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EFFICIENT SYNTHESIS OF HEXAHYDROCARBAZOLES

Sharada S. Labadie and Christa Parmer
Department of Medicinal Chemistry, Roche Palo Alto LLC,
Palo Alto, California, USA

GRAPHICAL ABSTRACT

Abstract Selective reduction of the nitro group in methyl 1-(2-nitrophenyl)-4-oxo-cyclohex-

2-enecarboxylates with zinc-acetic acid forms hexahydrocarbazoles. The reaction is appli-

cable to the corresponding pyridyl analogs to generate azahexahydrocarbazoles. This pro-

vides an efficient method for the generation of tricyclic framework.

Keywords Azahexahydrocarbazoles; Diels–Alder reaction; hexahydrocarbazoles; zinc-

acetic acid reduction

The hexahydrocarbazole framework occurs in a number of biologically active natural
products, the syntheses of which have been studied extensively.[1,2] Recently reported
syntheses of the hexahydrocarbazole framework indicate that there still is a need for
new, preferably simple, methods for the generation of such entities.[3] As described in
the previous paper,[4] the hexahydrocarbazole 1e was formed unexpectedly from
methyl 1-(3-nitropyridin-2-yl)-4-oxo-cyclohex-2-enecarboxylate 2e in an attempt to
form the spirocycle 3e (Scheme 1). Given this constitutes a simple two-step synthesis
of the tricyclic framework, the scope of this process was further investigated.

The cyclohexenonecarboxylates 2a–h, the required precursors for this synthetic
study, were prepared as described in the previous paper,[4] by a Diels–Alder reaction
of methyl 2-(2-nitroaryl)acrylates 4a–h with trans-1-methoxy-3-trimethylsilyloxy-
1,3-butadiene 5 (Table 1). Whereas the palladium-catalyzed hydrogenation of the
pyridyl compound 2e produced hexahydrocarbazole 1e, catalytic reduction of 2a
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Scheme 1. Results of hydrogenation of 2a and 2e.

Table 1. Formation of cyclohexenones as in Scheme 2a

Entry Acrylate Cyclohexenone Yield %

1 87

2 85

3 75

aAll are isolated yields and are not optimized. Synthesis of cyclohexenones 2a–e are described in the

previous paper.[4]
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gave the spirocyclic oxindole compound 3a. It was therefore essential to effect
selective reduction of the nitro group to ensure exclusive formation of hexahydrocar-
bazoles. This was readily achieved by reduction of 2a–h with zinc in acetic acid sol-
ution (Scheme 2). Under these conditions, the desired hexahydrocarbazoles 1a–d

were obtained in poor (1d) to moderate yields, whereas the corresponding aza
compounds 1e–h were all produced in good yields (Table 2).

It should be noted that ring closure occurred with the formation of a cis-fused
framework, a result for which there is ample literature precedent.[5] This was
confirmed for compound 1b by observation of a strong nuclear Overhauser effect
(NOE) between Ha and the ester methyl group.

Scheme 2. Synthesis of hexahydrocarbazoles.

Table 2. Formation of hexahydrocarbazoles as in Scheme 2

Entry Cyclohexenone Hexahydrocarbazole Yielda (%)

1 67

2 47

3 66

4 20b

(Continued )
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In summary, a simple two-step synthesis of highly functionalized hexahydro-
carbazoles is described. The method tolerates a variety of functionalities and uses
readily accessible starting materials. To our knowledge, this is the first reported
synthesis of azahexahydrocarbazoles.

EXPERIMENTAL

Cyclohexenonecarboxylates 2a–h were synthesiszed as described in the
previous paper.[4] The analytical data for those not reported earlier are as follows.

