.3 and 4.17.4), and their mixture melting point determination resulted in the depression of the mp (mmp 41–46 °C). It became clear that pure (\pm) -*anti*- and (\pm) -*syn*-16 would be obtained, if we couple SiO₂ chromatography of 16 with recrystallization of the corresponding 17. Hydrolysis of the pure 3,5-dinitrobenzoates (\pm) -*anti*- and *syn*-17 would give pure (\pm) -*anti*- and *syn*-16, whose separate oxidation would furnish pure (\pm) -*anti*- and *syn*-1. However, as reported in 2.2, there is no practical need to secure pure (\pm) -*anti*-1, because (\pm) -*syn*-1 does not inhibit the bioactivity of (\pm) -*anti*-1.

2.5. Third synthesis of the pheromone 1

The low yield (27%) of the methylenation step ($13 \rightarrow 15$, Scheme 3) made me modify the synthetic route as shown in Scheme 4: namely, to reduce the carboxy group of **10** and protect the hydroxy group of the resulting **18** as *p*-methoxybenzyl (PMB) ether **19**.

Scheme 4. Third synthesis of (\pm) -**1**. Reagents: (a) LiAlH₄, THF (73%); (b) PMBCl, *t*-BuOK, THF, DMF (99%); (c) Grubbs II (0.44 mol %), CH₂Cl₂, reflux, 2 h (87%); (d) BH₃·SMe₂, THF; then NaOH, H₂O₂ (68%); (e) Jones CrO₃, Me₂CO (93%); (f) Petasis reagent, THF, toluene, 70 °C, 25 h (85%); (g) DDQ, H₂O, CH₂Cl₂ (65%); (h) SiO₂ chromatography; (i) azadol, Phl(OAc)₂, CH₂Cl₂ (60% for *anti*-rich **1**; 72% for *syn*-rich **1**).

Treatment of **10** with LiAlH₄ in THF yielded **18**, and its PMB ether **19** was subjected to ring-closing metathesis in the presence of 0.44 mol % of Grubbs II catalyst. The ring-closure took place in a satisfactory yield of 87% to give **20**. Hydroboration of **20** with BH₃·SMe₂ was followed by oxidation with H₂O₂/NaOH to give **21**. Jones CrO₃ oxidized **21** cleanly to ketone **22**. Methylenation was then executed by treatment of **22** with commercially available Petasis reagent (Cp₂TiMe₂)²⁸ to furnish **23** in an excellent yield of 85%. Methylenation reagents employed so far (i.e., Tebbe, Ando, and Petasis reagent (Zn/CH₂Br₂/TiCl₄ in THF),²⁹ which must be prepared prior to use, may also work efficiently,³⁰ and will be examined in future to achieve a synthesis of the enantiomers of **1**. Deprotection of **23** was effected in 65% yield with 2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and water in $CH_2Cl_2^{31}$ to give **16**. Purification of **16** by SiO₂ chromatography gave 456 mg of *anti*rich **16** (*anti/syn*=81.3:15.4) and 397 mg of ca. 1:1 mixture of *anti*and *syn*-**16**. By adding another batch of *syn*-rich **16**, 1.67 g of *syn*rich **16** (*anti/syn*=2:3) was secured. These were separately oxidized with azadol and diacetoxyiodobenzene (DAIB)²⁷ to give (±)-*anti*rich **1** (243 mg, 99.6% GC purity, *anti/syn*=85.6:14.0) and (±)-*syn*rich **1** (1.19 g, 99.6% GC purity, *anti/syn*=38.0:61.6). The amounts obtained were sufficient for future field bioassay. The overall yield of **1** was 12% based on **6** (12 steps), in comparison to 0.6% in the case of the first synthesis and 2.4% in the case of the second synthesis. Accordingly, the present third synthesis was 20 times more efficient than the first one and five times more efficient than the second one, although the protection/deprotection strategy in the

2.6. Alternative synthesis of the intermediate 20

second one to twelve.

It is important to develop a synthetic route applicable to the preparation of both the enantiomers of *anti*-**1** so as to determine the absolute configuration of the naturally occurring *anti*-**1**. Reproducibility of the synthesis of **26** as reported by Jäger and coworkers in 1984¹² was therefore examined as shown in Scheme 5.

third synthesis increased the number of the steps from 10 in the

Alcohol (\pm)-**24** might possibly be resolved by enzymatic means, because (\pm)-2,4,4-trimethyl-2-cyclohexen-1-ol could be resolved by asymmetric hydrolysis of its acetate with pig liver esterase.³² The synthesis in Scheme 5 was straightforward. Reduction of **2** with LiAlH₄ gave **24**, which was acetylated to give acetate **25**. Ireland–Claisen rearrangement of the TMS-enol ether of **25** gave **26** in 33% yield. Treatment of **26** with LiAlH₄ in THF gave **27**. Of course resolution of (\pm)-**26** or (\pm)-**27** might be another option to obtain the enantiomers of *anti*-**1**. Finally, **27** was treated with PMBCl and *t*-BuOK to give **20**, whose IR, ¹H NMR and MS spectra were identical with those of **20** obtained by ring-closing metathesis of **19** (Scheme 4). The overall yield of **20** was 9.1% based on **2** (five steps). Since **20** had been converted to (\pm)-*anti*-**1** as shown in Scheme 4, the present route constituted the fourth synthesis of (\pm)-*anti*-**1** in a formal sense.

Scheme 5. Alternative synthesis of 20. Reagents: (a) LiAlH₄, Et₂O; (b) Ac₂O, C₅H₅N (40%, 2 steps); (c) LiN(*i*-Pr)₂, TMSCI, THF; then heat at 65 °C, 2.5 h; MeOH; then dil HCI (33%); (d) LiAlH₄, THF (69%); (e) PMBCI *t*-BuOK, THF, DMF (quant.).

3. Conclusion

Both *anti*- and *syn*-isomers of (\pm) -(1,2-dimethyl-3-methylenecyclopentyl)acetaldehyde (1) were synthesized. The isomer (\pm) -*anti*-1 showed ¹H, ¹³C NMR and MS spectra identical to those of the female-produced sex pheromone of the pineapple mealybug, *D. brevipes*. Synthetic (\pm) -*anti*-1 was pheromonally active in the field test in Okinawa. A mixture of (\pm) -*anti*- and *syn*-1 was also bioactive, while (\pm) -*syn*-1 was biologically inactive.

Accordingly, (\pm) -syn-1 does not inhibit the pheromone activity of (\pm) -anti-1. The synthesis of 1 was executed in four different ways, and over 1 g of (\pm) -1 was secured for future biological studies. Synthesis of the enantiomers of anti-1 is in progress, and will be published in due course.

4. Experimental

4.1. General

Melting points are uncorrected values. Refractive indices were measured on an Atago DMT-1 refractometer. IR spectra were measured on a Jasco FT/IR-410 spectrometer. ¹H NMR spectra (400 MHz, TMS at δ =0.00 as the internal standard) and ¹³C NMR spectra (100 MHz, CDCl₃ at δ =77.0 as the internal standard) were recorded on a Jeol JNM-ECZ 400S/L1 spectrometer. GC–MS were measured on Agilent Technologies 5975 inert XL. HRMS were recorded on Jeol JMS-SX 102A or Waters Synapt G2 HDMS. Column chromatography was carried out on Merck Kieselgel 60 Art 1.00734.

4.2. 2,3-Dimethyl-2-cyclopenten-1-one (2)

Eighty five percent H_3PO_4 (75 mL) was added to P_2O_5 (135 g), and the mixture was stirred for 30 min at 200 °C to obtain a viscous liquid of PPA. 4-Methyl-4-hexenoic acid (20.0 g, 156 mmol)¹² was added to the hot and stirred PPA in one portion at 110 °C, and the mixture was stirred and heated at 110 °C for 2 h. The dark PPA solution was then poured into ice, saturated with NaCl, and extracted with hexane/Et₂O. The extract was washed successively with water and brine, dried (MgSO₄), and concentrated in vacuo. The above process was repeated twice, and the residue from 40.0 g of the acid was distilled to give $\mathbf{2}$ (10.15 g, 30%) as a slightly yellow oil, bp 105–107 °C/56 Torr; v_{max} (film): 2919 (m), 2864 (w), 1698 (s), 1651 (s), 1442 (m), 1388 (m), 1330 (m), 1302 (w), 1181 (w), 1065 (m), 938 (w), 862 (w), 810 (w), 650 (w); $\delta_{\rm H}$ (CDCl₃): 1.69 (3H, s), 2.05 (3H, s), 2.30-2.40 (2H, m), 2.44-2.54 (2H, m); GC-MS [column: HP-5MS, 5% phenylmethylsiloxane, 0.25 mm i.d. \times 30 m; carrier gas, He; press 60.7 kPa; temp: 70–230 °C (+10 °C/min)]; t_R 3.11 (impurity, 5.1%), 5.56 min (88.4%); MS (70 eV, EI): *m*/*z*: 110 (76) [M⁺], 95 (25), 81 (11), 67 (100), 54 (8), 39 (21).

