
Enones from Acid Fluorides and Vinyl Triflates by Reductive Nickel
Catalysis
Feng-Feng Pan, Peng Guo, Chun-Ling Li, Peifeng Su, and Xing-Zhong Shu*

State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou
University, 222 South Tianshui Road, Lanzhou, 730000, China

*S Supporting Information

ABSTRACT: A nickel-catalyzed reductive coupling between
acid fluorides and vinyl triflates has been described. This
method provides an efficient access to various enones and
avoids the requirement for acyl or vinyl metallic reagents in
the conventional approaches. The reaction proceeds with a
broad range of acid fluorides and cyclic vinyl triflates,
tolerating several functional groups. The utility of this
synthetic method has been demonstrated by the late-stage
modification of pharmaceuticals and biologically active natural compounds.

Enones represent key structural motif in various pharma-
ceuticals and biologically active natural products, and they

also constitute the foundation for various important reactions.1

The synthesis of these valuable targets have traditionally been
achieved through multistep synthesis, the aldol condensation,
the Wittig olefination reactions, α,β-dehydrogenation of
carbonyl compounds, and the Meyer−Schuster rearrangement,
etc.2 A potentially useful alternative strategy is the transition-
metal-catalyzed cross-coupling reaction between vinyl and acyl
fragments.3,4 Over the past decades, this method has been
significantly progressed by extensive studies on the reactions of
acyl electrophiles with vinyl metallic reagents3 (Scheme 1, path

a). There are also isolated examples that demonstrate the
synthesis of enones via coupling of acyl metallic reagents with
vinyl electrophiles4 (Scheme 1, path b). Construction of
enones from vinyl and acyl electrophiles could be advanta-
geous, with respect to the ready availability of reagents and
cost effectivity, but remains unexplored (Scheme 1, path c).
The cross-electrophile reaction has recently emerged as a

powerful alternative to conventional cross-couplings for C−C
bond formation.5 The recently established reductive acylation

reactions enable facile access to ketones from readily available
electrophiles.6−10 Progress in this field has led to various
important methods for the acylation of aryl and alkyl
electrophiles, with a broad spectrum of acyl electrophiles
(e.g., activated amides,6 thioesters,7 pyridyloxyl esters,8 acid
anhydrides,9 and acid chlorides7,10) proven to be effective
(Scheme 2a). However, to our knowledge, there has been no
report describing the reductive acylation reaction of vinyl
electrophiles to afford enones.

Acid fluorides are bench-stable and easily handled electro-
philes, and they are readily available from carboxylic acids via
many simple procedures.11 These reagents have shown great
stability toward nucleophiles, thus allowing for their isolation
by organic extraction and flash chromatography on silica gel.
Therefore, the use of acid fluorides as versatile acyl
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Scheme 1. Synthesis of Enones via Cross-Coupling of Vinyl
and Acyl Fragments

Scheme 2. Reductive Acylation of Electrophiles
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electrophiles in the cross-coupling reactions would provide an
attractive synthetic route to ketone framework. In 2004, the
Rovis group has reported the first cross-coupling reactions of
acid fluorides with organometallic reagents using organozinc
reagents.12 Several recent studies have further demonstrated
the potential of these reagents for the acylation of nucleophiles
through Hiyama and Suzuki−Miyaura couplings.13 Encour-
aged by these findings and as part of our ongoing interest in
cross-electrophile reaction,14 we wondered if acid fluoride
could be employed in the coupling reactions with electrophiles.
Herein, we report the first cross-electrophile reaction of acid
fluorides, which enables the acylation of vinyl electrophiles
(Scheme 2b). This method provides a convenient approach to
enones, because the substrates are readily available from
carboxylic acids and ketones.
We started our investigation by studying the reaction of

benzoyl fluoride 1a with vinyl triflate 2a under the reductive
conditions (see Tables S1−S7 in the Supporting Information
for details). Finally, we found that the reaction with
Ni(dppe)Cl2 (10 mol %), L5 (12 mol %), and Mn (3.5
equiv) in DMA/toluene (3:2) at 70 °C gave the best result,
affording 3a with 88% isolated yield (Table 1, entry 1). The

use of other nickel precatalysts resulted in decreased yields
(Table 1, entries 2−6). Tridentate nitrogen ligands proved to
be more effective than bidentate nitrogen ligands, such as
bipyridine L1 and phenanthroline L2 (Table 1, entries 1, 7−
10). No reaction was observed when Zn was used as a
reductant instead of Mn (Table 1, entry 11).15 The reaction

did not occur in the absence of Ni or Mn (Table 1, entry 12).
Only a trace of product 3a was obtained when the reaction
performed without ligand L5 (Table 1, entry 13). While the
reaction in toluene gave a trace of 3a, an improved yield was
obtained when the mixed solvent of DMA/toluene (3:2) was
used (Table 1, entries 1, 14, and 15). The reaction of amide 4
and acyl chloride 5 with vinyl triflate gave no or low yield of
the desired product. Inferior results were also obtained when
other acyl electrophiles were employed (6−8).
With the optimized reaction conditions in hand, we then

studied the scope of this reaction, with respect to vinyl triflates
(Scheme 3). Cyclic vinyl triflates with five- to eight-membered

rings coupled with 1a to afford the acylated products with
moderate to good yields (3a−3d). The reaction proved to be
insensitive to steric hindrance, and the reactions of 3- and 6-
substituted vinyl triflates with 1a gave desired products with
high yields (3e−3f). The presence of tertiary butyl (3g),
phenyl (3h), gem dimethyl (3i), ester (3j), and ketal (3k)
groups at the 4-position of vinyl triflates were tolerated. A
moderate yield of 3l was obtained when 3,4-dihydronaph-
thalenyl triflate was used. The reactions of N-, O-, and S-
heterocyclic vinyl triflates proceed smoothly to afford enones

Table 1. Ni-Catalyzed Reductive Coupling of 1a with 2aa

a1a (0.15 mmol), 2a (0.1 mmol) was used; the yields were
determined by GC analysis with dodecane as internal standard. b1a
( 0 . 3 mm o l ) , 2 a ( 0 . 2 mm o l ) , i s o l a t e d y i e l d .

