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ABSTRACT: Asymmetric Ni-catalyzed cross-coupling 
reactions have become a very attractive tool for the stereoselective 
construction of valuable organic chiral materials. While various 
nucleophiles are used in such transformation, organotitanium (IV) 
has not been used before. Herein we demonstrate, for the first 
time, that organotitanium species can serve as efficient coupling 
partners in asymmetric cross-couplings, which have proven to be 
beneficial, compared to the commonly used organomagnesium 
and organozinc counterparts. This principle is exemplified by the 
first asymmetric catalytic synthesis of CF3-substituted thioethers 
via a Ni-catalyzed stereoconvergent cross-coupling reaction. 
Thioether moieties and their derivatives are common motifs in 
many biologically-active compounds, and their enantioenriched 
fluorinated analogs should be of great interest in the search for 
novel drugs and agrichemicals.

Cross-coupling reactions have become a major route for the 
construction of carbon-carbon bonds in organic molecules and 
materials. After a seminal work of Fu, the field of nickel-
catalyzed enantioselective cross-couplings has emerged as a 
useful approach for the creation of stereo-defined chiral centers.1 
In a quest for the perfect method, different nucleophiles were 
employed under various conditions to incorporate the desired 
moieties into the target molecule containing diverse sensitive 
functional groups. Asymmetric cross-couplings are reported for 
nucleophiles based on organo-zinc,2 boron,3 magnesium,4 silicon,5 
aluminum,6 zirconium7 and indium.8 Between these species, 
organo-magnesium and zinc nucleophiles are largely employed in 
enantioselective cross-coupling reactions due to their fast 
transmetalation rates and ease of preparation. Nevertheless, due to 
their high basicity and nucleophilicity, organomagnesium reagents 
suffer from low functional group compatibility.9 While 
organozinc reagents possess a relatively high functional group 
tolerance, in some cases the transmetalation from these 
nucleophiles could present a rate limiting step of the catalytic 
cycle.10 This could be detrimental for some reactions involving 
alkyl-based electrophiles, since side processes such as β-H 
elimination, dehydrohalogenation, or metal-F elimination (in the 
species bearing fluoroalkyl substituents and involving an M-C-C-
F oxidative addition intermediate) are possible. Therefore, 
attempts to utilize more selective, but less reactive, 
transmetalating agents may result in significant changes to the 
kinetics of the catalytic process,11 providing an opportunity for 
undesired side reactions to occur. As such, the search for a 
compromise between functional group compatibility and the rate 
of transmetalation is essential for the success of the studied 
transformation. 

