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Abstract: A novel iridium(IIT) hydride complex,
IrHCI(TIMP5) {HTIMP; =tris[1-(diphenylphos-
phino)-3-methyl-1H-indol-2-ylJmethane} was pre-
pared and fully characterized in both the solid state
and in solution. Chloride abstraction by silver cat-
ions provides a more reactive compound, [IrH-
(TIMP»)][BF,], which can react with pyridine (py)
and phenylacetylene to yield the complexes [IrH-
(TIMP;)(py)][BF,] and [Ir(PhCH=C—CH=CHPh)-
(TIMP;)][BF,], respectively. Interestingly, IrH-
(TIMP;)(py)][BF,] efficiently catalyses the stereose-
lective dimerisation of model terminal alkynes to
the 1,4-disubstituted (E)-but-1-en-3-yne only.

Keywords: alkyne dimerisation; catalyst design; dia-
stereoselectivity; iridium(IIT) complexes

The transition metal-catalysed dimerisation of termi-
nal alkynes is an efficient method for the synthesis of
branched and linear enynes, which are versatile inter-
mediates in organic synthesis.”! This process for the
iridium complexes appears to involve an Ir(I)/Ir(III)
cycle consisting of i) oxidative addition of the alkyne
C—H bond to the Ir(I) complex, which leads to an
RC=C-Ir(IIT)~H compound, ii) insertion of a second
alkyne molecule into the Ir—H or the Ir—C bond,
which affords a vinyl-Ir(III) species, and iii) reductive
elimination, which regenerates the iridium(I) com-
pound and produces a linear (E)-enyne, a (Z)-enyne,
or a mixture of both in most cases.”™*! To our knowl-
edge, there is no example in the literature of a well-
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defined Ir(III) complex that catalyses alkyne dimeri-
sation.

In this context, here we report the synthesis of the
Ir(IIT) hydride derivative, IrHCI(TIMP;) (1), starting
from the P-tripodal ligand HTIMP,,' and its deriva-
tives [IrH(TIMP;)][BF,] (2), [Ir(PhCH=C—CH=
CHPh)(TIMP;)][BF,] (3) and [IrH(TIMP;)(py)][BF.]
(4) (Scheme 1, reaction i). We also report preliminary
catalytic studies which demonstrate the activity of 4
in the stereoselective dimerisation of model terminal
alkynes (Scheme 1, reaction ii).

To assess the binding ability of HTIMP; to iridium,
it was refluxed in deaerated toluene containing [IrCl-
(COE),], (HTIMP,/Ir molar ratio=1) for 5 days. A
non-symmetrical complex was obtained; whose struc-
ture in solution was compatible with 1, based on 'H
and *'P NMR spectroscopy, and fully in agreement
with its solid state structure (see below, X-ray analy-
sis). Thus, its *'P{'"H} NMR spectrum shows three sig-
nals (1:1:1 ratio) at 31.7, 38.1, and 43.5 ppm. More-
over, its '"H NMR spectrum evidences the disappear-
ance of the C;—H methyne hydrogen and shows
three non-equivalent methyl groups (1.6, 1.7 and
2.0 ppm), as well as a doublet of triplets at —8.4 ppm
Ciapgrany =142.5 Hz,  *Jypein=15.9 Hz], which can
clearly be assigned to the hydride. The X-ray analysis
(Figure S1 in Supporting Information) of a single crys-
tal of 1 shows the distorted square pyramidal geome-
try of the complex, in which the three P atoms, the
deprotonated methylene carbon and a chloride ligand
are coordinated to thconditionse metal centre. The
hydride is not located in the structure refinement but
is visible in the '"H NMR spectrum.

Compound 1 was found to be unreactive towards
phenylacetylene under a variety of reaction.’! To

Adv. Synth. Catal. 2008, 350, 234-236



Iridium(III) Catalyst for Stereoselective Dimerisation of Terminal Alkynes

COMMUNICATIONS

N~
~ N N P2t
e ] | cf*’N‘ J
Py P N P_ \
L P~
P HTIMP, \/)()3
[IrCI(COE);]»
N\C/"Tl N ~—N
Np_| P AgBFs Np | P
Ly \//Ir\H [BF.]
Cl
zphwz PhC=CH Wldme
nyrldlne\
N~.—N N
VC ‘ [BF.] Pyrldlne /? ‘
'r\/ Ph - >|rf [BF.]
s 6, Y
PR —=Ph 4
i)
4 _
2 R—H R R

R = Ph, t-Bu, (CH,),Si

Scheme 1.1) Synthesis of Ir(IlI) complexes 1-4 containing
the tripodal HTIMP; phosphine ligand, and ii) the catalysed
dimerisation of model terminal alkynes.

obtain a more reactive complex, a methanol solution
of 1 was treated with AgBF, at room temperature for
12 h. Under these conditions the chloride group from
1 was efficiently abstracted and the resulting product
was assigned the structure [IrH(TIMP;)][BF,] (2) on
the basis of its '"H, "’F and *'P NMR data (see Sup-
porting Information). This compound is thermally

stable in air and in non-chlorinated solvents, but
again leads to complex 1 in the presence of trace
amounts of CHCIl; or CH,Cl,.

