Accepted Manuscript

The inclusion complex of rosmarinic acid into beta-cyclodextrin: a thermodynamic and structural analysis by NMR and capillary electrophoresis

Amra Aksamija, Ange Polidori, Raphaël Plasson, Olivier Dangles, Valérie Tomao

PII: DOI: Reference:	S0308-8146(16)30516-7 http://dx.doi.org/10.1016/j.foodchem.2016.04.008 FOCH 19015			
To appear in:	Food Chemistry			
Received Date:	30 September 2015			
Revised Date:	2 March 2016			
Accepted Date:	4 April 2016			

Please cite this article as: Aksamija, A., Polidori, A., Plasson, R., Dangles, O., Tomao, V., The inclusion complex of rosmarinic acid into beta-cyclodextrin: a thermodynamic and structural analysis by NMR and capillary electrophoresis, *Food Chemistry* (2016), doi: http://dx.doi.org/10.1016/j.foodchem.2016.04.008

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	The inclusion complex of rosmarinic acid into beta-cyclodextrin: a
2	thermodynamic and structural analysis by NMR and capillary
3	electrophoresis
4	
5	
6	Amra Aksamija, ^a Ange Polidori, ^b Raphaël Plasson, ^a Olivier Dangles, ^a Valérie Tomao ^a
7	
8	6
9	
10	^a University of Avignon, INRA, UMR408 SQPOV, 84000 Avignon, France
11	^b University of Avignon, UMR5247 CBSA, 84000 Avignon, France
12	
13	
14	
15	
16	
17	* Corresponding author.
18	E-mail address: valerie.tomao@univ-avignon.fr (V. Tomao).
19	6
20	

21 ABSTRACT

22

23 This work focuses on the characterization of the rosmarinic acid (RA) - β -cyclodextrin (CD) complex in aqueous solution by ¹H NMR (1D- and 2D-ROESY), completed with studies by 24 capillary electrophoresis (CE). From the ¹H NMR data, the stoichiometry of the complex was 25 26 determined by a Job's plot and the binding constant was estimated from a linear regression 27 (Scott's method). At pH 2.9, the results showed that RA binds CD with a 1:1 stoichiometry and a binding constant K_b of 445 (± 53) M⁻¹ or 465 (± 81) M⁻¹ depending on the CD protons 28 29 (H-5 or H-3) selected for the evaluation. The K_b value was also calculated from the CD-30 induced chemical shifts of each RA proton in order to collect information on the structure of 31 the complex. The pH dependence of K_b revealed that the RA carboxylic form displays the highest affinity 32 33 for CD. An investigation by capillary electrophoresis fully confirmed these results. 2D 34 ROESY analysis provided detailed structural information on the complex and showed a 35 strong correlation between H-3 and H-5 of CD and most RA protons. In conclusion, RA, an

efficient phenolic antioxidant from rosemary with a marketing authorization, spontaneously
forms a relatively stable inclusion complex with CD in water.

38

39 Keywords

40 Beta-cyclodextrin, rosmarinic acid, inclusion complex, NMR, ROESY, capillary41 electrophoresis

42

43 **1. Introduction**

- 44 Naturally occurring phenolic compounds are currently used in the food industry as additives,
- 45 especially in functional foods due to their potential health promotion in terms of antioxidant
- 46 and anti-inflammatory protection (Campos-Vega et al., 2010).

47 Rosmarinic acid (RA), an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid, is a natural 48 phenolic compound commonly found in many Lamiaceae herbs such as *Rosmarinus* 49 *officinalis*, an aromatic evergreen shrub. Besides its antioxidant and anti-inflammatory 50 activities, RA has antiallergenic, antiviral, and antibacterial properties and displays a very low 51 toxicity (Petersen and Simmonds, 2003) and (Furtado et al., 2008). To fulfill the consumer 52 demand for natural food additives, rosemary extracts have been recently accepted by the EU

53 food additive legislation as effective and natural alternatives to synthetic antioxidants.

54 However, the effectiveness of these natural antioxidants depends on the preservation or 55 improvement of their stability, bioactivity and bioavailability (Fang and Bhandari, 2010). 56 Nano-encapsulation within food-grade macromolecules represents a remarkable mean to maintain the structural integrity and potentially enhance the bioavailability of these bioactive 57 58 compounds (Munin and Edwards-Lévy, 2011). Cyclodextrins, a group of naturally occurring 59 macrocyclic oligosaccharides, are convenient encapsulating material widely used in the food 60 industry as additives for the stabilization of flavors and for the elimination of undesired tastes 61 (Astray et al., 2009). In particular, β -cyclodextrin (CD) has been listed as a safe food additive since 1998 (Szente and Szejtli, 2004). Inclusion of natural phenols into CD enables their 62 63 protection against enzymatic oxidation and non-enzymatic oxidation by dioxygen and thus 64 can extend their stability over time (Cravotto et al., 2006).

