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Biocatalytic Michael-Type Additions of Acetaldehyde to Nitroolefins with
the Proline-Based Enzyme 4-Oxalocrotonate Tautomerase Yielding

Enantioenriched g-Nitroaldehydes
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g-Nitroaldehydes are versatile and practical precursors for
chiral g-aminobutyric acids (GABAs). In particular, promi-
nent GABA analogues, such as marketed pharmaceuticals
phenibut[1] (GABAB receptor agonist, anxiolytic), pregaba-
lin[2] (anticonvulsant), baclofen[3] (GABAB receptor agonist,
anti-alcoholism), and rolipram[4] (type IV phosphodiesterase
inhibitor, antidepressant) can be readily obtained from di-
verse chiral g-nitroaldehydes by two, well-precedented,
chemical synthesis steps.[5] One of the most important strat-
egies to construct g-nitroaldehydes is the Michael-type addi-
tion of unmodified aldehydes to nitroolefins.[6] Following
this approach, construction of the appropriate g-nitroalde-
hyde precursors for above-mentioned, pharmaceutically
active GABA analogues would require the Michael-type ad-
dition of acetaldehyde to various nitroolefin acceptors
(Scheme 1). The Michael-type addition of unmodified alde-
hydes to nitroolefins has recently become viable by the de-
velopment of proline- and peptide-based organocatalysts.[7,8]

However, examples including acetaldehyde as the donor are
scarce since acetaldehyde is a relatively reactive and difficult

to tame chemical and 10–20 mol% of organocatalyst is typi-
cally applied.[9] Alternative procedures for the asymmetric
synthesis of g-nitroaldehydes from acetaldehyde and nitroo-
lefins are therefore of great interest. Although a few exam-
ples of enzyme-catalyzed carbon–carbon bond-forming Mi-
chael-type additions are known, these do not involve acetal-
dehyde as the donor and mainly exhibit low stereoselectivi-
ties.[10]

We herein report that the enzyme 4-oxalocrotonate tauto-
merase (4-OT),[11] which carries a nucleophilic amino-termi-
nal proline residue (Pro1), promiscuously catalyzes the
asymmetric Michael-type addition of acetaldehyde to vari-
ous aromatic and aliphatic nitroolefins yielding chiral g-ni-
troaldehydes (Scheme 1) with high stereoselectivities. In
combination with our previously described 4-OT-catalyzed
addition of linear aldehydes (acetaldehyde up to octanal) to
trans-nitrostyrene,[12,13] this is the first example of enzyme-
catalyzed carbon–carbon bond-forming Michael-type addi-
tions that includes a range of linear aldehyde donors and
a series of aromatic and aliphatic nitroolefin acceptors.[14]

Furthermore, we found that catalytic activity of 4-OT is pre-
served in aqueous solvent systems containing up to 50 % (v/
v) of DMSO as co-solvent. The �Michaelase� activity of 4-
OT and preservation of this activity in the presence of 50 %
(v/v) of an organic co-solvent are two important steps
toward our aim of developing versatile and robust proline-
based biocatalysts for carbon–carbon bond-forming Mi-
chael-type addition reactions.

The 4-OT-catalyzed Michael-type addition with donor
acetaldehyde 1 was explored with a series of nitroolefin ac-
ceptors (2 a–f) in separate analytical scale experiments
(Scheme 1). Nitroolefins 2 a–f (0.7–3.0 mm)[15] were incubat-
ed with acetaldehyde 1 (25–150 mm)[16] and 4-OT (32–
150 mm)[16] in NaH2PO4 buffer (20 mm, pH 5.5) and a co-sol-
vent. A co-solvent was required to achieve sufficient solubil-
ity of nitroolefins 2 a–f in an aqueous solvent system. Apart
from enhancing solubility of 2 a–f, the co-solvent should be
water-miscible, should not impede catalytic activity of 4-OT,
and should not chemically react with any of the substrates
(1 and 2 a–f). Screening the activity of 4-OT in 20 mm

NaH2PO4 buffer mixed with various amounts (5.0 to 72.5 %
v/v) of EtOH, DMSO, dioxane, THF, MeCN, and DMF re-
vealed that EtOH (up to 10 % v/v) and DMSO (up to 50 %
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Scheme 1. Michael-type addition of acetaldehyde 1 to nitroolefins 2a–g.
*= chiral center.

