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Synthesis of potent and selective serotonin 5-HT1B receptor ligands
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Abstract—A series of serotonin 5-HT1B ligands were synthesized and evaluated for their potency and selectivity against other 5-HT
receptor subtypes. Many of these new compounds displayed high affinity and selectivity for the 5-HT1B receptor and compound 6c
was found to have the in vitro binding profile necessary for development as a PET radioligand.
� 2005 Elsevier Ltd. All rights reserved.
The serotonin 5-HT1B receptors are autoreceptors that
regulate the release of serotonin (5-HT) from the 5-HT
terminals. Historically, these receptors were included
in the class of 5-HT1D receptors. The human 5-HT1D

receptors have been divided into 5-HT1Da and
5-HT1Db,

1 which were then renamed 5-HT1D and 5-
HT1B receptors, respectively.2 The 5-HT1B is the pre-
dominant form of the 5-HT1B/D receptor family in the
human brain, accounting for about 90% of the receptor
population formerly designated as 5-HT1D.

3,4 Over the
last few years, biological and pharmacological studies
have noted the importance of this receptor subtype
and implicated the involvement of 5-HT1B receptors in
depression, aggressive behavior, suicide, substance
abuse, and alcoholism.5–12 For example, studies in 5-
HT1B knockout animals have shown that transgenic
mice devoid of the 5-HT1B receptors displayed enhanced
aggressiveness, increased cocaine intake, and heightened
susceptibility to alcohol over-consumption.6–8 Since the
5-HT1B receptor is an autoreceptor located on the nerve
terminal and stimulation of this receptor inhibits the re-
lease of serotonin from the neurons, antagonism of the
5-HT1B receptor would, in theory, produce an immedi-
ate increase in the extracellular 5-HT concentrations,
an effect induced by prolonged treatment with the most
widely used antidepressants: the selective serotonin
reuptake inhibitors (SSRIs). Therefore, it was proposed
that 5-HT1B antagonists could probably function as
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fast-acting antidepressants or as an adjunct treatment
of depression with SSRIs.13,14 Along with the report of
enhanced cocaine intake in 5-HT1B knockout mice,
Koob et al. have reported that stimulation of 5-HT1B

receptor potentiated cocaine reinforcement in rats, thus
implicating the involvement of this receptor subtype in
cocaine abuse.15 Furthermore, biological and genetic
studies have implicated the 5-HT1B receptors and the
receptor genes in alcoholism, especially antisocial alco-
holism, further underscoring the importance of the
5-HT1B receptor.11,16

Despite the recent advance in elucidating the role of the
5-HT1B receptor in the CNS and in psychiatric diseases,
there is still a lack of specific pharmacological tools to
probe this receptor�s functions in vivo. Selective agonists
and antagonists for the 5-HT1B receptor, among them
GR127935 and SB-224289 (Fig. 1) are only recently
available. GR127935 is a high affinity ligand (Ki

0.14 nM for the cloned human 5-HT1B (h5-HT1B),
0.70 nM for h5-HT1D, and 70 nM for h5-HT1A recep-
tors).17 However, this compound has been shown in
some tests to be a partial agonist. SB-224289 was report-
ed to be a 5-HT1B full antagonist with a 26-fold selectiv-
ity for the h5-HT1B over h5-HT1D receptor.18,19

Nevertheless, its affinity for the h5-HT1B receptor (Ki

10 nM) seems to be relatively low. Yet another com-
pound (1, Fig. 1) was reported to be a full antagonist
with a Ki of 2 nM for the 5-HT1B receptor. However,
in our hands this compound also displayed partial ago-
nist activity. In view of the importance of the 5-HT1B

receptor in psychiatric diseases, we aim to develop a
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Figure 1. Structural representation of GR127935, SB-224289, and compound 1.
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radioligand for the positron emission tomography
(PET) imaging studies of the 5-HT1B receptor in vivo.
To this end, we have synthesized a series of compounds
in search of a high affinity 5-HT1B antagonist for poten-
tial development as PET radiotracer.

The synthetic program was initiated using compound 1
as a lead.20 Based on this lead compound, a number
of derivatives bearing different functional groups were
prepared and screened in comprehensive in vitro binding
assays. The new compounds 6a–g were prepared accord-
ing to the synthetic pathway outlined in Scheme 1. Brief-
ly, nitration of 1-methyl-4-(2-methoxyphenyl)piperazine
(2) gave compound 3, which was then reduced with Ra-
ney nickel and hydrazine to the aniline 4. The reaction
of 4 with triphosgene and coupling of the resulting carb-
amyl chloride with various monosubstituted phenylpip-
erazines (5) provided the final products 6a–g. The
monosubstituted phenylpiperazines, if not commercially
available, were prepared by the palladium-catalyzed
aromatic amination of substituted phenylbromides with
piperazine.21 Monosubstituted phenylpiperazines 5e–g
were obtained in 32–75% yield. The desired compounds
6a–g were prepared in 45–82% yield, following purifica-
tion by column chromatography, salt formation with
fumaric acid, and recrystallization from acetone. In
addition, we have also prepared compound 11 to eluci-
date further the structure–activity relationship of this
class of compounds (Scheme 2). All new compounds
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Scheme 1. Synthetic route for compounds 6a–g.
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Scheme 2. Synthetic route for compound 11.
were fully characterized by 1H NMR, MS, HRMS,
and/or elemental analysis.