Methyl 1-(5-Methyl-3-nitropyridin-2-yl)-4-oxo-cyclohex-
2-enecarboxylate 2f

Mp 101–103 (hexane=EtOAc); 1H NMR (300MHz, CDCl3) d¼ 8.62
(d, J¼ 1.5Hz, 1 H), 8.12 (d, J¼ 1.5Hz, 1 H), 7.04 (d, J¼ 10.2Hz, 1 H), 6.20 (d,
J¼ 10.2Hz, 1 H), 3.72 (s, 3 H), 3.0–2.57 (m, 4 H), 2.48 (s, 3 H). Anal. calcd. for
C14H14N2O5: C, 57.93; H, 4.86; N, 9.65. Found: C, 57.98; H, 4.73; N, 9.63.

Table 2. Continued

Entry Cyclohexenone Hexahydrocarbazole Yielda (%)

5 80

6 69

7 66

8 75

aAll are isolated yields and are not optimized.
bIsolated as an HCl salt.
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Methyl 1-(6-Methoxy-2-nitropyridin-2-yl)-4-oxocyclohexen-2-
enecarboxylate 2g

Mp 89–90 (hexane=EtOAc). 1H NMR (300MHz, CDCl3) d¼ 8.34 (d, J¼ 9.0 z,
1 H), 7.06 (d, J¼ 10.2Hz, 1 H), 6.83 (d, J¼ 9.0Hz, 1 H), 6.20 (d, J¼ 10.2Hz, 1 H),
3.99 (s, 3 H), 3.73 (s, 3 H), 3.02–2.50 (m, 4 H). Anal. calcd. for C14H14N2O6: C,
54.90; H, 4.61; N, 9.15. Found: C, 54.76; H, 4.37; N, 9.15.

Methyl 1-(3-Nitropyrid-4-yl)-4-oxo-cyclohexen-2-enecarboxylate 2h

Mp 85–87 �C (hexane=EtOAc); 1H NMR (300MHz, CDCl3) d¼ 9.21 (s, 1 H),
8.81–8.79 (m, 0 H), 7.41 (d, J¼ 4.9Hz, 1 H), 6.75 (d, J¼ 10.2Hz, 1 H), 6.39
(d, J¼ 10.2Hz, 1 H), 3.73 (s, 3 H), 3.34–3.16 (m, 1 H), 3.07–2.90 (m, 1 H), 2.39
(d, J¼ 4.5Hz, 2 H). Anal. calcd. for C13H12N2O5: C, 56.52; H, 4.38; N, 10.14.
Found: C, 56.21; H, 4.22; N, 9.97.

Synthesis of Hexahydrocarbazoles 1a–h

Hexahydrocarbazole 1a. Acetic acid (0.6mL) was added to a vigorously
stirred mixture of 2a (0.1 g, 0.36mmol) and zinc dust (0.6 g) in dichloromethane
(10mL), and the heterogeneous mixture was stirred for 18 h. Solids were removed
by filtration through a Celite washing well with dichloromethane. The filtrate was
stirred over aqueous NaHCO3 solution (20mL), and the organic layer was sepa-
rated. The organic layer was washed with brine, dried (Na2SO4), and concentrated.
The residue was purified by flash chromatography (silica gel, 20–60% EtOAc=
hexane) to obtain 1a as an off-white solid (0.07 g): mp 109–110 �C (EtOAc=hexane);
1H NMR (300MHz, CDCl3): d¼ 7.38–7.29 (m, 1 H), 7.18–7.03 (m, 1 H), 6.83–6.70
(m, 1 H), 6.66–6.52 (m, 1 H), 4.94–4.84 (m, 1 H), 3.82 (s, 3 H), 2.84–2.56 (m, 2 H),
2.28 (d, 4 H). Anal. calcd. for C14H15NO3: C, 68.56; H, 6.16; N, 5.71. Found: C,
68.48; N, 6.11; N, 5.78.

The following were obtained in a similar fashion.