Chem. Eur. J. 2013, 19, 14407 – 14410 � 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim 14407

COMMUNICATION



v/v) are suitable co-solvents that meet all above-mentioned
criteria.[17]

The analytical scale reactions were followed by monitor-
ing the change of absorbance at lmax of 2 a–f by UV-spec-
troscopy.[18] During all reactions, decrease of the absorbance
at lmax,2a–f was observed in course of time (20–120 min),[17]

which indicated almost complete depletion of nitroolefins
2 a–f (see Figures S1–S6 in the Supporting Information).
Identical experiments with 4-OT and 2 a–f, respectively, but
in the absence of acetaldehyde 1, showed negligible decreas-
es of absorbances at lmax,2a–f (except for compound 2 c, vide
infra), which demonstrated that acetaldehyde 1 is involved
in the 4-OT-catalyzed conversions of 2 a–f (see Figures S1–
S6 in the Supporting Information). These experiments also
confirmed that EtOH and DMSO solely act as co-solvents
and not as reagents. Three types of additional control ex-
periments were executed to confirm that the enzyme 4-OT
and its catalytic Pro1 residue are responsible for conversions
of 2 a–f and 1 (see Figure S1–S6 in the Supporting Informa-
tion). First, incubation of 1 with nitroolefins 2 a–f, respec-
tively, but in the absence of 4-OT did not result in any sig-
nificant decreases of absorban-
ces at lmax,2a–f, which indicated
that 4-OT is responsible for the
catalytic activities. Second, ex-
periments with 1 and 2 a–f, re-
spectively, in the presence of
the P1A mutant of 4-OT
showed no decreases of absor-
bances at lmax,2a–f, which implied
that the Pro1 residue is crucial
for the catalytic activities of 4-
OT. Third, 1 and 2 a were incu-
bated with synthetic 4-OT[19]

and the rate of decrease of ab-
sorbance at lmax,2a was identical
to that observed with recombi-
nant 4-OT. Although highly pu-
rified recombinant 4-OT was
used in the analytical assays,
this finding eliminated the pos-
sibility that any contaminating
proteins from the expression
strain may be responsible for
catalysis.

Preparative-scale experiments
were performed to allow unam-
biguous product identification
by 1H NMR spectroscopy and
thus to ascertain that 4-OT-cat-
alyzed conversions of 1 with
2 a–f give Michael-type addition
adducts 3 a–f (Table 1). Nitroo-
lefin (2 a–f : 2–5 mm),[17] acetal-
dehyde (1, 50–150 mm),[16] and
4-OT (1.5–5.3 mol%)[16] were
incubated in the appropriate

solvent system (Table 1) and reactions were followed by UV
spectroscopy. After disappearance of the absorbance at lmax

of 2 a–f, standard workup and purification procedures were
carried out which afforded g-nitroaldehydes 3 a–f as con-
firmed by 1H NMR spectroscopy. Yields between 49 and
74 % were achieved for 3 a–e, whereas 3 f was obtained in
26 % yield. Products 3 a–c,e are useful precursors for impor-
tant GABA analogues since 3 a–b can be converted into ro-
lipram,[5c,20] 3 c into pregabalin,[5b] and 3 e into baclofen[5a,b,d–f]

in two or three chemical synthesis steps, respectively. Fur-
thermore, obtaining products 3 a–f shows that 4-OT accepts
aromatic as well as aliphatic nitroolefins as substrates for
Michael-type addition reactions. The enantiomeric excesses
(ee) of 3 a–f were determined by GC or HPLC analysis with
chiral stationary phases. Excellent ee values between 95 and
98 % were established for 3 a, 3 c, and 3 d meaning that the
enzyme 4-OT is highly stereoselective during the catalytic
process. Obtained ee values of 3 b,e,f range from 69 to 81 %.
The absolute configurations of the major enantiomers of
3 a–f, respectively, were determined by HPLC and/or optical
rotation.[17] Comparison with literature data revealed that

Table 1. Preparative scale 4-OT-catalyzed Michael-type addition reactions of acetaldehyde 1 (50–150 mm) to
nitroolefins 2a–g (2–5 mm) in NaH2PO4 buffer (pH 5.5) yielding chiral g-nitroaldehydes 3a–g.

