Synthesis and Antibacterial Activities of 2-(1-Aryl-5-methyl-1,2,3-triazol-4-yl)-1,3,4-oxadiazole Derivatives

Yan Zhang^a (張 艷), Ren-Zhong Qiao^a (喬仁忠), Peng-Fei Xu^a* (許鵬飛), Zi-Yi Zhang^a* (張自義), Qin Wang^b (王 勲),

Li-Min Mao^b (毛麗敏) and Kai-Bei Yu^c (鬱開北)

^aCollege of Chemistry and Chemical Engineering, National Laboratory of Applied Organic Chemistry,

Lanzhou University, Lanzhou, 730000, P. R. China

^bCollege of Life Science, Lanzhou University, Lanzhou, 730000, P. R. China

^cAnalysis & Research Center, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences,

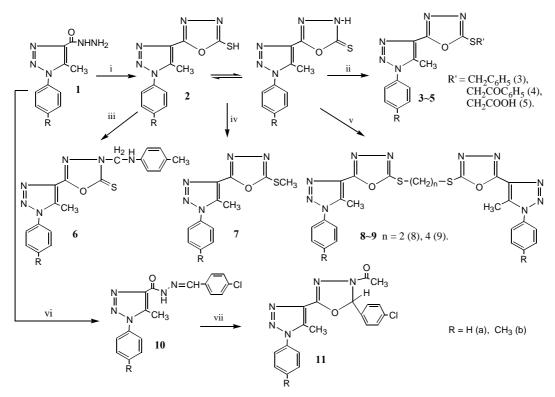
Chengdu, 610041, P. R. China

Eighteen novel 2-(1-aryl-5-methyl-1,2,3-triazol-4-yl)-1,3,4-oxadiazole derivatives and two acylhydrazone intermediate compounds were synthesized by various pathways starting from 1-aryl-5-methyl-1,2,3-triazol-4-formhydrazide (1). All products were identified by spectroscopic analysis, and 2-(1-aryl-5methyl-1,2,3-triazol-4-yl)-5-benzalthio-1,3,4-oxadiazole was further validated by X-ray crystallography. Results from primary antibacterial activity tests indicated that most of the compounds were effective against *E. coli*, *P. aeruginosa*, *B. subtilis* and *S. aureus*.

INTRODUCTION

1,3,4-Oxadiazole derivatives are becoming an important member in the heterocyclic family not only because of their wide usage as dyes, photosensitive and electrical material,¹ but also because of their broad spectrum in biological activities such as HIV-activity, antibacterial and antifungal activities.² 1,2,3-Triazole and related compounds have attracted much attention in more and more reports due to their indispensable roles in both agriculture and industry. In recent years, incorporation of 1-substituted benzyl-1,2,3-triazole moiety with 1,3,4-oxadiazoles in the same molecule yielded promising results.³⁻⁴ Combining 1-aryl-5-methyl-1,2,3-triazole with substituted 1,3,4-oxadiazole is expected to give new compounds with better biological activities. In this report, synthesis of 2-(1-aryl-5-methyl-1,2,3-triazol-4-yl)-5mercapto-1,3,4-oxadiazole (2) was accomplished starting from 1-aryl-5-methyl-1,2,3-triazol-4-formhydrazide (1). Some reactions of 2 were studied, such as Mannich reaction, methylated reaction, as well as the reactions with halide and aldehyde for the production of new compounds 3-11.

RESULTS AND DISCUSSION


2,5-Substituted-1,3,4-oxadiazole derivatives can be prepared from intermediate RCONHNHCOR₂ or RCONHN= CHR₂ via dehydration or oxidantion.³⁻⁷ Alternatively, they can also be obtained by reactions of RCONHNH₂ with either R_2COOH or CS_2 directly.⁸⁻⁹ We synthesized 2-(1-aryl-5-methyl-1,2,3-triazole-4-yl)-5-mercapto-1,3,4-oxadiazole (2) by the latter pathway in order to avoid corrosive reagents such as POCl₃, PbO₂ and Pb(OAC)₄. Our synthetic procedure of compounds 3~5 and 7~9 were completed mostly in water without PTC, which differs from previous literature reports.¹⁰

Products 2~11 formed distinct crystals, and their structures were confirmed by elemental analysis and spectral data (Table 1 and 2). In IR spectra, the two absorption bands at 1617~1640 cm⁻¹ and 1255~1299 cm⁻¹ are assigned to C=N and N-N=C functional groups, whereas the absorption bands at 1066~1083 cm⁻¹ and 965~987 cm⁻¹ are characteristic of C-O-C and N-N=N according to the literature.¹¹⁻¹² The molecular ions of 6 can be detected by FAB-MS, but not by EI-MS due to the weak N-CH₂-N bond. The ¹H NMR spectra of 2 in DMSO-d₆ displayed singlets at δ 14.51~14.80 ppm for NH, indicating that the compounds existed mainly in thioneform. According to previous results, protons of S-CH₂- in **3~5** to **8~9** appeared at δ 4.23~4.51 ppm and δ 3.21~3.82 ppm, respectively. The difference in chemical shift is caused by functional groups attached to the S-CH₂-, which are either strong electron withdrawing substituents (phenyl and carbonyl) or weak electron withdrawing (methylene).^{10,13}

Compound **3a** was dissolved in hot ethyl acetatepetroleum and filtrated. Evaporation of the solvent after 18 h gave colorless crystals suitable for X-ray crystallography.

Zhang et al.