Numerous analytical methods, such as spectroscopic, electrochemical or separation techniques, have been used for the characterization of the inclusion complexes and the estimation of the thermodynamic parameters of binding (Mura, 2014). Among these methods, ¹H NMR is the most widely used (<u>Pessine et al., 2012</u>).

69 In aqueous solution, CDs are able to form inclusion complexes with a variety of phenolic 70 compounds such as hydroxytyrosol (López-García et al., 2010), baicalin (Li et al., 2009), 71 isoquercitrin (Wang et al., 2009), quercetin (Koontz et al., 2009), and caffeic acid (Zhang et 72 al., 2009). This ability is due to their cone-shaped structure with a relatively lipophilic inner 73 cavity and hydrophilic outer surface. The main driving force in complex formation is the 74 release of high-enthalpy water molecules from the CD cavity and the development of strong 75 van der Waals host (CD) – guest (ligand) interactions (Loftsson et al., 2005). Water molecules 76 are displaced by the more hydrophobic guest molecules with a concomitant decrease of CD 77 ring strain (Szejtli, 1998).

However, only few papers have been published on the inclusion of RA into CDs. Celik et al. have studied the CD - RA binding and the corresponding changes in antioxidant capacity of RA in solution using UV-visible and fluorescence spectroscopies (Celik et al. 2011). Recently, Medronho et al. reported for the first time an NMR study of the β -CD - RA interactions, giving insight on the complex structure (Medronho et al., 2014); however, much higher values (by one order of magnitude) of the association constant were estimated in this work.

85 These conflicting results prompted us to revisit CD - RA binding. As RA could be 86 encapsulated in CD for application in foods of variable acidity, we also investigated the pH-87 dependence of the CD – RA binding to compare the affinity of the carboxylic and carboxylate 88 forms of RA for the macrocycle. In this work, the CD - RA inclusion complex (figure 1) was 89 investigated by 1D and 2D (ROESY) ¹H NMR in order to refine the structural 90 characterisation of the complex. Additionally, a complementary study by CE was performed. 91 The values of the binding constant (K_b) obtained by independent analytical tools (fluorescence 92 spectroscopy, NMR and CE) in different studies (Celik et al. 2011, Medronho et al. 2014 and 93 this work) will be discussed.

/

94 The experimental conditions for the formation of the inclusion complex are consistent with95 the EU food additive legislation.

96

97 **2. Materials and methods**

98 2.1 Materials

99 Rosmarinic acid, caffeic acid (CA), sodium dihydrogenphosphate dihydrate and disodium 100 hydrogenphosphate heptahydrate were purchased from Sigma Aldrich (St. Louis, MO, USA). 101 β-Cyclodextrin was kindly given by Roquette Freres (Lestrem, France). Sodium hydroxide 102 was purchased from Prolabo (BDH Prolabo, VWR International, Haasrode, Belgium). Phenol 103 was obtained from Carlo Erba (Carlo Erba Reagents, SdS, Peypin, France). D₂O for NMR 104 analyses was purchased from Euriso-Top (Saint-Aubin, France). Demineralized water was 105 obtained from VWR (VWR International S.A.S, France). Standard solutions for capillary 106 conditioning, 0.1 M and 1.0 M NaOH solutions were supplied by Fluka Biochemika (Sigma-107 Aldrich Chemie, GmbH, Steinheim, Germany) while milliQ water was produced by an EASY pure RF compact ultrapure water system (Barnstead, ThermoFicher Scientific, Waltham, MA, 108 109 USA). All reagents were of analytical grade quality.

110 2.2. NMR study

111 All RA and CD solutions were freshly prepared in D₂O. For the Job's plot, different volumes

112 of 10 mM solutions of RA and CD in D_2O were mixed together to a constant volume keeping

113 the sum of the total RA and CD concentrations equal to 10 mM.

114 For the determination of the apparent association constant (Scott's plot), two different series 115 of samples were prepared.