Entry Nitro-
olefin

Product (g-nitroaldehyde) t
[h]

Yield[a]

[%]
ee[b]

[%]
Abs.

conf.[c]
4-OT

[mol %][d]
Co-solvent
(v/v)

1 2 a 3a 2.5 64 96 S 3.7
DMSO
40 %

2 2 b 3b 2.0 49 74 S 1.8 EtOH 10 %

3 2 c 3c 0.4 74 98 R 5.3 DMSO 5 %

4 2 d 3d 2.0 64 95 S 3.0
DMSO
40 %

5 2 e 3e 2.5 51 69 S 2.8
DMSO
45 %

6 2 f 3 f 2.5 26 81 S 1.5
DMSO
40 %

7[e] 2 g 3g 2.0 70 81 S 1.4 EtOH 10 %

[a] Isolated yields. [b] Determined by GC or HPLC analysis with chiral stationary phase.[17] [c] Determined by
HPLC analysis with chiral stationary phase and/or optical rotation.[17] [d] Compared to nitroolefin. [e] Previous
result.[13]
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the chiral centers of the major enantiomers of 3 a–g, respec-
tively, all have identical geometry as depicted in Table 1.
This means that the stereocontrol of 4-OT in the catalytic
process of acetaldehyde addition to nitroolefins 3 a–g is con-
sistent regardless of the R-substituent (Scheme 1) at the ni-
troolefin. The major enantiomers of 3 a,b,d–g have an S con-
figuration, whereas 3 c has an R configuration. The deviant
configuration of 3 c is due to different prioritization of the
substituents at the chiral center relative to 3 a,b,d–g. The
amounts of applied 4-OT (1.5–3.7 mol %) were adjusted
such that conversions of 2 a,b,d–f were all completed within
2.5 h. Conversion of aliphatic substrate 2 c was effected
within 25 min due to the presence of 5.3 mol % of 4-OT.
This amount of 4-OT was required to outcompete nonenzy-
matic water addition to 2 c (giving racemic product 4-
methyl-1-nitropentan-2-ol). Indeed, the amount of water ad-
dition product, 4-methyl-1-nitropentan-2-ol, went down
from 4 to <2 mol % (compared to 3 c) when 5.3 mol % of 4-
OT was used instead of 2.6 mol% as determined by GC
analysis and 1H NMR spectroscopy. In contrast to 2 c, non-
enzymatic water addition to substrates 2 a,b,d–f was not ob-
served under the conditions used.

All preparative-scale experiments of the 4-OT-catalyzed
acetaldehyde addition to nitroolefins 2 a–f were repeated
under identical conditions but in the absence of 4-OT. In all
cases no g-nitroaldehyde product was observed (as con-
firmed by 1H NMR spectroscopy), which demonstrated that
formation of 3 a–f is solely the result of 4-OT-catalyzed Mi-
chael-type additions and not of nonenzymatic addition of
1 to 2 a–f. In the case of 2 c, nonenzymatic water addition re-
sulted in the formation of 4-methyl-1-nitropentan-2-ol as
confirmed by 1H NMR spectroscopy and GC analysis.