4.3. 3-Allyl-2,3-dimethylcyclopentan-1-one (3)

A solution of TiCl₄ in CH₂Cl₂ (TCI, 1.0 M, 12 mL, 12 mmol) was added dropwise to a stirred and cooled solution of 2 (1.10 g, 10 mmol) and CH₂=CHCH₂TMS (2.28 g, 20 mmol) in dry CH₂Cl₂ (10 mL) at -40 to -30 °C under argon. The brown-colored mixture was stirred for 2 h at -40 to -30 °C. It was then quenched by adding NH₄Cl solution, and extracted with Et₂O. The extract was washed successively with water and brine, dried (MgSO₄), and concentrated in vacuo. The residual oil (1.73 g) was chromatographed over SiO₂ (20 g). Careful fractionation was necessary to obtain 3 as a stereoisomeric mixture (176 mg, 12%) by elution with hexane/EtOAc (100:1-50:1). The above process was repeated twice and 347 mg of ca. 86.8% pure 3 (ca. 1:1 mixture of isomers) could be secured as a colorless oil, v_{max} (film): 3070 (w), 2959 (s), 2934 (s), 2874 (m), 2840 (w), 1741 (s), 1638 (m), 1455 (m), 1382 (m), 1250 (m), 1145 (m), 1038 (m), 996 (m), 915 (s), 842 (m); $\delta_{\rm H}$ (CDCl₃): 0.79 (1.5H, s), 0.94 (1.5H, d, J=6.8 Hz), 0.96 (1.5H, d, J=6.8 Hz), 1.11 (1.5H, s), 1.35–1.56 (1H, m), 1.60–1.80 (2H, m), 1.90–2.06 (2H, m), 2.06-2.34 (2H, m), 4.99-5.11 (2H, m), 5.70-5.90 (1H, m); GC-MS (same conditions as those used for **2**); *t*_R 7.37 (44.0%), 7.49 (42.8%), 11.36 min (impurity, 8.6%); MS of **3** with t_R =7.37 min (70 eV, EI): m/*z*: 152 (18) [M⁺], 111 (41), 110 (44), 95 (12), 83 (88), 69 (100), 55 (55), 41 (43), 39 (24); MS of **3** with t_R =7.49 min (70 eV, EI): m/z: 152 (14) [M⁺], 111 (41), 110 (55), 95 (11), 83 (85), 69 (100), 55 (55), 41 (43), 39 (23).

4.4. 3-(1,2-Dimethyl-3-oxocyclopentyl)propane-1,2-diol (4)

A solution of OsO₄ in *t*-BuOH [1%, 2 mL=20 mg (0.08 mmol)] and 50% NMO in H₂O (2.0 g, 8 mmol) were added to a stirred solution of **3** (340 mg, 2.2 mmol) in a mixture of *t*-BuOH (5 mL), acetone (10 mL) and H₂O (3 mL). The dark mixture was stirred for 3 d at room temperature (22 °C) to give a clear solution. Solid Na₂SO₃ (2.0 g) was added to reduce both NMO and OsO₄, and the mixture was concentrated in vacuo. The residue was diluted with brine, and extracted with EtOAc. The EtOAc extract was dried (MgSO₄), and concentrated in vacuo to give 240 mg (58%) of crude **4** as an oil, ν_{max} (film): 3421 (br s), 2953 (s), 2871 (s), 1736 (s), 1455 (m), 1249 (m), 1118 (m), 1072 (m), 1038 (m), 863 (m), 837 (m), 681 (s). This oil was employed in the next step without further purification.

4.5. 3-(1,2-Dimethyl-3-methylenecyclopentyl)propane-1,2diol (5)

A solution of Tebbe reagent in toluene (TCI, 0.5 M, 10 mL) was added dropwise via syringe to a stirred and ice-cooled solution of **4** (240 mg, 1.3 mmol) in dry THF (10 mL) at 0-5 °C under argon. The mixture was stirred for 1 h at 0-5 °C. It was then quenched with NaOH solution (200 mg in 20 mL H₂O), diluted with EtOAc, and filtered through Celite. The filtrate was extracted with EtOAc. The extract was washed with brine, dried (MgSO₄), and concentrated in vacuo to give 0.75 g of the residue containing **5**. Its IR [ν_{max} at 1654 (m)] and ¹H NMR spectra (olefinic protons at δ 3.3–4.0) showed the presence of the methylene group. This oil was employed in the next step without further purification.

4.6. (1,2-Dimethyl-3-methylenecyclopentyl)acetaldehyde (1)

NaIO₄ (2.0 g, 10 mmol) was added to a solution of crude 5 (750 mg, ca. 4 mmol) in THF (10 mL) and H_2O (5 mL). The mixture was stirred for 40 min at room temperature (22 °C). It was then diluted with water, and extracted with Et₂O. The Et₂O extract was washed successively with water and brine, dried (MgSO₄), and concentrated in vacuo to give 540 mg of the residue, which was chromatographed over SiO₂ (7.5 g). Elution with hexane/EtOAc (50:1) gave 132 mg (18%) of crude **1** as a clear oil, v_{max} (film); 3074 (w), 2956 (s), 2870 (m), 2730 (w), 1721 (s), 1655 (w), 1456 (m), 1380 (m), 880 (m); GC–MS (same conditions as used for 2): t_R 7.21 (18.0%; identical $t_{\rm R}$ with that of the natural pheromone) 7.35 min (26.4%); MS of anti-1 with t_R =7.21 min (70 eV, EI): m/z: 152 (<1) [M⁺], 109 (33), 108 (100), 93 (76), 91 (30), 79 (24), 77 (24), 67 (52), 55 (21), 53 (24), 41 (55), 39 (33); MS of syn-1 with t_R =7.35 min (70 eV, EI): *m*/*z*: 152 (<1) [M⁺], 109 (21), 108 (100), 93 (90), 91 (20), 79 (17), 77 (20), 67 (23), 55 (14), 53 (17), 41 (34), 39 (24). The mixture 1 could be separated by AgNO₃/SiO₂ chromatography to give anti-1 and syn-1. NMR data of anti-1: $\delta_{\rm H}$ (600 MHz, C₆D₆): 0.70 (3H, d, J=6.6 Hz), 0.86 (3H, s), 1.06–1.40 (1H, m), 1.56–1.62 (1H, m), 1.60-1.74 (2H, m), 1.74-1.80 (1H, m), 2.06-2.14 (1H, m), 2.16-2.24 (1H, m), 4.77 (1H, m), 4.85 (1H, m), 9.47 (1H, t, J=2.4 Hz); $\delta_{\rm C}$ (150 MHz, C₆D₆): 12.06, 24.78, 28.94, 35.52, 43.27, 47.20, 50.36, 105.73, 155.76, 201.38. The spectra were identical with those of the natural pheromone and no NOE was observed between the protons of the two Me groups. NMR data of *syn*-1: $\delta_{\rm H}$ (600 MHz, C₆D₆): 0.56 (3H, s), 0.72 (3H, d, J=7.2 Hz), 1.20–1.29 (1H, m), 1.38–1.44 (1H, m), 1.72 (1H, dd, J=3, 14 Hz), 1.78–1.84 (1H, m), 2.01 (1H, dd, J=3.6, 15 Hz), 2.07-2.17 (1H, m), 2.17-2.23 (1H, m), 4.78-4.82 (1H, qlike), 4.87–4.89 (1H, q-like), 9.48 (1H, t, J=3 Hz); δ_{C} (150 MHz, C₆D₆): 11.50, 18.69, 29.28, 36.27, 42.73, 48.52, 54.06, 105.51, 155.10, 200.85. The spectra were different from those of the natural pheromone, and the NOESY spectrum of *syn*-1 indicated the *cis*-relationship of the two Me groups of *syn*-1.

4.7. Ethyl (*E*,*Z*)-2,3-dimethyl-2,6-heptadienoate (7)

A solution of triethyl 2-phosphonopropanoate (50.1 g, 210 mmol) in dry THF (50 mL) was added dropwise to a stirred and ice-cooled suspension of 60% NaH in mineral oil (8.42 g. 210 mmol) in dry THF (100 mL) under argon. After the completion of H₂ evolution to give a homogeneous solution of the sodio enolate, a solution of 6 (20.5 g, 210 mmol) in dry THF (30 mL) was added dropwise. No exothermic reaction could be observed. The mixture was stirred for 3 d at room temperature (20 °C). It was then diluted with ice and water, and extracted with Et₂O. The Et₂O extract was washed successively with water and brine, dried (MgSO₄) and concentrated in vacuo. The residue was distilled to give 36.2 g (95%) of 7 [an almost 1:1 mixture of its (E)- and (Z)-isomers] as a colorless oil, bp 85–95 °C/7 Torr; n_D¹⁸=1.4618; v_{max} (film): 3078 (w), 2980 (m), 2932 (m), 2871 (w), 1714 (s), 1640 (m), 1446 (m), 1365 (m), 1277 (s), 1210 (s), 1101 (s), 911 (m), 772 (m); $\delta_{\rm H}$ (CDCl₃): 1.297 (1.5H, t, J=6.8 Hz), 1.303 (1.5H, t, J=6.8 Hz), 1.78 (1.5H, s), 1.85 (1.5H, s), 1.87 (1.5H, s), 1.98 (1.5H, s), 2.12-2.28 (3H, m), 2.43 (1H, t, J=7.2 Hz), 4.18 (1H, q, J=7.2 Hz), 4.20 (1H, q, J=7.2 Hz), 4.90-5.10 (2H, m), 5.77–5.90 (1H, m); GC–MS [column: HP-5MS, 0.25 mm i.d.×30 m; carrier gas, He; press 61 kPa; temp: 70–230 °C (+10 °C/min)]: $t_{\rm R}$ 8.32 (49.3%), 8.69 min (47.4%) (total 96.7%); MS of 7 with $t_{\rm R}$ =8.32 min (70 eV, EI): m/z: 182 (5) [M⁺], 167 (2), 153 (38), 137 (33), 113 (65), 109 (100), 95 (26), 93 (23), 81 (18), 79 (14), 67 (38), 43 (27); MS of **7** with $t_{\rm R}$ =8.69 min (70 eV, EI): m/z: 182 (6) [M⁺], 167 (3), 153 (40), 137 (59), 125 (22), 113 (92), 109 (100), 95 (27), 93 (25), 81 (22), 79 (16), 67 (58), 55 (18), 53 (17), 43 (33). HRMS calcd for C₁₁H₁₈O₂: 182.1307, found: 182.1305 (short *t*_R) and 182.1322 (long $t_{\rm R}$).