116 In the first one, different volumes of a 1 mM CD solution in D₂O and of a solution containing

117 RA (10 mM) and CD (1 mM) in D₂O were mixed together to a constant volume with a final

118 RA/CD ratio ranging from 0.8 to 9.2.

- 119 In the second series, different volumes of a 1 mM RA solution and of a solution containing
- 120 CD (10 mM) and RA (1 mM) in D_2O were mixed together to a constant volume with a final
- 121 CD/RA ratio ranging from 0.8 to 9.2. Final solutions were equilibrated at room temperature
- 122 and protected from light before measurement.
- 123 1D¹H NMR spectra were recorded on a Bruker AC-400 MHz spectrometer (software Bruker
- 124 Top Spin 2.1). 2D-ROESY spectra were recorded in on a Bruker AVL 600 MHz
- 125 (Spectropole, Aix-Marseille University).
- 126 Chemical shifts are given in ppm (δ) and calculated using the internal reference of the HDO
- 127 signal at 4.79 ppm. In all cases, the complexation-induced chemical shift difference is defined
- 128 as the difference between the chemical shift of the free molecule to the chemical shift of
- 129 bound molecule, $\Delta \delta = \delta_{\text{free}} \delta_{\text{complex.}}$
- 130 2.3 Capillary Electrophoresis study
- 131 Electrophoresis experiments were performed using an automated capillary electrophoresis
- 132 system (Beckman P/ACE MDQ, Fullerton, CA). Fused-silica capillaries (50 μm i.d.× 60 cm,
- 133 50 cm to the detector) were used.
- Phosphate buffer (pH 7) for CE analysis was prepared with sodium dihydrogenphosphate
 dihydrate and disodium hydrogenphosphate heptahydrate in milliQ water (ionic strength = 10
 mM) and stored at 4°C. Working buffers were prepared by diluting up to 15 mM of CD in this
 phosphate buffer.
- Stock solutions of RA and CA, both in final concentration equal to 5 mM, were prepared in milliQ water and protected from light at 4°C. Sodium thiosulphate (1 mM) was added to protect the stock solutions against oxidation. Sonication of the stock solutions in an ultrasonic bath (5 min) was necessary to achieve complete solubility. The stock RA and CA solutions were renewed every 15 days. Samples for analysis were prepared by dilution of these stock solutions in milliQ water. After dilution, the concentrations were 0.05 mM for RA, 0.2 mM for CA and 1 mM for phenol.

145 Prior to first use, new capillaries were conditioned by flushing at 20 psi with milliQ water (2 146 min), 0.1 M NaOH (10 min), 1.0 M NaOH (5 min), milliQ water (2 min), then with working 147 buffer for 15 min. In order to remove potentially adsorbed analytes, the capillary was rinsed 148 with milliQ water (2 min), 0.1 M NaOH (5 min), milliQ water (2 min) and working buffer (5 149 min) every three consecutive runs. Before each sample run, the capillary was flushed with 0.1 150 M NaOH (1 min) and working buffer (5 min) and, after analysis, with working buffer (2 min). 151 The capillary was thermostated at 20 °C. The sample was injected in hydrodynamic mode at 152 0.5 psi for 5 s and each analysis was performed under an applied voltage of 10 kV. Any

153 measurement was repeated at least three times in identical conditions.

154

155 **3. Results and Discussion**

156 *3.1. Stoichiometry of the inclusion complex*

157 The stoichiometry of inclusion complex between RA and CD was determined by using the158 method of continuous variations (Job's plot).

159 The CD protons that are most sensitive to bound RA are H-3 and H-5, as both points toward 160 the interior of the cavity. The significant diamagnetic shift observed for those protons is 161 essentially due to the magnetic anisotropy effects of RA's π -electrons in agreement with the 162 formation of an inclusion complex (Schneider et al, 1998; Ali and Upadhyay, 2008). Table S1 163 shows the chemical shifts differences of H-5 (CD) for a CD mole fraction (r_{CD}) ranging from 164 0.1 to 0.9. It is also noteworthy that the aromatic protons H-2, H-6, H2' and H-6' of RA are 165 also diamagnetically shifted. By contrast the other CD protons (H-1, H-2, H-4 and H-6), 166 mostly localized outside the CD cavity, experience insignificant chemical shift variations. The 167 superposition of the NMR spectra shows a significant shielding of the internal protons H-3 168 and H-5 of CD (figure 2). The stoichiometry of the inclusion complex was determined by 169 plotting $r_{\rm CD} \ge \Delta \delta$ (H-3, CD) against $r_{\rm CD}$ by using the Job's method (figure S1). The symmetry 170 of the curve obtained and its maximum at $r_{CD} = 0.5$ both point to a single complex of 1:1

171 stoichiometry. The same conclusion was reached with H-5. These results are in agreement

172 with previous investigations by fluorescence spectroscopy (Çelik et al., 2011) and NMR

173 (Medronho et al., 2014).

174 *3.2. Stability of the inclusion complex*

175The apparent binding constant K_b was calculated according to the conventional Scott's176equation assuming 1:1 binding.