We anticipated that the use of organotitanium reagents could be 
advantageous, since they possess a lower nucleophilicity and 
basicity compared to their magnesium counterparts, allowing a 
greater functional group tolerance; at the same time, these species 
have higher transmetalation rates than organozinc compounds. 
Knochel et al. demonstrated, that cross-couplings utilizing 
organotitanium reagents are significantly faster than those 
employing the corresponding organozinc counterparts.12 
Interestingly, while organotitanium (IV) compounds were 
extensively studied in nucleophilic addition to carbonyls,13, 14only 
very few examples of the employment of such reagents in non-
asymmetric cross-coupling transformations are documented.12, 15 
To the best of our knowledge, the utilization of organotitanium 
nucleophiles in asymmetric cross-coupling reactions to create a 
stereogenic center is unprecedented. 
Scheme 1. Nucleophiles in enantioconvergent cross-
coupling reactions
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The site-selective introduction of fluorinated groups into drug 
molecules or drug candidates frequently leads to a substantial 
improvement in their biological properties.16 Therefore, efficient 
methods for the regio- and stereoselective introduction of 
fluorinated moieties into organic functional compounds are in 
high demand in the search for new bioactive materials. Recently, 
we initiated an active program of the utilization of CF3- and 
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polyfluoroalkyl-substituted bisfunctionalized electrophiles in 
asymmetric cross-coupling transformations.5b Our approach 
allows for a rapid synthesis of chiral organic compounds bearing 
both a functional group and a fluoroalkyl substituent in the 
stereogenic center. To initially exemplify this principle, we have 
developed an approach towards enantioenriched α-trifluoromethyl 
alcohols and ethers via an enantioconvergent nickel-catalyzed 
Hiyama cross-coupling reaction, which provides the target 
compounds in excellent yields and enantioselectivities (Scheme 
2a). Inspired by these results, we sought to expand our approach 
towards the corresponding sulfur analogues since thioether 
moieties and their derivatives (such as sulfoxides and sulfones) 
are common motifs in many biologically-active compounds.17,18 
The preparation of enantioenriched thioethers usually relies on the 
stereospecific nucleophilic substitution of stereodefined 
electrophiles with sulfur-based nucleophiles.19 However, 
stereospecific nucleophilic substitution at the benzylic position 
bearing a trifluoromethyl group is challenging since the substrates 
are susceptible to racemization, depending on the reaction 
conditions and nature of the nucleophile (Scheme 2b).20 
Employing our approach, the desired products could be prepared 
via a stereoconvergent pathway starting from the racemic 
precursor 1, which eliminates the need for the preparation of a 
stereodefined precursor. Herein, we report on a novel preparation 
of chiral (α-trifluoromethyl)benzyl thioethers in high yields and 
enantioselectivities via an asymmetric cross-coupling reaction 
utilizing aryltitanium nucleophiles. The approach can be extended 
to the preparation of enantioenriched perfluoroalkyl substituted 
thioethers. To the best of our knowledge, this is the first example 
of the utilization of organotitanium nucleophiles in asymmetric 
cross-coupling reactions. 
Scheme 3. Hiyama cross-coupling reaction approach
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Initially we attempted to prepare the desired thioether 2 by the 
Hiyama reaction, under conditions that we developed for the 
synthesis of the corresponding ethers.5b The model reaction of 
substrate 1a’ with 4-methoxyphenyl(trimethoxy)silane furnished 
the product 2b in a promising yield of 83% and 80% ee (Scheme 
3). However, the reaction with phenyl(trimethoxy)silane resulted 
in product 2a in 25% yield, while the reaction with 3-
trifluoromethoxyphenyl (trimethoxy)silane gave only traces of the 
cross-coupling product 2l. Further analysis revealed that the target 
thioethers, especially those bearing electron-deficient aryls, are 
prone to the elimination of HF under basic Hiyama cross-coupling 
conditions followed, by further decomposition of the elimination 
product. This forced us to examine other nucleophiles for this 
reaction.
Scheme 4. Choice of organometallic nucleophiles 
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Promising preliminary results were obtained for organozinc 
compounds. Thus, after an initial examination of the reaction 
conditions, compound 2a was obtained in a moderate yield and a 
high ee when the cross-coupling with PhZnBr was performed 
employing a catalytic system of NiCl2 and ligand L2 (Scheme 4). 
However, the reaction was accompanied by a substantial 
production of homocoupled and other unidentified by-products. 
On the other hand, an aryl Grignard reagent, utilized under the 
same reaction conditions, led to a similar output, and the yield of 
the product 2a was equivalent to the conversion (Scheme 4). 
However, the reaction did not go to completion even after a 
prolonged reaction time, presumably due to the deactivation of the 
catalytic system with PhMgBr. The selectivity of the Grignard 
reagent was improved by its prior mixing with Ti(OiPr)4, which, 
in effect, was the formation of the organotitanium active species 
(Scheme 4).12 This led us to examine independently prepared aryl 
titanium (IV) compounds in this transformation.21 Notably, 
PhTi(OiPr)3 gave significantly poorer results (55% yield and 61% 
ee, Table 1, entry 2) than the titanate species presumably formed 
in the mixture of PhMgBr and Ti(OiPr)4. Gratifyingly, when 
PhTi(OiPr)3 was reacted in the presence of t-BuONa to form a 
titanate complex, the thioether 2a was obtained in a 95% yield 
and 97% ee (Table 1, entry 1). Notably, the high oxophilicity and 
formation of a stable -ate complex preclude the presence of the 
free alkoxide in the solution, which makes the reaction conditions 
compatible with base-sensitive thioethers of type 2.   
Table 1. Optimization of the reaction conditions