4.8. (EZ)-2,3-Dimethyl-2,6-heptadien-1-ol (8)

A solution of 7 (33.0 g, 181 mmol) in dry Et₂O (50 mL) was added dropwise to a stirred and ice-cooled suspension of LiAlH₄ (4.00 g, 105 mmol) in dry $Et_2O(200 \text{ mL})$ at 10–15 °C. After the addition, the mixture was stirred for 2 h at 0–5 °C. Then excess LiAlH₄ was destroyed by slowly adding water to the stirred mixture with icecooling. The mixture was acidified with ice and dil. HCl, and extracted with Et₂O. The Et₂O extract was washed successively with water, NaHCO₃ solution and brine, dried (MgSO₄), and concentrated in vacuo to give 28.4 g (quant.) of 8 as a colorless oil. An analytical sample of 8 was obtained by distillation, bp 81-82 °C/6 Torr; *n*_D²⁰=1.4755; *v*_{max} (film): 3326 (br m), 3077 (w), 2978 (m), 2925 (s), 2864 (m), 1663 (w), 1640 (m), 1442 (m), 996 (s), 910 (s); $\delta_{\rm H}$ (CDCl₃): 1.37 (1H, br s), 1.67 (1.5H, s), 1.72 (1.5H, s), 1.74 (3H, s), 2.08-2.25 (4H, m), 4.10 (2H, d, J=14 Hz), 4.90-5.08 (2H, m), 5.72-5.88 (1H, m); GC–MS (same conditions as used for **7**); t_R 6.67 (48.6%), 6.81 min (47.5%) (total 96.1%); MS of **8** with $t_{\rm R}$ =6.67 min (70 eV, EI): *m*/*z*: 140 (<1) [M⁺], 125 (10), 109 (40), 107 (29), 93 (16), 91 (18), 85 (18), 81 (21), 79 (28), 67 (16), 57 (8), 55 (23), 43 (100). The MS spectrum of **8** with $t_{\rm R}$ =6.81 min was almost identical with the above described one. HRMS calcd for C₉H₁₆O: 140.1201, found: 140.1218 (short t_R), 140.1220 (long t_R).

4.9. (EZ)-2,3-Dimethyl-2,6-heptadienyl acetate (9)

Ac₂O (60 mL=78 g, 765 mmol) and DMAP (0.2 g) were added to a stirred solution of **8** (28.3 g, 180 mmol) in dry C₅H₅N (100 mL). When the exothermic reaction subsided, the mixture was stirred and heated at 80 °C for 30 min. After cooling, the mixture was diluted with ice and water, and extracted with Et₂O. The Et₂O extract was washed successively with dil HCl, NaHCO₃ solution and brine, dried (MgSO₄), and concentrated at atmospheric pressure. The residue was distilled to give 31.0 g (94% based on **7**, two steps) of **9** as a colorless oil, bp 83–90 °C/6 Torr; n_{D}^{21} =1.4582; ν_{max} (film): 3078 (w), 2979 (m), 2927 (m), 2865 (m), 1740 (s), 1666 (w), 1640 (m), 1443 (m), 1376 (m), 1232 (s), 1022 (m), 911 (m); δ_{H} (CDCl₃): 1.70 (4.5H, s), 1.74 (1.5H, s), 2.04 (3H, s), 2.02–2.25 (4H, m), 4.58 (2H, d, *J*=5.6 Hz), 4.92–5.06 (2H, m), 5.72–5.86 (1H, m); GC–MS (same conditions as used for **7**); t_R 8.53 (48.5%), 8.65 min (46.9%) (total 95.4%); MS of **9** with t_R =8.53 min (70 eV, EI): m/z: 182 (1) [M⁺], 164 (2), 141 (4), 122 (18), 107 (58), 99 (28), 94 (22), 93 (27), 91 (23), 81 (24), 79 (46), 67 (16), 53 (13), 43 (100). The MS spectrum of **9** with t_R =8.65 min was almost identical with the above data. HRMS calcd for C₁₁H₁₈O₂: 182.1307, found: 182.1326 (short t_R), 182.1326 (long t_R).

4.10. 3-Isopropenyl-3-methyl-6-heptenoic acid (10)

TMSCl (37.0 g=42 mL, 340 mmol) was added to a stirred and cooled solution of 9 (15.5 g, 85 mmol) in dry THF (60 mL) at -78 °C under argon. A solution of LiN(i-Pr)₂ in THF/PhEt/heptane (TCI, 1.5 M, 100 mL, 150 mmol) was added dropwise over 15 min to the stirred solution at -78 to -60 °C. Then the dry ice/acetone bath was removed, and the mixture was allowed to reach room temperature over 1 h. The mixture was stirred and heated at 70 °C (bath temperature) for 4 h. After cooling, MeOH (40 mL) was added to the mixture, which was stirred for 10 min at room temperature. The mixture was then transferred to a separatory funnel, and extracted with 5% NaOH aqueous solution (60 mL \times 3). The aqueous extract was transferred into another separatory funnel, and washed with Et₂O to remove neutral impurities. The aqueous layer was acidified with dil. HCl with ice-cooling, and the separated oily 10 was extracted with Et₂O. The Et₂O extract was washed successively with water and brine, dried (MgSO₄), and concentrated in vacuo to give 13.3 g (86%) of **10** as an oil, ν_{max} (film): 3078 (w), 2976 (s), 2939 (s), 2684 (br w), 1708 (s), 1640 (m), 1447 (m), 1410 (m), 1380 (m), 1309 (m), 1227 (m), 898 (s); $\delta_{\rm H}$ (CDCl₃): 1.22 (3H, s), 1.44–1.66 (2H, m), 1.74 (3H, s), 1.82–2.00 (2H, m), 2.36 (1H, d, J=13.6 Hz), 2.48 (1H, d, J=13.6 Hz), 4.75 (1H, s), 4.88 (1H, t-like, J=1.6 Hz), 4.91–5.02 (2H, m), 5.74–5.84 (1H, m); This oil was used in the next step without further purification.

4.11. Methyl 3-isopropenyl-3-methyl-6-heptenoate (11)

K₂CO₃ (34.5 g, 250 mmol) and MeI (54.0 g 380 mmol) were added to a stirred solution of 10 (24.3 g, 134 mmol) in dry DMF (160 mL). After the initial exothermic reaction, the mixture was stirred for 3 d at room temperature (21 °C). It was then diluted with ice and water, and extracted with Et₂O. The Et₂O extract was washed successively with water and brine, dried (MgSO₄), and concentrated in vacuo. The residue was distilled to give 17.4 g (66%) of **11** as a colorless oil, bp 93–96 °C/8 Torr; n_D^{24} =1.4532; ν_{max} (film): 3079 (w), 2975 (m), 2950 (m), 1739 (s), 1639 (m), 1436 (m), 1379 (m), 1337 (m), 1311 (m), 1252 (m), 1196 (s), 1120 (m), 1015 (m), 898 (s), 845 (w); $\delta_{\rm H}$ (CDCl₃): 1.19 (3H, s), 1.41–1.49 (1H, m), 1.54–1.66 (1H, m), 2.07 (3H, s), 1.81–1.98 (2H, m), 2.34 (1H, d, J=14 Hz), 2.47 (1H, d, J=14 Hz), 3.62 (3H, s), 4.72 (1H, s), 4.86 (1H, s-like), 4.90-5.04 (2H, m), 5.74-5.86 (1H, m); GC-MS (same conditions as used for **7**); $t_{\rm R}$ 9.03 min (87.1%); MS (70 eV, EI): m/z: 197 (<1) [(M+H)⁺], 181 (20), 142 (42), 122 (54), 110 (42), 109 (39), 107 (42), 99 (19), 95 (43), 82 (81), 81(100), 67 (41), 59 (19), 55 (35), 41 (38). HRMS calcd for C₁₂H₂₀O₂: 196.1463, found: 196.1491.

4.12. Methyl (1,2-dimethyl-2-cyclopentenyl)acetate (12)

Grubbs II catalyst (190 mg, 0.22 mmol, 0.4 mol %) was added to a solution of **11** (17.3 g, 88 mmol) in CH₂Cl₂ (400 mL) under argon.

The mixture was stirred and heated under gentle reflux. After 2 h, when the evolution of ethylene ceased, the mixture was concentrated in vacuo. The residue was chromatographed over SiO₂ (100 g). Elution with hexane/EtOAc(30:1) gave 15.0 g of crude **12**, which was distilled to furnish 11.3 g (76%) of **12** as a colorless oil, bp 72–75 °C/7 Torr; n_D^{25} =1.4542; ν_{max} (film): 3038 (w), 2953 (m), 2851 (m), 1739 (s), 1437 (m), 1218 (m); $\delta_{\rm H}$ (CDCl₃): 1.09 (3H, s), 1.63 (3H, s-like), 1.66–1.76 (1H, m), 2.06–2.14 (1H, m), 2.16–2.22 (2H, m), 2.28 (1H, d, *J*=13 Hz), 2.36 (1H, d, *J*=13 Hz), 3.64 (3H, s), 5.31 (1H, br s); GC–MS (same conditions as used for **7**): $t_{\rm R}$ 6.95 min (94.6%); MS (70 eV, EI): *m/z*: 168 (19) [M⁺], 136 (4), 121 (3), 95 (98), 94 (100), 79 (35), 65 (18), 55 (7), 41 (7), 39 (7). HRMS calcd for C₁₀H₁₆O₂: 168.1150, found: 168.1168.