177
$$\frac{[RA]}{\Delta\delta_{obs}} = \frac{[RA]}{\Delta\delta_{max}} + \frac{1}{K_b\Delta\delta_{max}}$$
(1)

 $\Delta \delta_{obs}$ represents the observed chemical shift difference of CD proton H-3 or H-5 between free 178 179 CD and the CD + RA mixtures. $\Delta \delta_{max}$ is the chemical shift difference at saturation. The 180 $[RA]/\Delta\delta_{obs}$ ratio for H-5 was plotted as a function of [RA], thus resulting in an excellent linear 181 fit (figure 3). This confirms the 1:1 stoichiometry of the inclusion complex in agreement with 182 the Job's plot. From the slope of the plot, one obtains: $\Delta \delta_{\text{max}} = 0.22 \pm 0.01$ ppm. The same plot 183 with H-3 yields: $\Delta \delta_{\text{max}} = 0.10 \pm 0.01$ pm. The slope-to-intercept ratio equals the binding constant. From the H-5 and H-3 plots respectively, one obtains: $K_b = 445 \pm 53 \text{ M}^{-1}$ and $465 \pm$ 184 81 M⁻¹. As expected, both values are identical within experimental error. 185

186 RA displays two phenolic rings and each of them may be involved in the binding. A second 187 series of measurements, in which RA is in low and constant concentration (1 mM) and CD in 188 variable concentration, was performed to collect information on the structure of the complex. 189 Although the CD-induced chemical shift displacements of the RA protons are weak, Scott's 190 plots could be constructed to estimate $\Delta \delta_c$ and K_b . The K_b values thus obtained are slight 191 lower than the one obtained by monitoring the CD protons (Table S2). The latter are 192 considered more reliable based on the higher sensitivity of the CD protons (especially H-5) to 193 RA-CD binding, which is obvious from the larger $\Delta \delta_{max}$ values.

194 *3.3. Structure of the inclusion complex*

195 The assignments of RA protons were made on the basis of their specific coupling constants

and on the COSY spectrum. The complete ¹H-NMR data for each of RA protons is presented

- 197 in the Table S3 and is consistent with those previously obtained in the literature (Lecomte et
- 198 al, 2010). Analysis of the NMR spectrum of RA (1 mM) shows signals of six aromatic
- 199 protons (H-2, H-5, H-6 and H-2', H-5', H-6'), two vinylic protons (H-7, H-8) and three
- aliphatic protons (H7'_a, H7'_b and H-8').
- 201 In figure S2, the ¹H NMR data show the large variations induced by RA on the chemical
- shifts of the CD protons located inside the cavity (H-3, H-5), compared with the weak
- 203 variations of the CD protons located outside (H-1, H-2, H-4). Upon complex formation, the
- 204 large shielding of H-3 and H-5 reflects the presence of one of the RA aromatic rings in the
- 205 CD cavity.
- In figure S3, the ¹H NMR data of free and bound RA are compared. Maximal CD-induced
 deshielding occurs for aromatic protons.
- 208 The geometry of the RA-CD complex was further investigated via a ROESY experiment. 209 Two different mixing times were used to obtain the NOE correlations between RA (350 ms) 210 and CD (150 ms) (figure 4). As expected from the 1D NMR spectra, strong correlations were 211 observed between the CD H-3 and H-5 protons on the one hand and most of the RA protons on the other hand, especially H-2' and H-5' but also H-2. No correlation was observed 212 between the RA protons and the protons of the CD outer surface (H-2, H-4). These results 213 214 confirm without ambiguity the encapsulation of RA inside the CD cavity. The correlations 215 between the CD protons and all RA aromatic protons suggest that both phenolic moieties can 216 interact with the CD cavity. It can thus be assumed that two inclusion complexes are formed, 217 one involving the caffeoyl moiety (complex 1, binding constant K_1) and the other one 218 involving the 3,4-dihydroxyphenyllactic moiety (complex 2, binding constant K_2), both being 219 in fast equilibrium via free RA. Overall, only a single averaged NMR spectrum is observed 220 for the three species.

222 δ_0 , δ_1 and δ_2 being the chemical shifts of the proton in free RA, complex 1 and complex 2,

223 respectively, and x_0 , x_1 and x_2 the corresponding mole fractions.

224 Simple solution chemistry gives:

225
$$\delta_{obs} = \frac{\delta_0 + (\delta_1 K_1 + \delta_2 K_2)[CD]}{1 + (K_1 + K_2)[CD]} = \frac{\delta_0 + \delta_{max} K_b[CD]}{1 + K_b[CD]}$$
(2)

226 With
$$K_b = K_1 + K_2$$
 and $\delta_{\text{max}} = \frac{\delta_1 K_1 + \delta_2 K_2}{K_1 + K_2}$

Therefore, whatever the proton signal detected, the apparent binding constant derived from the chemical shift variations is the same and equals the sum of the individual binding constants. It can thus be assumed that differences in K_b values depending on the RA proton detected merely reflect differences in sensivity.