Scheme 3. Scope of Vinyl Triflatesa

a1a (0.3 mmol), vinyl triflates (0.2 mmol) were used. Isolated yields.
b1a (0.2 mmol), vinyl triflates (0.3 mmol) were used. cReaction at 100
°C. d1a (1.5 mmol), 2g (1.0 mmol) were used. eReaction at 50 °C.
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with synthetically useful yields (3m−3o). The reaction of 1a
with fully substituted acyclic vinyl triflate afforded the product
in 38% yield (3p). However, only a trace of products was
obtained when 1,2-disubstituted (3q), 1-substituted (3r), or 2-
substituted vinyl triflate (3s) was used. In these cases, the
reactions typically gave vinyl−vinyl dimer,16 leaving acid
fluoride 1a intact.
A broad range of acid fluorides coupled efficiently with vinyl

triflate 2a under the standard conditions (Scheme 4). Aromatic

acid fluorides with ortho-, meta-, and para-substituents reacted
with 2a to afford products with high yields (3t−3v). Both
electron-rich and electron-poor substituents at the aromatic
rings were tolerated (3t−3x). The reactions were highly
selective for the acylation of vinyl triflate, leaving Ar−Cl (3w),
ester (3x), styrene (3y), amine (3z) intact. Acid fluorides
derived from 2-naphthoic acid (3aa), ferrocenecarboxylic acid
(3ab), and thianaphthene-2-carboxylic acid (3ac) were
tolerated. Besides aromatic substrates, aliphatic acid fluorides
also coupled with 2a efficiently, and afforded enones with good
yields (3ad, 3ae). The coupling of vinyl acid fluoride with vinyl
triflate gave dienone product with a moderate yield (3af).
The broad existence of ketone and carboxylic acid in

pharmaceuticals and biologically active natural compounds
makes the late-stage modification of such functional groups
particularly attractive. Under our conditions, vinyl triflates
derived from biologically active molecules such as (+)-nootka-
tone and testosterone were efficiently acylated (3ag, 3ah). We
then investigated the vinylation reactions of several biologically
active carboxylic acid compounds. Acid fluorides derived from
roflumilast intermediate (3ai), probenecid (3aj), adapalene
(3ak), and lithocholic acid (3al) could be vinylated smoothly,

and afforded the modified products with yields of 56−83%
(see Scheme 5).

Both acid fluorides and vinyl triflates will undergo oxidative
addition to Ni(0) to form PhCO−Ni(II)−F and vinyl−
Ni(II)−X intermediates.12,17 In order to determine which
intermediate is formed first, we studied the relative reactivity of
1a and 2a toward nickel catalyst under the modified standard
conditions (Scheme 6).18 While most of substrate 1a was

recovered after 15 h, all of 2a was consumed to afford 11 and
12 with yields of 10% and 78%, respectively. Moreover, only
decarbonylative products such as Ph−H (5% yield) and Ph−
Ph (trace) were observed from the reaction of 1a.17 These
results suggest that the reaction might start with the formation
of vinyl−Ni(II)−X rather than PhCO−Ni(II)−F intermediate.
Although a detailed mechanism for this reaction is yet to be

established, based on the results described above and previous
reports,5,14a we tentatively proposed a catalytic cycle as shown
in Scheme 7. The oxidative addition of vinyl triflate to Ni(0)
would give vinylnickel(II) intermediate A, which could be
reduced to vinylnickel(I) B by reductant.19 The oxidative
addition of substrate 1 to intermediate B, followed by
reductive elimination process would afford the desired product
3 and recycle the catalyst with Mn.20 Presently, we cannot rule
out a radical mechanism as shown in many reductive Csp3−
Csp2 couplings.21

In summary, we have developed a Ni-catalyzed reductive
coupling between acid fluorides and vinyl triflates. This
reaction represents the first cross-electrophile reaction of acid
fluorides, and the first reductive acylation of vinyl electrophiles.
The method has provided an efficient approach to enones,

Scheme 4. Scope of Acid Fluoridesa

a2a (0.2 mmol), acid fluorides (0.3 mmol) were used. Isolated yields.
b2a (0.3 mmol), acid fluorides (0.2 mmol) were used. cNiI2 (10 mol
%) was used. d1i (1.5 mmol), 2a (1.0 mmol) was used. eL3 (15 mol
%) was used. f1-(4-tBu-cyclohexenyl) triflate 2g was used.

Scheme 5. Late-Stage Modification of Complex Moleculesa

aSee conditions in Table 1, entry 1. Acid fluorides (0.3 mmol) and
vinyl triflates (0.2 mmol) were used. Isolated yields. bL3 (15 mol %)
was used. cAcid fluoride (0.2 mmol), 2a (0.3 mmol) were used.

Scheme 6. Experiments To Reveal the Relative Reactivity of
1a and 2a toward Nickel Catalyst
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which are key structural motifs in a variety of biologically active
compounds and the foundation for various important
reactions. The reaction proceeds with a broad range of acid
fluorides (e.g., aryl, vinyl, and alkyl acid fluorides) and cyclic
vinyl triflates. The broad existence of ketone and carboxylic
acid in pharmaceuticals and biologically active natural
compounds makes the method particularly attractive for late-
stage modification of these molecules.
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