4.13. Methyl (1,2-dimethyl-3-oxocyclopentyl)acetate (13)

BH₃·Me₂S (7.2 mL=5.7 g, 75 mmol) was added dropwise to a stirred and ice-cooled solution of 12 (11.3 g, 88 mmol) in dry Et₂O (80 mL) at 5–10 °C under argon. The mixture was stirred for 3 h at room temperature (21 °C). Water (30 mL) was slowly added dropwise to the stirred and ice-cooled mixture at 5-10 °C to destroy excess BH₃. Subsequently, the mixture was diluted with acetone (60 mL). Jones CrO₃ (50 mL) was added dropwise over 20 min to the stirred and ice-cooled mixture at 5-10 °C. After adding MeOH (5 mL) to destroy the excess CrO₃, the mixture was concentrated in vacuo. The residue was diluted with water, and extracted with Et₂O. The extract was washed successively with water, NaHCO₃ solution and brine, dried (MgSO₄), and concentrated in vacuo to give 9.73 g of crude hydroxy ester, v_{max} (film): 3460 (br m), 2956 (s), 2874 (m), 1737 (s), 1438 (m), 1348 (m), 1213 (m), 1010 (m). This oil was dissolved in acetone (120 mL), and treated with Jones CrO₃ (14 mL) under ice-cooling at 5-10 °C. After 10 min, the mixture was quenched with MeOH (5 mL), and concentrated in vacuo. The residue was diluted with water and extracted with Et₂O. The Et₂O extract was washed successively with water, NaHCO₃ solution and brine, dried (MgSO₄), and concentrated in vacuo. The residue was distilled to give 5.8 g (47%) of **13** as a colorless oil, bp 110–115 $^{\circ}C/7$ Torr; n_D^{24} =1.4594; ν_{max} (film): 2957 (m), 2876 (m), 1739 (s), 1455 (m), 1438 (m), 1239 (m), 1213 (m), 1170 (m), 1119 (m), 1009 (m); δ_{H} (CDCl₃): 0.96 (1H, d, J=7.6 Hz), 0.98 (2H, d, J=7.6 Hz), 1.26 (3H, s), 1.60-1.74 (2H, m), 1.90-2.40 (5H, m), 3.67 (2H, s), 3.69 (1H, s); GC–MS (same conditions as used for **7**); t_R 9.90 (56.5%), 10.09 min (24.0%) (total 80.5%); MS of the major isomer (70 eV, EI): m/z: 184 (7) [M⁺], 169 (5), 153 (12), 127 (10), 111 (100), 95 (11), 83 (12), 74 (11), 69 (24), 55 (17), 41 (17); MS of the minor isomer (70 eV, EI): m/z: 184 (1), 169 (5), 153 (8), 127 (6), 111 (100), 96 (7), 83 (7), 69 (18), 55 (13), 41 (13). HRMS calcd for C₁₀H₁₆O₃: 184.1099, found: 184.1112 (major isomer), 184.1107 (minor isomer).

4.14. Methyl (1,2-dimethyl-3-methylenecyclopentyl)acetate (15)

A solution of NaHMDS in THF (TCI, 1.9 M, 22.6 mL, 43 mmol) was added over 5 min to a stirred and cooled solution of **13** (6.14 g, 33 mmol) and **14** (8.41 g, 40 mmol) in dry DMF (90 mL) at -70 to -60 °C under argon. The mixture was stirred for 10 min at -78 °C, and then the cooling bath was removed to raise the temperature gradually to room temperature in the course of 1 h. The mixture was stirred for 40 min at room temperature (22 °C). The reaction was quenched by adding ice and NH₄Cl solution and the mixture was extracted with Et₂O. The Et₂O solution was washed successively with water and brine, dried (MgSO₄), and concentrated in vacuo. The residue was chromatographed over SiO₂ (80 g). Elution with hexane/EtOAc (30:1) gave 2.42 g of

crude 15. Further elution with the same eluent furnished 2.88 g (47% recovery) of 13. The crude 15 was purified by distillation to give 1.65 g (27%; 51% based on the consumed 13) of 15 as a colorless oil, bp 83–85 °C/7 Torr; *n*_D²⁴=1.4590; *v*_{max} (film): 3074 (w), 2961 (m), 2873 (w), 1739 (s), 1656 (w), 1436 (m), 1201 (m), 1124 (m), 1013 (m), 880 (m); $\delta_{\rm H}$ (CDCl₃): 0.78 (1.8H, s), 0.93 (3H, d, *I*=6.8 Hz), 1.13 (1.2H, s), 1.02–1.44 and 1.86–1.94 (total 1H, m), 1.56-1.70 (2H, m), 2.06-2.20 and 2.30-2.40 (total 2H, m), 2.22 (1H, d, J=13 Hz), 2.42 (1H, d, J=13 Hz), 3.65 and 3.66 (total 3H, each s), 4.78 (1H, s-like), 4.87 (1H, s-like); GC-MS (same conditions as used for **7**); t_R 8.41 (32.7%), 8.58 min (50.0%) (total 82.7%); MS of the minor isomer (70 eV, EI): m/z: 182 (<1) (M⁺), 151 (6), 123 (4), 109 (33), 108 (100), 93 (35), 67 (15), 41 (9); MS of the major isomer (70 eV, EI): m/z: 183 (<1) [(M+H)⁺], 151 (4), 109 (53), 108 (100), 93 (58), 91 (12), 67 (14), 41 (10). HRMS calcd for C₁₁H₁₈O₂: 182.1307, found: 182.1322 (minor isomer), 182.1323 (major isomer).

When *t*-BuOK, instead of NaHMDS, was employed as the base, the products (28% yield) were mainly the two isomeric *t*-Bu esters generated by the nucleophilic attack of *t*-BuO⁻ to the ester C=O of **15**. The *t*-Bu esters, bp 93–97 °C/7 Torr, n_D^{24} =1.4538, showed a signal due to *t*-Bu at δ =1.45, while the signal due to CO₂*Me* at δ 3.66 was almost absent. Its GC–MS showed two peaks at t_R =10.41 (24.7%) and 10.53 (40.4%) both with M⁺=224 (C₁₄H₂₄O₂).

4.15. 2-(1,2-Dimethyl-3-methylenecyclopentyl)ethanol (16)

A solution of 15 (1.80 g, 10 mmol) in dry Et₂O (10 mL) was added dropwise to a stirred and ice-cooled suspension of LiAlH₄ (380 mg, 10 mmol) in dry Et₂O (10 mL). The mixture was stirred for 1 h at 5–10 °C. Then water was added dropwise to the stirred and ice-cooled mixture to destroy excess LiAlH₄. The mixture was acidified with dil. HCl and ice, and extracted with Et₂O. The Et₂O extract was washed successively with water, NaHCO₃ solution and brine, dried (MgSO₄), and concentrated in vacuo to give 1.60 g (quant.) of **16** as a colorless oil, v_{max} (film): 3345 (br m), 3073 (w), 2959 (s), 1655 (w), 1454 (m), 1379 (m), 1054 (m), 1037 (m), 1009 (m), 876 (m); δ_H (CDCl₃): 0.69 (1.9H, s), 0.93 (1.9H, d, J=6.8 Hz), 0.94 (1.1H, d, J=6.8 Hz), 1.01 (1.1H, s), 1.20-1.80 (5H, m), 2.05 (1H, br), 2.15-2.45 (2H, m), 3.65-3.80 (2H, m), 4.77 (1H, m), 4.84-4.88 (1H, m); GC-MS (same conditions as those used for **7**): *t*_R 8.33 (30.9%), 8.49 min (48.2%); MS of the minor isomer (70 eV, EI): m/z: 154 (<1) [M⁺], 139 (6), 125 (15), 121 (24), 110 (47), 109 (100), 95 (25), 93 (38), 91 (19), 81 (24), 79 (27), 67 (46), 55 (22), 53 (15), 41 (30); MS of the major isomer (70 eV, EI): *m*/*z*: 155 (<1) [(M+H)⁺], 139 (4), 121 (13), 109 (100), 93 (25), 81 (12), 79 (14), 67 (19), 55 (10), 53 (8), 41 (15). HRMS calcd for C₁₀H₁₈O: 154.1358, found: 154.1374 (minor isomer), 154.1372 (major isomer).

4.16. (1,2-Dimethyl-3-methylenecyclopentyl)acetaldehyde (1)

Crystalline NaOCl·5H₂O (TCl, 1.60 g, 10 mmol) was added in one portion to a stirred and ice-cooled mixture of **16** (1.08 g, 7 mmol), Bu₄NHSO₄ (0.12 g, 0.35 mmol), azadol (30 mg, 0.2 mmol) and water (0.3 mL) in CH₂Cl₂ (30 mL) at 5–10 °C. The mixture was stirred for 1 h at 5–10 °C, when it became turbid. The mixture was shaken with an aqueous solution of Na₂S₂O₃ and NaHCO₃, the organic layer was separated, and the aqueous layer was extracted with Et₂O. The combined organic solution was washed with brine, dried (MgSO₄), and concentrated in vacuo. The residue was distilled to give **1** (669 mg, 63%) as a colorless oil, bp 74–77 °C/7 Torr; GC–MS (same conditions as those used for **7**); t_R 7.02 (33.8%, *anti*-1), 7.16 min (44.2%, *syn*-1). Its IR, NMR and MS data were identical to those reported in 4.6 and 4.25.