However, it can be noted that the NOE correlations are especially intense between with the CD H-3 and H-5 protons and the vinylic protons of the caffeoyl part, which suggests a deep inclusion of this moiety into the cavity.

234 *3.4. pH dependence of binding*

The pH-dependence of the CD-RA complexation was investigated. At pH 2.9, RA is a mixture of neutral carboxylic (RA-CO₂H) and anionic carboxylate (RA-CO₂⁻) forms in nearly equal proportions. When the pH was decreased to 1 (pure RA-CO₂H), the K_b values deduced

from Scott's plots for the RA protons (variable CD concentration) were significantly higher.

By contrast, when the pH was increased to 6 (pure RA-CO₂), the K_b values were lower.

Clearly, the less hydrophilic carboxyl form display a higher affinity for the CD cavity than the corresponding carboxylate. On the other hand, at pH 1 and 6, the Job's plots confirmed the 1:1 stoichiometry of the inclusion complex (data not shown). As shown in table 1, the K_b values obtained at pH 6 (*ca.* 200 M⁻¹) are of the same order of magnitude as those obtained by Celik et al. (164 M⁻¹) by fluorescence but much lower than those obtained by Medronho et al. by NMR. Indeed, at pH 6, Medronho et al. have estimated K_b at *ca.* 1180 M⁻¹ and 2030 M⁻¹

depending on which RA aromatic ring is monitored and interpreted this difference by assuming two complexes in solution, the first one involving the caffeoyl moiety and the second the 3,4-dihydroxyphenyllactic moiety. As stated above, this interpretation is incorrect as both complexes are indistinguishable by NMR due to fast chemical exchange. Hence, differences in K_b values must be ascribed to differences in sensitivity depending on the protons monitored and techniques adopted (detection on RA at variable CD concentration *vs*.

252 detection on CD at variable RA concentration).

253 3.5 Analysis of RA-CD inclusion complexes by capillary electrophoresis

To confirm the NMR data, the RA-CD inclusion complex was also studied by CE. The electrophoretic mobility of RA was measured in buffered CD solutions at different concentrations (Li and Waldran, 1999). The binding kinetics being fast with respect to the separation time, the measured mobility μ is the average mobility of the free (μ_{RA}) and bound (μ_{RA-CD}) RA forms:

259
$$\mu = (1 - \alpha) \cdot \mu_{RA} + \alpha \cdot \mu_{RA-CD}$$
(3)

260 α being the bound fraction of RA. For a large CD-to-RA molar ratio, the free CD 261 concentration can be considered constant and equal to the total CD concentration *C*, so that 262 the binding constant can be expressed as:

263
$$K_b = \frac{[RA-CD]}{[RA][CD]} = \frac{\alpha}{(1-\alpha)\cdot C} \qquad (4)$$

264 Hence, the measured electrophoretic mobility can be expressed as a function of *C*:

265
$$\mu = \frac{\mu_{RA} + K_b C \cdot \mu_{RA-CD}}{1 + K_b C}$$
(5)

266 On top of binding effects, an increase in CD concentration leads to an increase in the buffer 267 viscosity (Paduano et al., 1990), and this in turn influences all the electrophoretic mobilities, 268 which are inversely proportional to the buffer viscosity (Plasson and Cottet 2005). The 269 electroosmotic flow μ_{eof} being inversely proportional to the buffer viscosity too (Corradini 270 and Sprecacenere, 2003), it was used for evaluating the viscosity correction factor to be 271 applied to the measured electrophoretic mobilities (Li and Waldran, 1999). A linear

relationship between the elution time of a neutral marker (phenol) t_{eof} and the CD concentration was observed (correlation coefficient R = 0.92). It corresponds to a linear variation of the viscosity with a maximal variation of 8% for a CD concentration of 15 mM.

The K_b values can be obtained from the non-linear curve-fitting of the plot expressing the 275 276 viscosity-corrected electrophoretic mobility μ as a function of C according to eq. (5), thus enabling the determination of the numerical values of μ_{RA} , μ_{RA-CD} and K_b . The same method 277 278 was repeated with caffeic acid (CA) for comparison purposes, as CA is structurally related to RA (see figure 1). The measurements were performed at 20 °C. The pH was fixed at 7 so as to 279 280 ensure that the carboxyl groups of RA and CA are fully deprotonated. The ionic strength was 281 fixed to a low value of 10 mM in order to avoid any heating of the capillary. Moreover, in 282 those conditions, the ionic and actual electrophoretic mobilities can be taken equal (Plasson 283 and Cottet, 2005).

