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ABSTRACT: A nickel-catalyzed Kumada coupling of aniline
derivatives was developed by selective cleavage of aryl C—N
bonds under mild reaction conditions. Without preinstallation
of an ortho directing group on anilines, the cross-coupling
reactions of Boc-protected aromatic amines with aryl Grignard
reagents afforded unsymmetric biaryls. Mechanistic studies by
DFT calculations revealed that the nickel-mediated C—N

bond cleavage is the rate-limiting step.

Anilines are ubiquitous core structures of industrially
important and commercially valuable molecules such as
dyes, agricultural chemicals, active pharmaceutical ingredients
(APIs), and functional materials." Numerous efficient methods
have been developed for the synthesis of structurally diverse
anilines via aryl C—N bond formation.” Considering the
ubiquitous role of anilines, it is very useful to construct new
chemical bonds by selective aryl C—N bond cleavage. This
approach allows anilines as valuable synthetic building blocks
as well as late-stage functionalization of molecules containing
aniline subunits.® However, the C—N bonds of anilines are
usually chemically inert due to the p—7 conjugation, which is
the leading cause for their well-known stability in multistep
synthesis.” Therefore, there still remain key challenges
regarding the selective cleavage of aryl C—N bond of aromatic
amines.

Conventionally, activation of aryl C—N bonds into the
corresponding highly reactive cationic diazonium salts and
ammonium salts are widely utilized to facilitate the desired C—
N bond cleavage for various C—C bond-forming reactions.’
However, there have been only a handful of catalytic reactions
of breaking aryl C—N bonds in electronically neutral molecules
since the first report of stoichiometric metal-mediated C—N
bond cleavage of anilines two decades ago.6 As of now,
successful progress on aryl C—N bond cleavage of aniline
derivatives has been achieved for the Suzuki—Miyaura
coupling,7 deamination,® alkylation,9 borylation, and reduction
reactions'® by Kakiuchi, Snieckus, Tobisu, Chatani, and Shi.
All of these works required either an ortho-directing group on
the substrate or high temperature to achieve the desired aryl
C—N bond cleavage. In 2017, Zeng et al. reported a mild Cr-
catalyzed Kumada coupling of aromatic amines via aryl C—N
bond cleavage, which also limited to aromatic amine substrates
with an ortho-directing group (Scheme la)."!
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On the other hand, since the original report of Garg, Zou,
and Szostak,'” transition-metal-catalyzed cross-coupling reac-
tion by cleavage of C(O)—N bonds of amides has been
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intensively studied.'” All of these reports focused on activating
the C(O)—N bond to obtain various ketones by coupling of
amides with organometallic reagents (Scheme 1b, route ).
Inspired by the above reports, we envisioned that metal-
mediated oxidative addition of the aryl C—N bond could be
achieved selectively by tuning the substituents on the nitrogen
of aromatic amines, such as introducing an electron-with-
drawing group to weaken the aryl C—N bond. If the newly
formed aryl metal species undergoes transmetalation with
organometallic reagents and subsequent reductive elimination
smoothly, C—C bond-forming products would be obtained
successfully. Herein, we report the first nickel-catalyzed
Kumada coupling of aromatic amine derivatives by selective
cleavage of aryl C—N bonds under mild reaction conditions
without preinstallation of a directing group in electronically
neutral molecules (Scheme 1b, route II). The key to this
success was enhancement of the reactivity of aromatic amines
via Boc activation. This transformation is expected to lead to
further applications in the field of aryl C—N bond cleavage by
non-precious-metal catalysis.

We began our studies by investigating metal-catalyzed cross
coupling of commercially available 2-naphthylamine 1a or N-
phenyl-2-naphthylamine 1b with excess PhB(OH), or PhMgBr
under various conditions, but no desired biaryl product 2 was
observed (Table 1, entries 1 and 2). We were glad to find that
a trace amount of 2 was obtained when coupling N,N-
diphenyl-2-naphthylamine 1c¢ and PhMgBr catalyzed by
electron-rich NiCL(PCy;), at room temperature (entry 3).
In light of no improved yield by increasing the reaction
temperature (entry 4), we further investigated the substituent
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“All reactions were run with 0.2 mmol of 1 in 2 mL of toluene unless
otherwise noted. “The yield was determined by GC with n-dodecane
as an internal standard. “With 3.1 equiv of PhMgBr. “With 2.1 equiv
of PhMgBr. °At 120 °C./Tsolated yield in parentheses. SWith 10 mol
% of NiCl,(PCys),. "With 2.5 mol % of NiCL,(PCy;),. ‘With 1 mol %
of NiCl,(PCyj;),. At 60 °C, 37% yield of N-Boc deprotection product
1b was obtained. “Without catalyst.