4.17. 2-(1,2-Dimethyl-3-methylenecyclopentyl)ethyl 3,5- dinitrobenzoate (17)

4.17.1. A mixture of anti- and syn-17. Solid 3,5-dinitrobenzoyl chloride (1.40 g, 6 mmol) was added to a stirred and ice-cooled solution of 16 (mixture, 910 mg, 5 mmol) in dry C₅H₅N (2 mL) containing DMAP (10 mg). The mixture was stirred for 1.5 h at room temperature (22 °C), then diluted with ice and water, and extracted with Et₂O. The Et₂O solution was washed successively with dil. HCl, NaHCO₃ solution and brine, dried (MgSO₄), and concentrated in vacuo to give 2.00 g (97%) of 17 as a slightly yellow-colored oil. This was dissolved in Et₂O/pentane, and left for 2 d at -20 °C. The separated solid (1.273 g) was collected on a glass filter, and recrystallized twice from Et₂O/pentane to give 484 mg (23%) of a mixture of *anti*- and *syn*-**17** as a solid, mp 39–41 °C, ν_{max} (film): 3104 (w), 2960 (m), 2931 (m), 2872 (m), 1733 (s), 1630 (w), 1548 (s), 1462 (m), 1345 (s), 1280 (s), 1167 (m), 1075 (w), 965 (w), 921 (w), 881 (w), 722 (m). The IR spectrum was very similar to that of syn-17. Its ¹H NMR spectrum was complicated as that of a mixture of *anti*and syn-17, while its ¹³C NMR spectrum clearly showed that the sample was a mixture of *anti*- and *syn*-**17**: δ_{C} (CDCl₃): 11.54, 12.07, 18.45, 24.73, 29.00, 29.28, 31.60, 35.02, 36.50, 39.09, 42.69, 48.63, 50.51, 60.41, 64.83, 64.88, 105.22, 105.35, 122.34, 129.41, 134.11, 148.69, 155.66, 156.18, 162.57.

4.17.2. Chromatographic separation of the alcohol mixture **16**. The alcohol mixture **16** (2.42 g) was purified by chromatography over SiO₂ (80 g). Elution with hexane (300 mL) gave nothing. Further elution with hexane/EtOAc (20:1) gave the following six fractions (each 300 mL), whose *anti*-**16** (short t_R)/*syn*-**16** (long t_R) ratio was determined by GC–MS analysis: (1) 303 mg (97:3)+several impurities with shorter t_Rs , (2) 424 mg (67:33), (3) 369 mg (34:66), (4) 285 mg (19:81), (5) 181 mg (8:92), (6) 140 mg (4:96). Fraction 1 was nearly pure *anti*-**16**, and fraction 6 was nearly pure *syn*-**16**. These were converted to the corresponding 3,5-dinitrobenzoates, *anti*-**17** and *syn*-**17**, and fractions 2–5 were combined and oxidized to give **1** as a stereoisomeric mixture.

4.17.3. 2-(anti-1,2-Dimethyl-3-methylenecyclopentyl)ethyl 3,5dinitrobenzoate (anti-**17**). Alcohol anti-**16** (303 mg, 2 mmol) was esterified with 3,5-dinitrobenzoyl chloride (500 mg, 2.2 mmol) and dry C₅H₅N (4 mL) containing DMAP (10 mg) as described in 4.17.1. The resulting solid (617 mg) was recrystallized from EtOAc/hexane to give 199 mg of anti-**17** as leaflets, mp 55–56 °C; ν_{max} (Nujol): 3089 (m), 1720 (vs), 1655 (w), 1631 (m), 1598 (w), 1550 (vs), 1463 (s), 1351 (s), 1287 (s), 1170 (m), 966 (m), 926 (m), 869 (w), 776 (w), 722 (s); $\delta_{\rm H}$ (CDCl₃): 1.01 (3H, d, *J*=6.8 Hz), 1.11 (3H, s), 1.60–1.65 (2H, m), 1.65–1.72 (1H, m), 1.76–1.84 (1H, m), 2.08–2.16 (1H, br), 2.30–2.40 (1H, m), 2.40–2.52 (1H, m), 4.50 (2H, t, *J*=7.2 Hz), 4.82 (1H, d, *J*=2 Hz), 4.89 (1H, d, *J*=2 Hz), 9.15 (2H, m), 9.23 (1H, t, *J*=2 Hz); $\delta_{\rm C}$ (CDCl₃): 12.08, 24.74, 29.00, 31.60, 35.02, 42.69, 50.51, 64.88, 105.36, 122.32, 129.41, 134.12, 148.69, 156.16, 162.56. HRMS calcd for C₁₇H₂₀O₆N₂: 348.1321, found: 348.1344.

4.17.4. 2-(*syn*-1,2-*Dimethyl*-3-*methylenecyclopentyl*)*ethyl* 3,5*dinitrobenzoate* (*syn*-17). Similarly, alcohol *syn*-16 (140 mg, 1 mmol) was esterified with 3,5-dinitrobenzoyl chloride (250 mg, 1.1 mmol) and dry C₅H₅N (2 mL) containing DMAP (5 mg) to give 221 mg of a solid. This was recrystallized from EtOAc/hexane to give 162 mg of *syn*-17 as prisms, mp 58–59 °C; ν_{max} (Nujol): 3108 (m), 1727 (vs), 1655 (w), 1631 (m), 1598 (w), 1547 (vs), 1460 (m), 1380 (w), 1344 (vs), 1316 (w), 1279 (s), 1166 (m), 1074 (m), 959 (m), 919 (m), 891 (m), 880 (m), 731 (s), 719 (s); The IR spectrum was different from that of *anti*-17. $\delta_{\rm H}$ (CDCl₃): 0.79 (3H, s), 0.98 (3H, d, *J*=6.8 Hz), 1.52–1.66 (2H, m), 1.72–1.82 (1H, m), 1.98–2.06 (1H, m), 2.10–2.18 (1H, br), 2.28–2.40 (1H, m), 2.40–2.52 (1H, m), 4.48–4.62 (2H, m), 4.81 (1H, d, J=2 Hz), 4.90 (1H, d, J=2 Hz), 9.16 (2H, d, J=2 Hz), 9.23 (1H, t, J=2 Hz); $\delta_{\rm C}$ (CDCl₃): 11.55, 18.46, 29.27, 36.50, 39.09, 42.69, 48.62, 64.83, 105.22, 122.34, 129.41, 134.12, 148.71, 155.65, 162.56. HRMS calcd for C₁₇H₂₀O₆N₂: 348.1321, found: 348.1340. Melting point depression was observed when *anti*-**17** and *syn*-**17** were mixed: mixture mp 41–46 °C.

4.18. 3-Isopropenyl-3-methyl-6-hepten-1-ol (18)

A solution of 10 (4.47 g, 24.6 mmol) in dry THF (15 mL) was added dropwise to a stirred and ice-cooled suspension of LiAlH₄ (1.40 g, 37 mmol) in dry THF (35 mL) at 5–15 °C. After the addition, the mixture was stirred and heated under reflux for 1.5 h. It was then ice-cooled, and excess LiAlH₄ was destroyed by dropwise addition of water. The mixture was acidified with dil HCl and ice, and extracted with Et₂O. The Et₂O extract was washed successively with water, NaHCO₃ solution and brine, dried (MgSO₄), and concentrated in vacuo. The residue was distilled to give 3.03 g (73%) of **18** as a colorless oil, bp 104–107 °C/7 Torr, n_D^{24} =1.4742; $\nu_{\rm max}$ (film): 3328 (br m), 3087 (w), 2972 (s), 2940 (s), 1639 (m), 1447 (m), 1377 (m), 1138 (w), 1034 (m), 994 (m), 908 (s), 894 (s); $\delta_{\rm H}$ (CDCl₃): 1.08 (3H, s), 1.30-1.40 (1H, m), 1.42 (1H, br s), 1.49-1.59 (2H, m), 1.72 (3H, s), 1.75–1.86 (2H, m), 1.87–2.00 (1H, m), 3.60 (2H, t, J=7.2 Hz), 4.73 (1H, d, J=1.2 Hz), 4.87 (1H, t, J=1.6 Hz), 4.90-5.02 (2H, m), 5.74-5.86 (1H, m); GC-MS (same conditions as those used for **7**): *t*_R 8.96 min (94.4%); MS (70 eV, EI): *m*/*z*: 169 (<1) [(M+H)⁺], 153 (22), 135 (7), 124 (16), 114 (26), 95 (94), 83 (100), 81 (98), 67 (74), 55 (80), 41 (64). HRMS calcd for C₁₁H₂₀O: 168.1514. found: 168.1532.