The newly synthesized compounds were tested in recep-
tor binding assays in vitro. Binding to the 5-HT1B and 5-
HT1D receptors was carried out by displacement of the
radioligand [3H]5-carboximidotryptamine (5-CT) at the
cloned human 5-HT1B and 5-HT1D receptors with the
test compounds. In addition, binding affinities of these
compounds at various cloned human 5-HT receptors,
including 5-HT1A, 5-HT2A, 5-HT2C, 5-HT5A, 5-HT6

and 5-HT7, were also determined, as previously de-
scribed.22 Selected binding data are given in Table 1.

As is evident from Table 1, all the test compounds dem-
onstrated high affinity for the serotonin 5-HT1B recep-
tor. Compounds 6a, 6c, and 11 also displayed high
affinity (Ki < 100 nM) for the 5-HT1D receptor. In addi-
tion, compounds 6a–d, 6f, and 6g had greater than 13-
fold selectivity for 5-HT1B over the other 5-HT receptor
subtypes. All compounds display negligible affinities
(Ki > 10 lM) for the following cloned receptors: dopa-
mine D1, D2, D3, D4 and D5, j, d, and l-opiod, hista-
mine-H1, muscarinic M1, M2, M3, M4 and M5,
nicotinic acetylcholine receptors, and the PCP site.

Judging from the binding data, it is clear that substitu-
ents as diverse as fluorine, methoxy, thiomethyl, and tri-
fluoromethyl, placed at either the ortho or para position
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Table 1. In vitro binding affinities of compounds 6a–g and 11 at selected 5-HT receptors

Compound Ki (nM)a

5-HT1B 5-HT1D 5-HT1A 5-HT2A 5-HT2C 5-HT6 5-HT7

1 12.4 ± 1.1 105.9 ± 20.1 641 ± 147 6739 ± 1146 1937 ± 794 2410 ± 409 1412 ± 762

6a 11.3 ± 0.9 34.7 ± 12.1 335 ± 74 5988 ± 958 1241 ± 521 469 ± 80 342 ± 195

6b 18.1 ± 2.7 103.1 ± 39.2 315 ± 85 >10,000 1077 ± 409 841 ± 404 >10,000

6c 1.82 ± 0.35 6.51 ± 1.69 52.5 ± 14.2 1008 ± 60 267.0 ± 98.8 5089 ± 1272 >10,000

6d 38.3 ± 9.0 168.2 ± 40.4 1079 ± 291 4451 ± 490 >10,000 >10,000 >10,000

6e 13.7 ± 1.4 209.2 ± 14.6 405 ± 182 171 ± 19 6.50 ± 2.47 1429 ± 286 >10,000

6f 28.4 ± 2.2 345.1 ± 65.6 382 ± 187 614 ± 117 2833 ± 3395 2863 ± 830 >10,000

6g 16.7 ± 4.1 328.7 ± 62.5 882 ± 432 1335 ± 280 1145 ± 1054 >10,000 >10,000

11 9.68 ± 0.74 15.4 ± 2.8 15.4 ± 2.8 >10,000 9954 ± 2688 nd nd

GR127935 4.31 ± 0.50 12.3 ± 1.85 80.0 ± 42.4 42.7 ± 9.0 105 ± 70 >10,000 >10,000

nd, not determined.
a All assays were conducted in duplicate. Data are means ± SD of computer-derived estimates for n = 4 separate determinations.
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of the phenylpiperazine moiety in the lead compound,
are well-tolerated by the 5-HT1B binding site and the
resulting compounds all retain their high binding affinity
for the 5-HT1B receptor. Replacement of the methoxy
group in the lead compound with a bulky substituent,
such as the phenyl group, also results in a compound
with high affinity and selectivity for the 5-HT1B receptor
(6e). However, strongly electron-withdrawing substitu-
ents, such as fluorine or trifluoromethyl group, placed
at the 4-position of the phenyl ring (6d and 6f) appear
to diminish the compounds� affinities for 5-HT1B and
5-HT1D receptors.

Among the compounds synthesized, it is notable that
the 4-chlorophenyl derivative (6c) displays a higher
affinity for the 5-HT1B receptor than both the lead
and GR127935, a compound that has been shown in
the literature to be the ligand with the highest affinity
for the 5-HT1B receptor. In our binding assays, com-
pound 6c is twice as potent as GR127935, and thus
appears to be the most potent 5-HT1B ligand reported
to date.

In functional assays using the forskolin-stimulated cyclic
AMP production test,23 both compounds 1 (64% intrin-
sic activity) and GR127935 (29% intrinsic activity) dis-
played partial agonist activity. On the other hand,
compound 11 was shown to be completely devoid of
any intrinsic agonist activity, and thus appeared to be
a full antagonist for the 5-HT1B receptor.

Compounds with nanomolar or subnanomolar affinity
at the target receptor are, in general, good candidates
for development as in vivo radioligands for PET imag-
ing. Compound 6c fulfills this requirement. In addition,
it possesses functional groups (O-methyl and N-methyl)
that are amenable to labeling with a positron-emitting
[11C]methyl group and therefore is a suitable candidate
for radiolabeling and development as potential PET
radioligand.

In summary, a number of compounds were synthesized
and evaluated in vitro for their binding affinity and selec-
tivity for the serotonin 5-HT1B receptor. One compound
(6c) was found to be a high affinity ligand for the 5-HT1B

receptor and a suitable candidate for development as a
PET radioligand to investigate the serotonin 5-HT1B
receptor in vivo. Another compound, 11, was found
to be a 5-HT1B full antagonist devoid of any agonist
activity.
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