effect of amine. No reaction occurred with N-methyl-N-
phenyl-2-naphthylamine 1d (entry S), potentially because the
aromatic C—N single bond possesses partial double bond
character due to conjugation. We reasoned that this p—=
conjugation could be weakened by adding an electron-
withdrawing group on the nitrogen of aromatic amines, such
as carbonyl groups, because there are strong resonance effects
between the vicinal nitrogen with a lone-pair electron and the
vacant 7* orbital of carbonyl."> We then replaced one phenyl
substituent of 1c with various carbonyl substituents. The yield
of 2 improved with some of them, such as acetyl (1e),
methoxycarbonyl (1f), and N,N-dimethylaminocarbonyl (1g)
(entries 6—8). To our delight, excellent results were achieved
when N-Boc-protected N-phenyl-2-naphthylamine (1i) was
used as the substrate (91% yield, entry 10). Good yield was
also obtained with N-Boc-protected N-methyl-2-naphthyl-
amine (1j), albeit with higher catalyst loading (entry 12).
However, no reaction occurred with cyclic carbamate and
amides derived from 2-naphthylamine (entries 15—17). We
want to emphasize that the cleavage of C(O)—N bonds of
carbamates, amides, and urea was not observed in the above
reactions (entries 6—17). Notably, lower catalyst loadings (2.5
or 1 mol %) still delivered good yields of product 2 (entries
18—19). In order to accelerate the reaction rate, we increased
the temperature to 60 °C. However, a large amount of N-Boc
deprotection product was obtained (entry 20). A control
experiment revealed the importance of the catalyst, and no
reaction occurred in the absence of the Ni catalyst (entry 21).

With the optimized reaction conditions in hand, we
evaluated the scope of the Ni-catalyzed Kumada coupling of
N-Boc-activated aromatic amines (Figure 1). First, gram-scale
reaction of 1i with PhMgBr delivered biaryl 2 in 86% yield,
with only a slight loss in the isolated yield compared to the
milligram-scale reaction. Next, aromatic Grignard reagents
containing alkyl, alkoxy, or fluoride substituents at the para-,
meta-, or ortho-position of benzene ring coupled with aryl C—
N bond smoothly, affording the biaryl products 3—10 in
moderate to good yields (55—91%). No product (11) was
observed when alkylmagnesium bromide was employed. In
addition, a variety of functional groups could be tolerated on
the 2-naphthylamine derivatives, such as alkyl, functionalized
alkyl, siloxy, amino, silyl, and phenyl groups at different
positions, leading to the corresponding biaryls 12—20 in good
yields. Remarkably, the Ni-catalyzed C—N cleavage is highly
selective, and the cleavage of C—N bonds of N,N-dialkyl aryl
amines was not observed (16 and 19). Selective C—N cleavage
was achieved with these two substrates containing five or six
different C—N bonds. Moreover, ary]l C—N bonds of N-Boc
protected 1-naphthylamine, 2-anthracenamine, and 9-henan-
threneamine derivatives can be converted to the biaryls 2123
successfully.

It is a challenge to cleave the C—N bond of Boc-protected
simple aromatic amines under the standard conditions (see
Table S3). After extensive screening of the catalyst, we found
the Ni-NHC catalysts could promote C—N bond cleavage of p-
CF;-aniline much more efficiently (for details, see Table S4).
The moderate to good yields of cross-coupling product 25 was
obtained in the C—N bond cleavage of 24a and 24b when
using (IMes),Nil (Cat. I) as catalyst (Scheme 2, eq 1).
Promising yield of 26 was also obtained by using (IMes)Ni-
(cinnamyl)Cl (Cat. II) as catalyst when pivaloyl-activated
diphenylamine 27 was used (Scheme 2, eq 2). The improved
efficiency may be contributed to the better -donor property of
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Figure 1. Scope of Ni-catalyzed nondirected Kumada coupling of N-
boc-protected aromatic amines. (a) All reactions were conducted with
0.2 mmol of 1 and isolated yield was provided unless otherwise
noted. (b) Gram-scale reaction with 1i (4 mmol, 1.28 g). (c) With
NiCL (PCy;), (10 mol %). (d) With 2.1 equiv of PhMgBr. (e) At 60
°C.