4.19. 3-Isopropenyl-3-methyl-6-heptenyl *p*-methoxybenzyl ether (19)

t-BuOK (11.0 g, 90 mmol) was added in one portion to a solution of 18 (12.2 g, 72.6 mmol) in dry DMF (72 mL), and the mixture was stirred at room temperature to make a homogeneous solution. p-Methoxybenzyl chloride (PMBCl, 14.1 g, 90 mmol) was added to the stirred solution, and stirring was continued for 1 h at 65 °C. After cooling, the mixture was diluted with ice and water, and extracted with Et₂O. The Et₂O extract was washed successively with water and brine, dried (MgSO₄), and concentrated in vacuo. The residue (26.8 g) was chromatographed over SiO₂ (100 g). Elution with hexane/EtOAc (30:1) gave 20.6 g (99%) of 19 as a colorless oil, $n_{\rm D}^{21}$ =1.5112; $\nu_{\rm max}$ (film): 3076 (w), 2971 (s), 2937 (s), 2862 (m), 1638 (m), 1614 (s), 1586 (w), 1514 (vs), 1464 (m), 1362 (m), 1302 (m), 1248 (vs), 1173 (m), 1096 (m), 1038 (m), 894 (m), 822 (m); $\delta_{\rm H}$ (CDCl₃): 1.04 (3H, s), 1.35-1.40 (1H, m), 1.46-1.55 (1H, m), 1.50-1.65 (1H, m), 1.68 (3H, s), 1.75-1.88 (2H, m), 1.88-1.98 (1H, m), 3.30-3.46 (2H, m), 3.80 (3H, s), 4.39 (2H, s), 4.68 (1H, s), 4.83 (1H, s), 4.89-5.00 (2H, m), 5.75-5.83 (1H, m), 6.87 (2H, d, J=7 Hz), 7.24 (2H, d, J=7 Hz); GC–MS (same conditions as those used for **7**); $t_{\rm R}$ 18.53 min (93.5%); MS (70 eV, EI): m/z: 288 (1) [M⁺], 137 (12), 136 (12), 121 (100), 109 (8), 83 (13), 55 (6). HRMS calcd for C₉H₂₈O₂: 288.2089, found; 288.2106.

4.20. 2-(1,2-Dimethyl-2-cyclopentenyl)ethyl *p*-methoxybenzyl ether (20)

Grubbs II catalyst (280 mg, 0.32 mmol, 0.44 mol % for **19**) was added to a solution of **19** (20.6 g, 71.6 mmol) in CH₂Cl₂ (400 mL) under argon. The solution was stirred and heated under reflux for 2 h. Then the mixture was concentrated in vacuo. The residue was chromatographed over SiO₂ (100 g). Elution with hexane gave 1.33 g of impurities. Further elution with hexane/EtOAc (30:1) gave 16.2 g (87%) of **20** as a colorless oil, n_D^{22} =1.5156; ν_{max} (film): 3034 (w), 2952 (m), 2932 (m), 2853 (m), 1614 (m), 1586

(w), 1514 (s), 1456 (m), 1362 (m), 1302 (m), 1248 (s), 1173 (m), 1096 (s), 1038 (s), 821 (s); $\delta_{\rm H}$ (CDCl₃): 1.00 (3H, s), 1.58 (3H, s), 1.60–1.76 (3H, m), 1.82–1.90 (1H, m), 2.12–2.25 (2H, m), 3.37–3.49 (2H, m), 3.80 (3H, s), 4.41 (2H, s), 5.25 (1H, br s), 6.87 (2H, d, *J*=6.8 Hz), 7.24 (2H, d, *J*=6.8 Hz); GC–MS (same conditions as those used for **7**); $t_{\rm R}$ 17.22 min (90.2%); MS (70 eV, EI): *m/z*: 259 (<1) [(M-H)⁺], 231 (2), 163 (2), 137 (4), 121 (100), 97 (8), 77 (5), 57 (3), 41 (4). HRMS calcd for C₁₇H₂₄O₂: 260.1776, found; 260.1788.

4.21. 2-(3-Hydroxy-1,2-dimethylcyclopentyl)ethyl *p*-methoxybenzyl ether (21)

BH₃·Me₂S (10 mL, 8.0 g, 105 mmol) was added dropwise over 10 min to a stirred and ice-cooled solution of **20** (14.2 g, 55 mmol) in dry THF (140 mL) at 0–10 °C under argon. The mixture was stirred for 30 min at 0-5 °C and 2.5 h at room temperature. It was then ice-cooled again, and water (20 mL) was slowly added dropwise (H₂ evolution) to destroy excess borane. Then a solution of NaOH (4.6 g, 115 mmol) in water (32 mL) was added dropwise to the stirred and ice-cooled mixture. Subsequently 34.5% H₂O₂ (40 mL) was slowly added (exothermic), and stirring was continued for 1 h at 0-5 °C. The mixture was diluted with water, and extracted with Et₂O. The Et₂O extract was washed with water and brine, dried (MgSO₄), and concentrated in vacuo. The residue (20.3 g) was chromatographed over SiO₂ (100 g). Elution with hexane and hexane/EtOAc (10:1) gave 2.08 g of impurities. Further elution with hexane/EtOAc (4:1) furnished 10.4 g (68%) of 21 as a colorless and viscous oil, n_D^{22} =1.5060; ν_{max} (film): 3401 (br m), 2955 (s), 2869 (s), 1613 (m), 1586 (w), 1514 (s), 1463 (m), 1363 (m), 1302 (m), 1248 (s), 1173 (m), 1093 (s), 1037 (s), 821 (m); $\delta_{\rm H}$ (CDCl₃): 0.76 (1.4H, s), 0.93-0.95 (3H, m), 0.98 (1.6H, s), 1.36-1.60 (5H, m), 1.60-1.80 (3H, m), 1.98-2.10 (1H, m), 3.80 (3H, s), 3.44-3.54 (2H, m), 4.42 (2H, s), 6.87 (2H, d, J=8.6 Hz), 7.25 (2H, d, J=8.6 Hz); GC-MS (same conditions as those used for **7**); $t_{\rm R}$ 19.77 (40.5%), 19.84 min (57.3%) (total 97.8%); MS of **21** with $t_{\rm R}$ =19.77 min (70 eV, EI): m/z: 278 (<1) [M⁺], 137 (22), 121 (100), 95 (19), 77 (5), 57 (2); MS of 21 with $t_{\rm R}$ =19.84 min (70 eV, EI): m/z: 278 (<1) [M⁺], 137 (4), 121 (100), 95 (10), 77 (5), 57 (3). HRMS calcd for C₁₇H₂₆O₃: 278.1882, found: 278.1899.

4.22. 2-(1,2-Dimethyl-3-oxocyclopentyl)ethyl *p*-methoxybenzyl ether (22)

Jones chromic acid (8 N, 8 mL, 64 meq) was added dropwise to a stirred and ice-cooled solution of 21 (9.51 g, 34 mmol) in acetone (150 mL) at 5–15 °C. The mixture was stirred for further 10 min after the addition. MeOH (5 mL) was added to destroy the excess CrO₃, and the mixture was concentrated in vacuo. The residue was diluted with water, and extracted with Et₂O. The Et₂O extract was washed successively with water, NaHCO₃ solution and brine, dried (MgSO₄), and concentrated in vacuo. The residue was sufficiently pure **22** (8.80 g, 93%) obtained as a colorless oil, n_D^{20} =1.5042; ν_{max} (film): 2956 (m), 2934 (m), 2871 (m), 1737 (m), 1613 (m), 1586 (w), 1514 (m), 1463 (m), 1372 (m), 1302 (m), 1248 (s), 1174 (m), 1095 (m), 1037 (m), 821 (m); $\delta_{\rm H}$ (CDCl₃): 0.80 (1.5H, s), 0.94 (1.5H, d, *J*=7.6 Hz), 0.95 (1.5H, d, J=7 Hz), 1.12 (1.5H, s), 1.35–1.60 (2H, m), 1.66–1.98 (2H, m), 1.98–2.32 (3H, m), 3.49 (1H, t, J=6.8 Hz), 3.58 (1H, t, J=6.8 Hz), 3.80 (3H, s), 4.41 (1H, s), 4.44 (1H, s), 6.85–6.90 (2H, m), 7.22–7.27 (2H, m); GC–MS (same conditions as those used for **7**): t_R 19.69 (48.5%), 19.83 min (46.8%) (total 95.3%); MS of 22 with *t*_R=19.69 min (70 eV, EI): *m*/*z*: 276 (2) [M⁺], 137 (28), 121 (100), 111 (12), 77 (5), 55 (4); MS of **22** with $t_{\rm R}$ =19.83 min (70 eV, EI): m/z: 276 (1) [M⁺], 231 (3), 137 (7), 121 (100), 111 (11), 77 (4), 55 (3). HRMS calcd for C₁₇H₂₄O₃: 276.1725, found: 276.1740 (short t_R), 276.1740 (long $t_{\rm R}$).

4.23. 2-(1,2-Dimethyl-3-methylenecyclopentyl)ethyl *p*-methoxybenzyl ether (23)

A solution of dimethyltitanocene (Petasis reagent, TCI, 5 wt% solution in THF/toluene, 230 g, 56 mmol) was added to 22 (8.80 g, 32 mmol) under argon. The flask was wrapped with aluminum foils to keep inside dark, and the orange-colored mixture was stirred and heated at 70 °C for 25 h. After cooling, NaHCO₃ (2.4 g, 30 mmol), water (1.5 mL) and MeOH (30 mL) were added to the mixture, which was stirred overnight at room temperature (22 °C). Then the stirring bar was removed from the dark green-colored mixture to which was added SiO₂ (20 g). The mixture was concentrated in vacuo to give yellow-colored powder, which was transferred to the top of a column of SiO_2 (70 g) in hexane. Elution with hexane gave 0.18 g of hydrocarbon impurities. Further elution with hexane/EtOAc (30:1) gave 2.45 g of **23** (*anti/syn*=66.5:31.2) and then 3.52 g of 23 (anti/syn=43.1:55.9). Total yield of 23 was 5.97 g (68%). In another occasion, 85% yield could be observed. These two fractions were employed separately in the next step. Properties of **23** (*anti/syn*=ca. 1:1): n_D^{20} =1.5040; v_{max} (film): 3071 (w), 2958 (s), 2934 (s), 2866 (m), 1654 (w), 1613 (m), 1586 (w), 1514 (s), 1464 (m), 1363 (m), 1302 (m), 1248 (s), 1173 (m), 1097 (s), 1038 (s), 876 (m), 821 (m); $\delta_{\rm H}$ (CDCl₃): 0.66 (1.5H, s), 0.91 (1.5H, d, J=6.8 Hz), 0.93 (1.5H, d, J=6.8 Hz), 0.99 (1.5H, s), 1.25–1.60 (3H, m), 1.66-1.86 (1H, m), 1.95-2.10 (1H, m), 2.21-2.45 (2H, m), 3.45-3.58 (2H, m), 3.80 (3H, s), 4.41 (1H, s), 4.43 (1H, s), 4.75 (1H, s-like), 4.81-4.84 (1H), 6.87 (2H, d, *J*=11 Hz), 7.24-7.27 (2H, m); GC-MS (same conditions as those used for **7**); $t_{\rm R}$ =18.25 min (43.1%), 18.40 min (55.9%) (total 99.0%); MS of **23** with $t_{\rm R}$ =18.25 min (70 eV, EI): *m*/*z*: 274 (<1) [M⁺], 136 (13), 121 (100), 109 (9), 95 (4), 77 (5), 67 (3), 41 (3); MS of 23 with $t_{\rm R}$ =18.40 min (70 eV, EI): m/z: 229 (8), 121 (100), 109 (12), 77 (4), 41 (2). HRMS calcd for C₁₈H₂₆O₂: 274.1933, found: 274.1947 (short *t*_R), 274.1945 (long *t*_R).