F3C

Br

S 9% NiCl2•glyme/10% L2
THF

-10°C 15 min + 15 min to RT

1.3 equiv. PhTi(OiPr)3
1.3 equiv. tBuONa

F3C S Ph
1a 2a

Ph

Entry Modification yielda ee
1 None 93% 97%
2 Only PhTi(OiPr)3 55% 61%
3 LiCl instead of tBuONa 81% 78%
4 EtONa instead of tBuONa 94% 94%
5 PhMgBr + Ti(OiPr)4 87% 95%
6 PhMgBr + Ti(OBu)4 92% 89%
7 rt instead of -10°C 66% 91%
8 No NiCl2·glyme - -
9 No ligand 19% -
10 Under air in closed vial 70% 95%
11 0.1 equiv. of H2O 47% 89%
12 Ligand L1 instead of L2 26% 27%
13 Ligand L3 instead of L2 40% 51%
14 Ligand L4 instead of L2 6% -
15 Ligand L5 instead of L2 17% 6%
a – determined by 19F NMR (with internal standard). 
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Any changes from the optimized conditions (entry 1) led to 
detrimental results. Thus, attempts to prepare the titanate complex 
by addition of LiCl to PhTi(OiPr)3 furnished product 2a in a 81% 
yield and 78% ee (entry 3). Sodium ethoxide provides similar 
results to those of tBuONa (94% yield and 94% ee; entry 4). The -
ate complex can be prepared in situ from the corresponding 
Grignard reagent and titanium tetraisopropoxide or tetrabutoxide, 
furnishing slightly poorer yields and enantioselectivities (entries 5 
and 6). The reaction performed at room temperature is 
significantly faster, providing substantially inferior results (entry 
7).  The presence of both the nickel salt and the ligand are 
necessary for the performance of the reaction (entries 8 and 9). 
While the reaction is moderately air sensitive, the addition of 0.1 
equivalents of water significantly decreases the yield (entries 10 
and 11). 
Table 2. Scope of the aryl titanium partners 
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THF

-10°C, 2h
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8
9

10
11
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13
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15

16
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23

Ar

2h
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2k
2l

2m
2n
2o

2p
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2r

2s

2t

2u

2v

2w

1a 2a-w

R

H
OMe
Ph
SiMe3
Br
CO2Me
CN

87%
86% b

90%
81%
82%
81% c

72% d

97%
93%
98%
96%
98%
96%
94%

1
2
3
4
5
6
7

2a
2b
2c
2d
2e
2f
2g

a – isolated yields (average of two runs); b – 1.5 equiv. of 
ArTi(OiPr)3 and 1.5 equiv. of tBuONa; c – the ate complex was 
prepared in situ by a halogen-magnesium exchange with methyl 
4-iodobenzoate followed by transmetalation to Ti(OiPr)4; d – the 
ate complex was prepared in situ by a halogen-magnesium 
exchange with 4-bromobenzonitrile followed by transmetalation 
to Ti(OiPr)4; e – reaction  on 5 mmol scale(1.4 g) of starting 1a; f 
– EtONa was used instead of   tBuONa; g – without alkoxide.