284 The non-linear curve fitting yields:
$$K_b = 197 (\pm 14) \text{ M}^{-1}$$
, $\mu_{RA} = 1.520 (\pm 0.006) \text{ x } 10^{-8} \text{ m}^2 \text{V}^{-1} \text{s}^{-1}$

285 and $\mu_{RA-CD} = 0.934 (\pm 0.014) \times 10^{-8} \text{ m}^2 \text{V}^{-1} \text{s}^{-1}$ for RA, $K_b = 176 (\pm 4) \text{ M}^{-1}$, $\mu_{CA} = 2.101 (\pm 10.014) \text{ m}^{-1}$

286 0.003) x 10⁻⁸ m²V⁻¹s⁻¹ and $\mu_{CA-CD} = 1.047 (\pm 0.014) x 10^{-8} m^2 V^{-1} s^{-1}$ for CA (see figure 5).

The similar K_b values for RA and CA suggest that the caffeoyl moiety of RA is mostly responsible for the affinity of RA for CD and that the less polarizable dihydroxyphenyllactic moiety experiences a weaker binding. Taking hydroxytyrosol as a structural analog of the dihydroxyphenyllactic moiety, it can actually be noted that this olive phenol only weakly binds CD with a K_b value of *ca*. 90 M⁻¹ (López-García et al., 2010).

292 The electrophoretic mobilities can also be used to evaluate the hydrodynamic radius of each 293 species (Plasson and Cottet, 2005):

294
$$r_i = \frac{q}{6\pi\eta\mu_i} \tag{6}$$

with *q* the electric charge of the compounds $(1.6 \times 10^{-19} \text{ C})$ and η the water viscosity at 20 °C (10⁻³ Pa.s). This gives $r_{RA} = 5.6 \text{ Å}$, $r_{CA} = 4.0 \text{ Å}$, $r_{RA-CD} = 9.1 \text{ Å}$, $r_{CA-CD} = 8.1 \text{ Å}$. These values can be compared with the hydrodynamic value of β -CD: $r_{CD} = 7.7 \text{ Å}$ (Pavlov *et al.* 2010). They

299 slight radius increase from free β -CD to the CA- β -CD and RA- β -CD complexes.

300 Close K_b values are thus obtained for RA- β -CD with this method and with the NMR method

301 in neutral conditions (about 200 M^{-1} , see Table 1) with a similar precision (about 10% error).

302 This value is also in good agreement with the one determined by Celik et al. by fluorescence

- 303 $(164 \pm 65 \text{ M}^{-1})$ rather than with the value obtained by NMR by Medrohno et al. (ca. 2000 M⁻¹)
- ³⁰⁴ ¹). The consistency of EC methods with fluorescence methods was furthermore checked by
- 305 performing a similar study for the association of RA with methyl- β -CD. A K_b value of 372 (±

306 20) M⁻¹ was determined; once again, this value is in perfect agreement with the value

- 307 measured by Celik *et al.* $(328 \pm 39 \text{ M}^{-1})$.
- 308

309 **4. Conclusion**

310 The complementary use of 1D and 2D ROESY NMR and EC methods have led to consistent 311 results concerning the complex formation between RA and β -CD. In all conditions, a mixture 312 of 1:1 complexes in fast equilibrium was obtained, both catechol subunits of RA being potentially inserted inside the CD hydrophobic cavity, while no interactions of RA with the 313 outside of the CD unit could be reliably detected. Typically, the apparent binding constant is 314 ca. 450 M^{-1} at pH 2.9 (equimolar mixture of the carboxyl and carboxylate forms), 315 316 corresponding to an encapsulation efficiency of ca. 50% when the two species are mixed in an equimolar concentration of 5 mM each. The pH dependence of K_b shows that the carboxyl 317 318 form of RA displays a higher affinity for the macrocycle than the carboxylate form.

319 In conclusion, RA forms a relatively stable complex with β -CD, especially in acidic 320 conditions. By accommodating the catechol nuclei inside the CD cavity, the binding could 321 inhibit their interactions with redox-active metal traces, thereby providing higher stability for 322 food applications. The binding could also modulate the release of RA in the digestive tract as 323 a function of pH.