4.24. 2-(1,2-Dimethyl-3-methylenecyclopentyl)ethanol (16)

DDQ (2.95 g, 13 mmol) was added portionwise over 8 min to a stirred and ice-cooled solution of **23** [anti/syn=66.5:31.2, 2.34 g (8.5 mmol)] in CH₂Cl₂ (70 mL) and water (7 mL) at 5–10 °C. The dark-colored mixture was stirred for 30 min at room temperature (22 °C). It was then diluted with NaHCO₃ solution, and extracted with Et₂O. The organic solution was washed with brine, dried (MgSO₄), and concentrated in vacuo. The dark-colored residue was chromatographed over SiO₂ (50 g). Elution with hexane/ EtOAc (50:1-30:1) gave p-methoxybenzaldehyde (ca. 1 g). Further elution with hexane/EtOAc (20:1) gave 853 mg (65%) of 16 (rich in anti-16), which comprised of the following three fractions. The first (456 mg) of these was a mixture of anti-16 and syn-16 in a GC ratio of 81.3:15.4, n_D^{22} =1.4788; ν_{max} (film): 3227 (br m), 3073 (w), 2959 (s), 2938 (s), 2871 (m), 1655 (m), 1454 (m), 1379 (m), 1054 (m), 1037 (s), 1008 (m), 876 (s). The second one (278 mg) was a 56.3:38.4 mixture, and the third one (119 mg) was a 31.8:64.8 mixture. Comparison of the ¹H NMR spectra of these three fractions allowed the assignment of the data to each of the isomers. ¹H NMR data of *anti*-**16**: $\delta_{\rm H}$ (CDCl₃): 0.95 (3H, d, *J*=7.6 Hz), 1.01 (3H, s), 1.16-1.21 (1H, br s), 1.30-1.40 (4H, m), 1.68-1.76 (1H, m), 2.24–2.44 (2H, m), 3.69 (2H, t, J=7.6 Hz), 4.77 (1H, m), 4.84 (1H, m); ¹H NMR data of syn-**16**; $\delta_{\rm H}$ (CDCl₃): 0.69 (3H, s), 0.93 (3H, d, J=6.8 Hz), 1.18–1.30 (1H, br), 1.30–1.56 (4H, m), 1.68–1.83 (1H, m), 2.24-2.46 (2H, m), 3.66-3.80 (2H, m), 4.77 (1H, m), 4.86 (1H, m); GC–MS (same conditions as those used for **7**): t_R 8.38 (*anti*-**16**), 8.51 min (syn-16); MS of anti-16 (70 eV, EI): m/z: 154 (1) [M⁺], 139 (6), 121 (26), 110 (47), 109 (100), 108 (30), 107 (26), 95 (25), 93 (40), 81 (25), 79 (27), 67 (45), 55 (18), 53 (15), 41 (27); MS of syn-16 (70 eV, EI): m/z: 154 (<1) [M⁺], 139 (4), 121 (13), 110 (10), 109 (100), 108 (16), 107 (12), 95 (9), 93 (35), 81 (12), 79 (15), 67 (26), 55 (11), 41 (16). HRMS calcd for C₁₀H₁₈O: 154.1358, found: 154.1374 (*anti*-**16**), 154.1372 (*syn*-**16**).

4.25. (1,2-Dimethyl-3-methylenecyclopentyl)acetaldehyde (1)

4.25.1. anti-Rich 1. Diacetoxyiodobenzene (DAIB, 1.13 g, 3.5 mmol) was added to a stirred solution of **16** (anti/svn=81.3:15.4, 411 mg. 2.7 mmol) and azadol (TCI, 30 mg, 0.2 mmol) in CH₂Cl₂ (10 mL). The mixture was stirred for 45 min at room temperature (22 °C). The oxidation was slightly exothermic. Then the solution was washed with an aqueous solution of NaHCO3 and Na2S2O3. The CH2Cl2 layer was separated, and the aqueous layer was extracted with Et₂O. The combined organic solution was dried (MgSO₄), and concentrated in vacuo. The residue was chromatographed over SiO₂ (20 g). Elution with hexane/EtOAc (50:1) gave 332 mg (82%) of anti-rich 1, which was distilled to give 243 mg (69%) of anti-rich 1 (anti/ *syn*=85.6:14.0) as a colorless oil, bp 70–72 °C/6 Torr; n_D^{23} =1.4708; v_{max} (film): 3074 (w), 2959 (m), 2873 (m), 2731 (w), 1721 (s), 1655 (w), 1455 (w), 1382 (w), 881 (m). The following NMR data show signals due to anti-1. $\delta_{\rm H}$ (400 MHz, C₆D₆): 0.70 (3H, d, J=7.6 Hz), 0.87 (3H, s), 1.06–1.15 (1H, m), 1.57–1.62 (1H, m), 1.68–1.73 (2H, m), 1.74-1.84 (1H, m), 2.02-2.26 (2H, m), 4.78 (1H, m), 4.85 (1H, m), 9.48 (1H, t, J=2.4 Hz); δ_C (100 MHz, C₆D₆): 12.06, 24.78, 28.95, 35.49, 43.29, 47.15, 50.39, 105.77, 155.77, 201.51; GC-MS (same conditions as those used for 7): t_R 7.04 (85.6%, anti-1), 7.16 min (14.0%, *syn*-1); MS of *anti*-1 (70 eV, EI): *m*/*z*: 152 (<1) [M⁺], 137 (3), 134 (2), 123 (3), 119 (7), 109 (32), 108 (100), 95 (19), 93 (63), 92 (18), 81 (16), 79 (16), 77 (14), 67 (36), 55 (13), 53 (15), 41 (25). HRMS of anti-1 calcd for C₁₀H₁₆O: 152.1201, found: 152.1212.

4.25.2. *syn-Rich* **1**. In the same manner, 1.67 g (10.9 mmol) of *syn*-rich **16** (*anti/syn*=2:3) was oxidized with azadol (60 mg, 0.4 mmol) and DAIB (4.70 g, 14.6 mmol) in CH₂Cl₂ (30 mL) to give 1.19 g (72%) of *syn*-rich **1** (*anti/syn*=38:0:61.6) as a colorless oil, bp 75–77 °C/7 Torr; n_D^{24} =1.4690; δ_H (CDCl₃): 0.83 (2H, s), 0.96 (3H, d, *J*=6.8 Hz), 1.19 (1H, s), 1.44–1.90 (3H, s), 2.00–2.20 (1H, m), 2.24–2.54 (3H, m), 4.80 (1H, m), 4.90 (1H, m), 9.84 (0.4H, m), 9.88 (0.6H, m); GC–MS (same conditions as those used for **7**): t_R 7.04 (38.0%), 7.18 min (61.6%); MS of *syn*-rich **1** (70 eV, EI): *m/z*: 152 (<1) [M⁺], 119 (2), 109 (19), 108 (100), 93 (80), 91 (16), 79 (11), 77 (11), 67 (21), 55 (9), 53 (11), 41 (16). HRMS of *syn*-**1** calcd for C₁₀H₁₆O: 152.1201, found: 152.1215.

4.26. 2,3-Dimethyl-2-cyclopenten-1-ol (24)

A solution of **2** (3.30 g, 30 mmol) in dry Et₂O (10 mL) was added dropwise over 20 min to a stirred and ice-cooled suspension of LiAlH₄ (570 mg, 15 mmol) in dry Et₂O (30 mL) at 5–10 °C. The mixture was stirred for 2 h at 5–10 °C. Then excess LiAlH₄ was destroyed by the addition of water. The mixture was acidified with ice and dil. HCl/NH₄Cl solution, and extracted with Et₂O. The Et₂O solution was washed successively with water, NaHCO₃ solution and brine, dried (MgSO₄), and concentrated in vacuo to give 3.66 g (quant) of crude **24** as an oil, ν_{max} (film): 3300 (br s), 2964 (s), 2914 (s), 2855 (s), 1684 (w), 1442 (m), 1380 (m), 1330 (m), 1182 (m), 1063 (s), 1029 (s), 993 (s).