Cationic complex 2 does react with phenylacetylene
in methanol and quantitavely gives rise to a new com-
pound, identified as the butadienyl species 3
(Scheme 1, reaction i).!) The YF NMR spectrum of 3
shows a singlet at —154.6 ppm, indicating an uncoor-
dinated BF,™ anion. The presence of three non-equiv-
alent phosphorus atoms in a pseudo T-shaped ar-
rangement can be assumed from its *'P{'"H} NMR
spectrum (three signals at 30.3, 46.2, and 50.4 ppm).
Regarding the butadienyl moiety, its main 'H NMR
spectrum features are the three 1:1:1 signals at 5.3,
5.5, and 5.55 ppm. A quaternary carbon is observed at
133.7 ppm (from the 'H”C HMBC spectrum), corre-
sponding to the carbon atom directly bonded to the
metal. The X-ray analysis of a single crystal of 3
shows that the Ir centre is coordinated to three phos-
phorus atoms and to a carbon atom from the TIMP;
ligand (Figure 1), the coordination sphere being com-
pleted by the butadienyl moiety, with an Ir(1)—C(100)
bond distance of 2.052 A. Interestingly, C(101) and C-
(102) of the butadienyl residue are weakly bound to
the metal [Ir(1)—C(101)=2.427 A and Ir(1)—-C(102)
2.751 A] Thus, these distances are shorter than those
reported for the n*butadienyl Ir(III) complex of the
formula Ir(PPh;),(L)(PhCH=C—CH=CHPh)" [L=
PhC=CH-C(=O)CH;], where they are 2.509 and

3.092 A, respectively.”! Furthermore, the C—C bond
distances along the C, chain in 3 exhibit an irregular
short-long-short pattern [C(109)—C(100), 1.30; C-
(100)—C(101), 1.46; and C(101)—C(102), 1.36 A] when
compared with the more regular one observed in the
above-mentioned compound of reference (1.33, 1.47
and 1.32 A).

Figure 1. (Left) Molecular structure of 3 (only the ipso carbon atoms are reported for the PPh, moieties) and (right) its coor-
dination polyhedron. Selected bond distances [A] and angles [°] are: Ir(1)—C(100) 2.052(19), Ir(1)—C(101) 2.427, Ir(1)—C(01)
2.134(16), Ir(1)-P(1) 2.397(5), Ir(1)-P(2) 2.374(5), Ir(1)~P(3) 2.305(5), C(100)—Ir(1)—C(01) 106.9(7), C(100)-Ir(1)-P(3)
86.4(5), C(01)—Ir(1)—P(2) 81.8(5) C(01)—Ir(1)—P(1) 77.8(5), P(2)—Ir(1)—P(1) 99.76(17).
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Since the 3-hydrogen elimination from 3 could give
rise to highly unsaturated four-carbon derivatives,
which are nowadays compounds of great relevance,®
the capacity of 3 to undergo (-hydrogen elimination
was investigated: i) no decomposition occurs even
after 3 days in refluxing CHCl; or MeOH, but ii) 3
readily reacts with stoichiometric amounts of pyridine
in refluxing MeOH, releasing the butadienyl moiety
as (E)-1,4-diphenylbut-1-en-3-yne and yielding the
hexacoordinated complex 4 (Scheme 1, reaction i). In
addition, 4 converts to 3 when reacted with phenyla-
cetylene (PhC=CH/Ir =2/1 molar ratio).

In view of this, the capacity of 4 to catalyse the di-
merisation of model terminal alkynes [PhC=CH, t¢-
BuC=CH and (CHj;);SiC=CH] was tested. Interesting-
ly, complex 4 (2% mol Ir) cleanly and selectively led
to the corresponding (E)-but-1-en-3-yne after heating
the reaction mixture in sealed tube at 80°C. The evo-
lution of all these reactions was followed by 'H NMR
(see Figures S2 and S3 in the Supporting Informa-
tion), which showed shorter reaction times for both
(CH;);SiC=CH (24h, 98% yield) and BuC=CH
(8 h, 95% yield) than in the case of PnC=CH (35 h,
95% ). Moreover, *'P NMR spectra obtained at differ-
ent reaction times demonstrated that complex 4 is re-
covered unchanged after dimerisation of the alkyne.

In summary, the rigid tripodal phosphorus-based
ligand tris[1-(diphenylphosphino)-3-methyl-1H-indol-
2-yllmethane (HTIMP;) leads to the non-symmetrical
IrHCI(TIMP;) Ir(IIT) hydride complex. This complex
converts to the more reactive Ir(IIT) compound [IrH-
(TIMP;)(py)][BF,], which behaves as a catalyst for
the diastereoselective dimerisation of terminal al-
kynes by means of an unprecedented Ir(III)-based
mechanism. The participation of Ir(III) complexes
throughout the catalytic process and the involvement
of a n’-butadienyl intermediate species are clearly es-
tablished in the dimerisation of PhC=CH.

Experimental Section

Synthesis of 1

A toluene solution of [IrCI(COE),], (565 mg, 1.26 mmol of
Ir) and HTIMP; (1.20 g, 1.26 mmol) was refluxed for 5 d
under an argon atmosphere, and finally evaporated yielding
a colourless residue, which was recrystallised from CHCly/
Et,0 and identified as 1; yield: 969 mg, (65%, MW
1183.71). '"H and *'P {'"H} NMR spectra were recorded.

Representative Procedure for Catalytic Tests

To a solution of 4 (6 mg; 5 pmol) in CD;OD (0.7 mL), the
alkyne (500 pmol) was added. The reaction was conducted
in a sealed tube, and the mixture was heated at 80°C. The
reaction evolution was followed by 'H NMR, showing the
clean and progressive conversion of the alkyne into the (E)-
enyne.

Supporting Information

Data for 1-4, X-ray structure of 1, and time evolution of the
catalytic reactions.
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