14

324	
325	Acknowledgements
326	The authors thank Roquette Freres (Lestrem, France) for providing β -cyclodextrin.
327	
328	Appendix. Supplementary data
329	Supplementary data associated with this article can be found in Appendix.
330	
331	References
332	6
333	Ali, S. M., Upadhyay, S. K. (2008). Complexation studies of pioglitazone hydrochloride and
334	β -cyclodextrin: NMR (¹ H, ROESY) spectroscopic study in solution. Journal of Inclusion
335	Phenomena and Macrocyclic Chemistry, 62, 161-165.
336	Astray, G., Gonzalez-Barreiro, C., Mejuto, J.C., Rial-Otero, R., Simal-Gándara, J. (2009). A
337	review on the use of cyclodextrins in foods. Food Hydrocoll., 23, 1631-1640.
338	Çelik, S.E., Özyürek, M., Tufan, A.N., Güçlü, K., Apak, R. (2011). Spectroscopic study and
339	antioxidant properties of the inclusion complexes of rosmarinic acid with natural and
340	derivative cyclodextrins. Spectrochim. Acta. A. Mol. Biomol. Spectrosc., 78, 1615-1624.
341	Corradini, D., and Sprecacenere, L. (2003). Dependence of the Electroosmotic Flow in Bare
342	Fused-Silica Capillaries from pH, Ionic Strength and Composition of Electrolyte Solutions
343	Tailored for Protein Capillary Zone Electrophoresis. Chromatographia, 58, 587-596.
344	Cravotto, G., Binello, A., Baranelli, E., Carraro, P., Trotta, F. (2006). Cyclodextrins as Food
345	Additives and in Food Processing, Current Nutrition and Food Science, 2, 343-350.
346	Fang, Z., Bhandari, B. (2010). Encapsulation of polyphenols. Trends Food Sci. Technol., 21,
347	510-523.
348	Furtado, M.A., de Almeida, L.C.F., Furtado, R.A., Cunha, W.R., Tavares, D.C. (2008).

349 Antimutagenicity of rosmarinic acid in Swiss mice evaluated by the micronucleus assay.

- 350 Mutat. Res., 657, 150-154.
- 351 Koontz, J. L., Marcy, J. E., O'Keefe, S. F., Duncan, S. E. (2009). Cyclodextrin Inclusion
- 352 Complex Formation and Solid-State Characterization of the Natural Antioxidants α-
- 353 Tocopherol and Quercetin. J. Agric. Food Chem., 57, 1162-1171.
- 354 Lecomte, J., Giraldo López, L.J., Laguerre, M., Baréa, B., Villeneuve P. (2010). Synthesis,
- 355 Characterisation and Free Radical Scavening Properties of Rosmarinic Acid Fatty Esters.
- 356 Journal of the American Oil Chemists Society, 87, 615-620.
- 357 Li, J., and Waldron, K.C. (1999). Estimation of the pH-independent binding constants
- 358 of alanylphenylalanine and leucylphenylalanine stereoisomers with β -cyclodextrin in the
- 359 presence of urea. *Electrophoresis*, 20, 171-179.
- 360 Li, J., Zhang M., Chao, J., Shuang, S. (2009). Preparation and characterization of the
- 361 inclusion complex of Baicalin (BG) with β -CD and HP- β -CD in solution: An antioxidant
- ability study. *Spectrochimica Acta Part A*, 73, 789-793.
- 363 Loftsson, T., Jarho, P., Másson, M., Järvinen, T. (2005). Cyclodextrins in drug delivery.
- 364 *Expert Opin. Drug Deliv.*, 2, 335-351.
- 365 López-García, M.Á., López, Ó. Maya, I., Fernández-Bolaños, J.G. (2010). Complexation of
- 366 hydroxytyrosol with β-cyclodextrins. An efficient photoprotection. *Tetrahedron*, 66, 8006–
 367 8011.
- 368 Munin, A., Edwards-Lévy, F. (2011). Encapsulation of Natural Polyphenolic Compounds.
- 369 *Pharmaceutics* 3, 793-829.
- 370 Mura, P., n.d. Analytical techniques for characterization of cyclodextrin complexes in 371 aqueous solution. *J. Pharm. Biomed. Anal.* doi:10.1016/j.jpba.2014.02.022.
- 372 Paduano, L., Sartorio, R., Vitagliano, V. and Costantino, L. (1990). Diffusion properties of
- 373 cyclodextrins in aqueous solution at 25 °C. J. Sol. Chem., 19, 31-39.
- 374 Pavlov, G.M., Korneeva, E.V., Smolina, N.A., and Schubert, U.S. (2010). Hydrodynamic
- properties of cyclodextrin molecules in dilute solutions. *Eur. Biophys. J.*, 39, 371-379.