4.27. 2,3-Dimethyl-2-cyclopentenyl acetate (25)

Acetic anhydride (10 mL) was added to a solution of crude **24** (3.60 g, 30 mmol) in dry C₅H₅N (25 mL). The mixture was stirred and heated at 40–50 °C for 2 h. Conventional work-up was followed by distillation to give 1.85 g (40% based on **2**, two steps) of **25** as a colorless oil, bp 60–63 °C/5 Torr; $n_{\rm D}^{21}$ =1.4602; $\nu_{\rm max}$ (film): 2970 (m), 2917 (m), 2853 (m), 1735 (s), 1441 (m), 1371 (m), 1243 (s), 1015 (m), 990 (m), 968 (m), 876 (m); $\delta_{\rm H}$ (CDCl₃): 1.94 (6H, s), 2.05 (2H,

m), 2.09 (3H, s), 2.81 (2H, m), 6.01 (1H, br s). HRMS calcd for $C_9H_{14}O_2;\,154.0994,\,found;\,154.1012.$

4.28. 2-(1,2-Dimethyl-2-cyclopentenyl)acetic acid (26)

A solution of **25** (1.71 g. 11 mmol) in dry THF (5 mL) was added over 2 min to a stirred solution of LiN(*i*-Pr)₂ (TCI. 1.5 M in THF. PhEt and heptane, 8.7 mL, 13 mmol) at -78 °C under argon. Then TMSCl (1.5 mL=1.18 g, 11 mmol) was added in one portion to the stirred mixture at -78 °C. The mixture was stirred and heated at 65 °C for 2.5 h, and the reaction was quenched by adding MeOH (3 mL). The mixture was stirred for 10 min at room temperature (20 °C), and extracted with 5% NaOH solution (10 mL×3). The aqueous solution was washed with Et₂O, acidified with dil HCl, and extracted with Et₂O. The Et₂O solution was washed successively with water and brine, dried (MgSO₄), and concentrated in vacuo to give 0.56 g (33%)of **26** as an oil, *v*_{max} (film): 3040–2690 (br m), 2961 (m), 2934 (m), 1706 (s), 1442 (m), 1408 (m), 1312 (m), 1287 (m), 1235 (m); $\delta_{\rm H}$ (CDCl₃): 1.13 (3H, s), 1.63 (3H, s), 1.66-1.78 (1H, m), 2.09-2.18 (1H, m), 2.18–2.26 (2H, m), 2.30 (1H, d, J=14 Hz), 2.39 (1H, d, J=14 Hz), 5.32 (1H, br s).

4.29. 2-(1,2-Dimethyl-2-cyclopentenyl)ethanol (27)

A solution of **26** (0.56 g, 3.6 mmol) in dry THF (2 mL) was added dropwise to a stirred and ice-cooled suspension of LiAlH₄ (0.25 g, 6.5 mmol) in dry THF (8 mL). The mixture was stirred and heated under reflux for 1.5 h. After cooling, the mixture was acidified with ice and dil HCl, and extracted with Et₂O. The Et₂O extract was washed successively with water, NaHCO₃ solution and brine, dried (MgSO₄), and concentrated in vacuo to give 0.35 g (69%) of **27** as a colorless oil, n_D^{22} =1.4738; ν_{max} (film): 3236 (br m), 3037 (w), 2952 (s), 2852 (s), 1655 (w), 1453 (m), 1378 (w), 1055 (m), 1012 (m), 797 (w); $\delta_{\rm H}$ (CDCl₃): 1.02 (3H, s), 1.35–1.50 (1H, br), 1.62 (3H, d, *J*=2 Hz), 1.64–1.70 (2H, m), 1.85–1.90 (2H, m), 2.15–2.22 (2H, br m), 3.60–3.68 (2H, m), 5.28 (1H, d, *J*=2 Hz). HRMS calcd for C₉H₁₆O: 140.1201, found: 140.1201.

4.30. 2-(1,2-Dimethyl-2-cyclopentenyl)ethyl PMB ether (20) from 27

t-BuOK (366 mg, 3 mmol) and *p*-methoxybenzyl chloride (0.41 mL=470 mg, 3 mmol) were added to a solution of **27** (350 mg, 2.5 mmol) in dry THF (5 mL) and dry DMF (1 mL). The mixture was stirred and heated at 60 °C for 1 h. Work-up as reported for **19** in 4.19 gave 1.01 g of crude **20**, which was chromatographed over SiO₂ (8 g). Elution with hexane/EtOAc (50:1) afforded 596 mg (quant.) of **20** as a colorless oil. Its IR, ¹H NMR and MS spectra were identical with those of **20** obtained by ring-closing metathesis of **19** as described in 4.20.

Acknowledgements

I thank Mr. M. Kimura (President, Toyo Gosei Co., Ltd) and Mr. Y. Kimura (CEO, Toyo Gosei Co., Ltd) for their support. I am indebted to Dr. J. Tabata (National Agriculture and Food Research Organization, Tsukuba) for kindly sharing the structure **1** with me prior to publication, and also for carrying out the AgNO₃/SiO₂ chromatography and bioassay of (\pm) -**1**. Mr. Y. Shikichi and Ms. Y. Yamaguchi (Toyo Gosei Co., Ltd) are thanked for NMR and GC–MS measurements. Drs. T. Nakamura and Y. Hongo (RIKEN) kindly carried out the HRMS analyses. Dr. T. Tashiro (Niigata University of Pharmacy and Applied Life Sciences) and Mr. K. Kikusato (RIKEN) helped me in preparing the manuscript.

References and notes

- Mori, K.; Yang, C. Y. *Tetrahedron* **2016**, *72*, 4593–4607.
 Review: Zou, Y.; Millar, J. G. *Nat. Prod. Rep.* **2015**, *32*, 1067–1113.
 Millar, J. G.; Midland, S. L.; McElfresh, J. S.; Daane, K. M. J. Chem. Ecol. **2005**, *31*, 2999-3005.
- 4. Figadére, B. A.; Borchardt, D.; Daane, K. M.; Bentley, W.; Millar, J. G. Tetrahedron Lett. 2007, 48, 8434-8437.
- 5. Millar, J. G.; Moreira, J. A.; McElfresh, J. S.; Daane, K. M.; Freund, A. S. Org. Lett. 2009, 11, 2683-2685.
- 6. Tabata, J.; Ichiki, R. T.; Tanaka, H.; Kageyama, D. PLoS One 2016, 11, e0156587, http://dx.doi.org/10.1371/journal. pone. 0156587
- 7. Tabata, J.; Mori, K. To be submitted.
- 8. Hosomi, A.; Sakurai, H. J. Am. Chem. Soc. 1977, 99, 1673-1675.
- Ireland, R. E.; Mueller, R. H.; Willard, A. K. J. Am. Chem. Soc. 1976, 98, 2868–2877.
 Review: Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54, 4413–4450.
- 11. Review: Nicolaou, K. C.; Sarlah, D. Angew. Chem., Int. Ed. 2005, 44, 4490-4527.
- 12. Dorsch, M.; Jäger, V.; Spönlein, W. Angew. Chem., Int. Ed. 1984, 23, 798-799.
- 13. Zou, Y.; Millar, J. G. Synlett 2010, 2319–2321. 14. Frank, R. L.; Armstrong, R.; Kwiatek, J.; Price, H. A. J. Am. Chem. Soc. 1948, 70, 1379-1381.
- 15. Sum, F.-W.; Weiler, L. Can. J. Chem. 1979, 57, 1431-1441.

- 16. Zhou, Y. F.; Huang, N. Z. Synth. Commun. 1982, 12, 795-800.
- 17. Welch, S. C.; Assercq, J.-M.; Loh, J.-P.; Glase, S. A. J. Org. Chem. 1987, 52, 1440-1450.
- 18. Crimmins, M. T.; Dedopoulou, D. Synth. Commun. 1992, 22, 1953-1958.
- 19. Yuan, R.; Zhao, D.; Zhang, L.-Y.; Pan, X.; Yang, Y.; Wang, P.; Li, H.-F.; Da, C.-S. Org. Biomol. Chem. **2016**, 14, 724–728.
- Lee, P. H.; Lee, K.; Sung, S.-y.; Chang, S. J. Org. Chem. 2001, 66, 8646–8649.
 Lipshutz, B. H.; Hackmann, C. J. Org. Chem. 1994, 59, 7437–7444.
- 22. VanRheenen, V.; Kelly, R. C.; Cha, D. Y. Tetrahedron Lett. 1976, 1973–1976.
- 23. Tebbe, F. N.; Parshall, G. W.; Reddy, G. S. J. Am. Chem. Soc. **1978**, 100, 3611–3613.
- 24. Williams, C. M.; Mander, L. N. Tetrahedron 2001, 57, 425–447.
- 25. Ando, K.; Kobayashi, T.; Uchida, N. Org. Lett. 2015, 17, 2554–2557.
- 26. Okada, T.; Asawa, T.; Sugiyama, Y.; Iwai, T.; Kirihara, M.; Kimura, Y. Tetrahedron 2016. 72. 2818-2827.
- 27. Shibuya, M.; Sasano, Y.; Tomizawa, M.; Hamada, T.; Kozawa, M.; Nagahama, N.; Iwabuchi, Y. Synthesis **2011**, *21*, 3418–3425.

- Petasis, N. A.; Bzowej, E. I. J. Am. Chem. Soc. 1990, 112, 6392–6394.
 Lombardo, L. Org. Synth. Col. Vol. 1993, 8, 386–390.
 Zou, Y.; Daane, K. M.; Bentley, W. J.; Millar, J. G. J. Agric. Food Chem. 2010, 58, 1475–1476. 4977-4982.
- 31. Oikawa, Y.; Yoshioka, T.; Yonemitsu, O. Tetrahedron Lett. 1982, 23, 885-888.
- 32. Mori, K.; Puapoomchareon, P. Liebigs Ann. Chem. 1991, 1053-1056.