Scheme 2. Ni-Catalyzed Nondirected Kumada Coupling of
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“Reactions were run with 0.1 mmol of 24 or 27 in 1.0 mL of toluene,
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NHC ligand comparing to phosphine ligand, whlch facilitated
the desired aryl C—N bond oxidative addition.'®

Control experiments were then conducted to understand the
current reactions. Coupling of 1i with p-tolylmagnesium

bromide afforded biaryl 3 as the dominant product, indicating
that the cleavage of naphthyl C—N bond is much faster than
phenyl C—N bond (Scheme 3, eq 1). The competitive

Scheme 3. Control Experiments and Mechanistic Studies
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“The yield was determined by GC with n-dodecane as an internal
standard.

reactions were conducted by cleavage of naphthyl C—Br, C—
N, and C—O bonds,'®"” and the coupling of the C—Br bond
with Grignard reagents is the dominant reaction (see the
Supporting Information). Furthermore, biaryl 2 was obtained
in 96% yield when using the arylnickel complex 28 as the
catalyst (Scheme 3, eq 2). However, direct coupling of 28 with
PhMgBr afforded 2 in only 35% yield (see the SI). These
results indicated that 28 could be reduced to the active catalyst
but not an on-cycle intermediate in the Ni-catalyzed Kumada
coupling of the aryl C—N bond.

We next explored the reaction mechanism through DFT
calculations'® (Figure 2). The computed free energy profile of
the Ni/PCy;-catalyzed Kumada coupling of 1i is shown in
Figure 2a. The reaction proceeds via the classic cross-coupling
mechanism. Amine 1i first undergoes the Ni-mediated C—N
bond cleavage through the oxidative addition transition state
TS30, leading to the arylnickel intermediate 31. Subsequent
transmetalation with the Grignard reagent 32 is facile,
generating intermediate 35. From 3§, the dissociation of
complex 36 leads to the LNi(naphthyl)(phenyl) intermediate
37, and the C—C reductive elimination via TS38 produces the
observed biaryl product. The computations suggested that the
resting state of the catalytic cycle is the separate Ni(PCys;),
complex and amine substrate, and the C—N bond cleavage is
the rate-determining step with an overall barrier of 25.6 kcal/
mol. The computed overall barrier agrees well with the mild
experimental conditions (Table 1)."

To understand the effective naphthyl C—N bond cleavage of
substrate 1i, we also studied the phenyl C—N bond cleavage of
1i and the naphthyl C—N bond cleavage of 1d (Figure 2b).
The naphthyl C—N bond cleavage of 1i is significantly more
favorable than the other C—N bond cleavages, which is
consistent with the observed reactivities and chemoselectivities
(Table 1).*° Scheme 4 includes the analysis of the controlling
factors for the Ni-mediated C—N bond cleavage. For the
competing C—N bond cleavages of 1i, both of the controlling
factors for the Ni-mediated C—N bond oxidative addition
transition states (TS30 vs TS39) favor the naphthyl C—N
bond cleavage (Scheme 4a). This is because the d(nickel)—7*-
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Comparing the naphthyl C—N bond cleavages of 1i and 1d, we
found that the Boc protecting group promotes the C—N bond
cleavage by weakening the intrinsic bond strength. The
substituents of nitrogen can affect the C—N bond cleavage
barrier by changing either the nickel—nitrogen interaction or
the intrinsic strength of C—N bond. With the Boc substituent,
the coordination ability of amino group to Ni(Il) is actually

lower based on the heterolytic bond dissociation energy
(HBDE) of Ni—N bond (43 vs. 44, Scheme 4b), which is
contradictory to the trend of C—N bond cleavage barrier.
Therefore, the Boc group facilitates the C—N bond cleavage by
weakening the intrinsic bond strength. This is indeed reflected
by the HBDE of the corresponding C—N bonds. The HBDE of
the C(naphthyl)—N bond of 1i is 208.7 kcal/mol, while that of
1d is 228.9 kcal/mol (Scheme 4c).”*

In summary, we have developed the first nickel-catalyzed
Kumada coupling of N-Boc-protected aromatic amines by
cleavage of aryl C—N bonds. Selective conversion of aryl C—N
bonds into C—C bonds was realized under mild reaction
conditions in the absence of an ortho directing group on the
aniline substrates. The mechanistic studies by DFT calcu-
lations have revealed that the insertion of nickel complex into
aryl C—N bonds is the rate-limiting step, and the Boc
activation is important for the C—N bond cleavage via
weakening of the intrinsic bond strength. The investigations
of other cross-coupling reactions for the construction of C—C
bonds with more challenging aryl C—N bonds are ongoing in
our laboratory.
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