Summarizing, this work presents a biocatalytic methodol-
ogy for asymmetric Michael-type additions of acetaldehyde
to a collection of aliphatic and aromatic nitroolefin accept-
ors. The Michael-type additions are promiscuously catalyzed
by the enzyme 4-OT and yield chiral g-nitroaldehydes that
are valuable precursors for GABA analogues. Yields up to
74 % and ee values up to 98 % were established, which dem-
onstrated that 4-OT exerts high stereoselectivity during the
catalytic process. Control experiments revealed that the �Mi-
chaelase� activity takes place in the active site of 4-OT. The
catalytic activity of 4-OT is preserved in aqueous solvent
systems containing up to 50 % DMSO (v/v). This finding im-
plies that the substrate scope of our biocatalytic methodolo-
gy is not limited to water-soluble chemicals and allows uti-
lization of poorly water-soluble nitroolefins as substrates.
The employed amounts of catalyst of 1.4–5.3 mol % in our
methodology for Michael-type addition of acetaldehyde to
nitroolefins are lower, and reactions times of �2.5 h are
generally shorter, than in the scarce conventional organoca-
talytic methodologies for identical type of reactions.[9,17] De-
spite a relatively low molecular weight considering enzymes,
the molecular weight of 4-OT is still considerably higher
than those of organocatalysts[9] that are able to catalyze
acetaldehyde addition to nitroolefins. Bearing this in mind,
an alternative for defining efficiency on the basis of the ap-

plied mol % of catalyst and reaction time is to assess effi-
ciency by the weight amount of product (in terms of milli-
grams) that is produced per weight amount of used catalyst
per unit of reaction time (mgproduct mgcatalyst

�1 h�1). Applying
the latter definition, the 4-OT-based biocatalytic methodolo-
gy and the most potent organocatalytic[9e] methodology, to
the best of our knowledge, are equally efficient for the Mi-
chael-type addition of acetaldehyde (1) to nitrostyrene
(2 g).[9,17, 21] This observation in combination with the broad
substrate scope of this new enzyme-based methodology to
prepare precursors of GABA analogues with high stereose-
lectivities inspired us to currently run protein engineering
studies with the aim to enhance the unnatural �Michaelase�
activities of 4-OT. If successful, newly designed enzyme var-
iants can also be tested in a whole cell system based on re-
combinantly expressed 4-OT, which appears to be an effec-
tive biocatalyst for the asymmetric Michael-type addition of
acetaldehyde to a few selected aromatic b-nitrostyrenes.[22]
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emax values and solubility properties. See the Supporting Information
for details.

[16] Concentration of acetaldehyde and 4-OT was adjusted on basis of
concentration of nitroolefin (2a–f).

[17] See the Supporting Information for details.
[18] 2a–f have different lmax values. See the Supporting Information for

details.
[19] Synthetic 4-OT was purchased from GenScript USA Inc. (Piscat-

away, NJ). For folding of chemically synthesized 4-OT into an active
homohexamer, see: M. C. Fitzgerald, I. Chernushevich, K. G. Stand-
ing, S. B. H. Kent, C. P. Whitman, J. Am. Chem. Soc. 1995, 117,
11075 – 11080.

[20] A Williamson ether synthesis of 3 b with monohalogenated cyclopen-
tane (i.e., chloro-, bromo- or iodocyclopentane) gives 3a.

[21] See reference [9e] for the most efficient organocatalytic methodolo-
gy, to the best of our knowledge, for the Michael-type addition of
acetaldehyde (1) to nitrostyrene (2g) in terms of the weight amount
of product (3 g in milligrams) that is produced per weight amount of
applied catalyst per hour of reaction time (mg3 g mgcatalyst

�1 h�1):
23.2 mg of organocatalyst catalyzes the Michael-type addition of
acetaldehyde (1) to nitrostyrene (2 g) to give 54.2 mg of product 3g
in 3 h of reaction time. This comes down to the production of
0.78 mg of 3 g per mg of catalyst per hour of reaction time (0.78 mg

3 g mgcatalyst
�1 h�1). In our methodology (Table 1 and reference [13])

we use 11.3 mg of 4-OT for the Michael-type addition of acetalde-
hyde (1) to nitrostyrene (2 g) to give 16.3 mg of product 3 g in 2 h of
reaction time. This comes down to the production of 0.72 mg of 3g
per mg of catalyst per hour of reaction time (0.72 mg3g mg4�OT

�1 h�1).

[22] T. Narancic, J. Radivojevic, P. Jovanovic, D. Francuski, M. Bigovic,
V. Maslak, V. Savic, B. Vasiljevic, K. E. O�Connor, J. Nikodinovic-
Runic, Bioresour. Technol. 2013, 142, 462 –468.
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