Compound 1b. Mp 75–76 �C (EtOAc=hexane); 1H NMR (300MHz, CDCl3)
d¼ 7.42 (d, J¼ 7.9Hz, 1 H), 7.02 (d, J¼ 7.9Hz, 1 H), 6.78 (s, 1 H), 4.93 (d,
J¼ 3.4Hz, 1 H), 4.14 (d, J¼ 2.3Hz, 1 H), 3.83 (s, 3 H), 2.87–2.56 (m, 2 H),
2.53–1.98 (m, 4 H). Anal. calcd. for C15H14F3NO3: C, 57.51; H, 4.50; N, 4.47.
Found: C, 57.41; H, 4.31; N. 4.58.

Compound 1c. 1H NMR (300MHz, CDCl3) d¼ 6.90 (s, 1 H), 6.25 (s, 1 H),
4.87 (t, J¼ 3.6Hz, 1 H), 3.94–3.71 (m, 9 H), 2.83–2.55 (m, 2 H), 2.46–2.00 (m, 4 H);
MS (ESI): m=z¼ 306 (Mþ 1).

Compound 1d. 1H NMR (300MHz, DMSO-d6) d¼ 6.84–6.68 (m, 1 H),
5.90–5.78 (m, 1 H), 5.78–5.67 (m, 1 H), 5.70–5.60 (m, 1 H), 4.89–4.71 (m, 2 H),
4.71–4.51 (m, 1 H), 3.69 (s, 3 H), 2.50 (d, J¼ 1.9Hz, 6 H); MS (ESI): m=z¼ 261
(Mþ 1).

Compound 1e. Mp 149–150 �C (EtOAc=hexane); 1H NMR (300MHz,
CDCl3) d¼ 7.99 (dd, J¼ 1.5, 4.9Hz, 1 H), 7.00 (dd, J¼ 4.9, 7.9Hz, 1 H),
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6.93–6.79 (m, 1 H), 4.96–4.83 (m, 1 H), 4.01–3.94 (m, 1 H), 3.83 (s, 3 H), 2.78 (d,
J¼ 3.8Hz, 1 H), 2.66–2.52 (m, 3 H), 2.41–2.31 (m, 1 H), 1.98 (m, 1 H). Anal. calcd.
for C13H14N2O3: C, 63.40, H, 5.73; N, 11.38. Found: C, 63.50; H, 5.68; N, 11.43.

Compound 1f. Mp 128–129 �C (EtOAc=hexane); 1H NMR (300MHz,
CDCl3) d¼ 7.82 (s, 1 H), 6.69 (s, 1 H), 4.88 (t, J¼ 3.6Hz, 1 H), 3.81 (s, 3 H),
2.86–2.27 (m, 5 H), 2.88–2.27 (m, 5 H), 2.24 (s, 3 H), 2.23 (s, 3 H), 1.97 (s, 1 H). Anal.
calcd. for C14H16N2O3: C, 64.60; H, 6.20; N, 10.76. Found: C, 64.22; H, 6.06; N,
10.72.

Compound 1g. Mp 140–141 �C (EtOAc=hexane).1H NMR (300MHz
CDCl3) d¼ 6.92 (d, J¼ 8.3Hz, 1 H), 6.50 (d, J¼ 8.7Hz, 1 H), 4.80 (t, J¼ 3.8Hz,
1 H), 3.85 (s, 3 H), 3.79 (s, 3 H), 2.80–2.28 (m, 5 H), 2.07–1.91 (m, 1 H). Anal. calcd.
for C14H16N2O4: C, 60.86; H, 5.84; N, 10.14. Found: C, 60.86; H, 5.79; N, 10.17.

Compound 1h. Mp 218–220 �C (EtOAc=hexane). 1H NMR (300MHz,
DMSO-d6) d¼ 7.86 (d, J¼ 4.5Hz, 1 H), 7.82 (s, 1 H), 7.25 (d, J¼ 4.9Hz, 1 H),
6.33 (d, J¼ 3.0Hz, 1 H), 4.70–4.65 (m, 1 H), 3.73 (s, 3 H), 2.84 (dd, J¼ 3.8,
15.9Hz, 1 H), 2.56–2.39 (m, 3 H), 2.25–2.08 (m, 2 H); MS (ESI) m=z¼ 247 (Mþ 1).
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