- 376 Pessine, F.B., Calderini, A., Alexandrino G.L. (2012). a review: Cyclodextrin inclusion
- 377 complexes probed by NMR techniques, D.H. Kim (Ed.), Magnetic resonance spectroscopy,
- 378 InTech Publishing.
- 379 Petersen, M., Simmonds, M.S. (2003). Rosmarinic acid. *Phytochemistry*, 62, 121-125.
- 380 Plasson, R., and Cottet, H. (2005). Determination of homopolypeptide conformational
- 381 changes by the modeling of electrophoretic mobilities. Anal. Chem., 77, 6047-6054.
- 382 Rocio Campos-Vega, Guadalupe Loarca-Piña, B. Dave Oomah, (2010). Minor components of
- 383 pulses and their potential impact on human health. *Food Research International*, 43, 461–482.
- 384 Schneider, H., Hacket, F., and Rudiger, V. (1998). NMR Studies of Cyclodextrins and
- 385 Cyclodextrin Complexes. Chem. Rev., 98, 1755-1785.
- Szejtli, J. (1998). Introduction and general overview of cyclodextrin chemistry. *Chem Rev*, 98,
 1743-1753.
- 388 Szente, L., Szejtli, J., 2004. Cyclodextrins as food ingredients. *Trends Food Sci. Technol.*, 15,
 389 137-142.
- 390 Wang, Y., Qiao, X., Li, W., Zhou, Y., Jiao, Y., Yang, C., Dong, C., Inoue, Y., Shuang, S.
- 391 (2009). Study on the complexation of isoquercitrin with β -cyclodextrin and its derivatives by
- 392 spectroscopy. *Analytica Chimica Acta*, 650, 118–123.
- Zhang, M., Li, J., Zhang, L., Chao, J. (2009). Preparation and spectral investigation of
 inclusion complex of caffeic acid with hydroxypropyl-β-cyclodextrin. *Spectrochimica Acta Part A*, 71, 1891–1895.
- 396

Table 1. Maximal CD-induced ¹H-NMR chemical shift displacements ($\Delta \delta_{max} = \delta_{max} - \delta_0$ (no 398 CD)) of RA protons and binding constant (K_b) at variable pH values in D₂O (RA 399 concentration = 1 mM).

RA	pH 1		pH 2.9		pH 6	
	$\Delta \delta_{ m max}$	K_b	$\Delta \delta_{ m max}$	K_b	$\Delta \delta_{ m max}$	K _b
proton	(ppm)	(M ⁻¹)	(ppm)	(M ⁻¹)	(ppm)	(M ⁻¹)
H-2	0.08	320	0.01	265	0.14	209
H-2'	0.08	352	0.06	316	0.012	319
H-5	0.09	314	0.02	260	0.4	256
H-5'	0.03	328	0.03	325	0.03	284
H-6	0.07	300	0.09	260	0.13	202
H-6'	0.09	330	0.06	328	0.02	238
H-7	0.03	342	0.02	313	0.03	222
H-7'	0.05	468	0.03	390	0.04	230
H-8	0.11	466	0.09	393	0.07	227
H-8'	0.11	466	0.08	299	0.07	227

Figure 1. Chemical structures of (a) β -cyclodextrin (CD) and (b) rosmarinic acid (RA).

Figure 2. Expansion of the ¹H NMR spectrum showing the displacement of H-5 and H-3 (CD) for a CD mole fraction (r_{CD}) ranging from 0.1 to 0.9 in D₂O at pH 2.9. Different volumes of 10 mM solutions of RA and CD were mixed together to a constant volume keeping the sum of the total RA and CD concentrations equal to 10 mM in D₂O at pH 2.9.

Figure 3. Scott's plot for CD proton H-5 with CD concentration set at 1 mM and variable RA concentration in D_2O at pH 2.9.

Figure 4. ROESY spectrum of the 1:1 RA-CD complex (5 mM of each partner) in D₂O at pH

Figure 5. Variation of the electrophoretic mobility of RA (solid line and squares) and CA (dotted line and circles) as a function of the total CD concentration, in phosphate buffer at pH 7, 20 °C, I = 10 mM, [RA] = 0.05 mM, [CA] =0.2 mM. Circles and squares are experimental measurements for respectively CA-CD and RA-CD, each of them being repeated three times. The lines were obtained by non-linear curve-fitting of experimental data using Eq. 5.

403 Highlights

- Investigation of the RA- β -CD complex by ¹H NMR and CE 404 •
 - Estimation of the stoichiometry and binding constant by 1H NMR •
- Structural analysis of the RA-β-CD complex by ROESY 406 ٠
- 407 pH dependence of the binding constant ٠
- 408 Estimation of the binding constants of the RA-\beta-CD, RA-Me-\beta-CD and CA-\beta-CD ٠ Acceleration 409 complexes by CE

405