Having established the optimal conditions, we subjected the 
substrate 1a to the reaction with different aryl titanium 
nucleophiles (Table 2). To our delight, the scope of this 
transformation is significantly broad. The reaction proceeds 
smoothly with electron-rich and electron-poor aryl titanates, 
bearing various functional groups such as alkoxy, thioalkoxy, 
trimethylsilyl, tertiary anilines, halogens, trifluoromethoxy, 
protected aldehydes, nitriles and esters. While aryl Ti(IV) bearing 
meta and para- substituents on the aromatic ring performs 
excellently in this transformation, their counterparts with the 
ortho- substitution provides very low yields. Aryltitanium 
nucleophiles, bearing the electron-donating group in the para-
position (see entries 2, 14, 20) show a diminished performance, 
giving rise to the formation of unidentified side products. The 
reaction can be improved by using slightly increased excess of the 
reagents (1.5 instead of 1.3 equivalents of both the aryl titanium 
and sodium tert-butoxide).  In the case of highly electron poor 
aryltitaniums (entries 13, 15, 17), ate complex exhibits poor 
stability and hence an altered reactivity, what could be overcome 
by utilizing a sodium ethoxide suspension instead of soluble 
sodium tert-butoxide.22 Aryl Ti(IV) bearing functional groups, 
such as ester23 and nitrile, proved to be compatible with this cross-
coupling reaction, however, under slightly midified conditions, 
since isolation of such ArTi(OR)3 is problematic.24 Heterocyclic 
aryl(triisopropoxy)titanium nucleophiles (entries 21-23) undergo a 
cross-coupling reaction, although the yields and 
enantioselectivities of the products are moderate. 

   Notably, the reaction can be performed on a gram-scale with 
no significant difference in its effectiveness. Thus, when 5 
mmol(1.43 g) of 1a was cross-coupled with 3-MeOPhTi(OiPr)3 
under our standard conditions, the thioether 2b was obtained in 
91% yield and 98% ee (entry 10). 

After exploring the scope of nucleophiles, we examined 
electrophiles bearing various thioether motifs (Scheme 5). To our 
delight, numerous functionalities are compatible with Ti (IV) 
nucleophiles in the cross-couplings under our reaction conditions. 
Esters, amides, silyl ethers, ketones and protected aldehydes 
having different distances from the reaction center, and even 
unfunctionalized substrates (see product 8a) react efficiently to 
furnish products with excellent enantioselectivities and good 
yields. Benzylic thioethers exhibit faster reaction rates compared 
to alkyl substituted ones. While the reaction is complete within 2 
hours for products 2a, 3a, 4b and 15a, approximately 5 hours are 
required to reach a full conversion for other products. 

The reaction is not significantly sensitive to the steric bulk of 
the thioether substituent. Thus, the yields are high when the 
tertiary carbon center is located in either the β- or γ- positions 
(products 5a and 6a, correspondingly). However, in the case of a 
tertiary -carbon, the desired product 7a is obtained in only a 
13% yield, although with an excellent ee. The main outcome of 
the reaction in the latter case is a homocoupled product. It should 
be noted that electrophiles derived from secondary thioethers 
perform efficiently in this cross-coupling reaction (15a). Aryl 
thioethers could also be prepared by this method, but in 
diminished yields and ee (product 13a). Interestingly, it is 
possible to extend our approach to substrates bearing 
perfluoroalkyl chains instead of trifluoromethyl group in the 
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stereogenic center. The resulting compounds were obtained with 
excellent enantioselectivities, although the yields were only 
moderate (2b` and 2b``). More complex compounds, for example 
derivatives of captopril (14a) and thiogluocose (15a) bearing 
multiple stereocenters in proximity to the thioether linkage could 
be efficiently utilized in this reaction, resulting in products with a 
high diastereomeric purity.
Scheme 5. Scope of thioethers
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In conclusion, we have developed a novel asymmetric catalytic 
synthesis of CF3-substituted thioethers by a Ni-catalyzed cross-
coupling reaction, employing aryl titanium (IV) as a nucleophilic 
reagent. The method is compatible with various functional groups 
and the resulting products are usually obtained in high yields and 
enantioselectivities. To the best of our knowledge, this is the first 
example of the utilization of organotitaniums as nucleophiles in 
asymmetric cross-coupling reactions. Aryl titanium proved to be 
superior as a coupling partner in this particular transformation, 
compared to its closely related organomagnesium and organozinc 
counterparts. The added value of the organotitanium species in 

substrate-unrelated cross-coupling reactions, as well as the 
mechanistic studied of the presented method are under 
investigation in our labs.   
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