Scheme I

i: $CS_2/KOH/C_2H_5OH/reflux$; HCl; ii: $H_2O/NaOH$ ClCH₂C6H₅/r.t.(3) or BrCH₂COC₆H₅/EtOH/reflux (4) or ClCH₂COOH(5)/reflux; iii: C₂H₅OH/HCHO/*p*-CH₃C₆H₄NH₂, r.t.; iv: H₂O/NaOH/(CH₃O)₂SO₂, r.t.; v: H₂O/NaOH, ClCH₂CH₂Cl(8) or Br(CH₂)₄Br(9), reflux; vi: EtOH/*p*-ClC₆H₄CHO/TsOH, reflux; vii: Ac₂O, reflux.

Table 1.	Physical	Properties and	nd Elemental	Analysis of	of Com	pounds 2-11

N-	Crystals	m.p. (°C)	yield	Formula –	Elemental anal. Found (Calcd.)/%		
No.					N %	C %	Н%
2a	White plates	205-207	78	C ₁₁ H ₉ N ₅ OS	26.73 (27.01)	50.63 (50.96)	3.74 (3.40)
2b	White plates	224-226	83	C ₁₂ H ₁₁ N ₅ OS	25.48 (25.62)	52.55 (52.74)	4.31 (4.06)
3a	Colorless crystals	62-64	82	C ₁₈ H ₁₅ N ₅ OS	19.96 (20.04)	61.72 (61.88)	4.56 (4.33)
3b	White needles	112-114	86	C ₁₉ H ₁₇ N ₅ OS	18.97 (19.27)	62.61 (62.79)	4.31 (4.71)
4a	White plates	136-138	85	$C_{19}H_{15}N_5O_2S$	18.57 (18.56)	60.05 (60.47)	4.22 (4.06)
4b	White plates	177-179	90	$C_{20}H_{17}N_5O_2S$	17.47 (17.89)	61.32 (61.36)	4.69 (4.38)
5a	Pale brown plates	175-177	80	$C_{13}H_{11}N_5O_3S$	21.80 (22.07)	49.29 (49.21)	3.52 (3.49)
5b	White plates	162-164	82	$C_{14}H_{13}N_5O_3S$	21.24 (21.14)	50.71 (50.75)	3.96 (3.95)
6a	Pale yellow needles	145-147	85	$C_{19}H_{18}N_5O_2S$	22.25 (22.21)	60.17 (60.30)	4.98 (4.77)
6b	White plates	156-158	88	$C_{20}H_{20}N_5O_2S$	21.11 (21.41)	61.17 (61.21)	5.28 (5.14)
7a	White powder	94-96	72	$C_{12}H_{11}N_5OS$	25.37 (25.62)	52.46 (52.74)	4.19 (4.06)
7b	Pale yellow needles	143-145	76	$C_{13}H_{13}N_5OS$	24.48 (24.37)	54.42 (54.34)	4.66 (4.56)
8a	White granules	197-199	83	$C_{24}H_{20}N_{10}O_2S_2$	25.53 (25.72)	52.68 (52.93)	3.91 (3.70)
8b	White needles	202-204	84	$C_{26}H_{24}N_{10}O_2S_2$	23.99 (24.46)	54.32 (54.53)	4.35 (4.22)
9a	White plates	152-154	85	$C_{26}H_{24}N_{10}O_2S_2$	23.86 (24.46)	54.11 (54.53)	4.55 (4.22)
9b	White powder	194-196	90	$C_{28}H_{28}N_{10}O_2S_2$	23.17 (23.32)	55.76 (55.98)	5.04 (4.70)
10a	White plates	228-230	94	C ₁₇ H ₁₄ N ₅ ClO	20.82 (20.61)	60.40 (60.09)	4.36 (4.15)
10b	Long white needles	238-240	95	C ₁₈ H ₁₆ N ₅ ClO	19.62 (19.79)	61.29 (61.11)	4.63 (4.56)
11a	White plate	225-227	76	$C_{19}H_{16}N_5ClO_2$	18.60 (18.34)	59.44 (59.77)	4.29 (4.22)
11b	White needles	236-237	79	$C_{20}H_{18}N_5ClO_2$	18.02 (17.69)	60.33 (60.69)	4.82 (4.58)

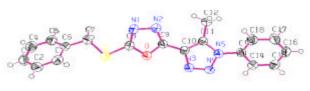

No.	IR v_{max}/cm^{-1}	EI-MS (%)	¹ H NMR
2a	3101, 1631, 1279,	259 (M ⁺ , 28), 230 (25), 170 (100),	14.80 (s, 1H, NH), 7.67 (s, 5H, ArH),
	1067, 983	130 (32), 103 (10), 77 (69)	2.53 (s, 3H, CH ₃)
2b	3101, 1633, 1278,	273 (M ⁺ , 15), 245 (19), 184 (44),	14.51 (s, 1H, NH), 7.63 (broad, 4H, ArH),
	1067, 987	170 (78), 91 (100)	2.51, 2.43 (2s, 6H, 2CH ₃)
3a	3028, 1617, 1278,		7.50~7.58 (m, 10H, ArH), 4.58 (s, 2H, CH ₂),
	1071, 973		2.72 (s, 3H, CH ₃)
3b	3062, 1617, 1270,	363 (M ⁺ , 4), 262 (7), 172 (7), 132 (8),	7.52~7.29 (m, 9H, ArH), 4.57 (s, 2H, CH ₂),
	1068, 976	115 (10), 91 (100), 65 (23)	2.68, 2.49 (2s, 6H, 2CH ₃)
4a	3048, 1676, 1624,	377 (M ⁺ , 11), 349 (4), 179 (10), 156 (23),	8.12~7.57 (m, 10H, ArH), 5.21 (s, 2H, CH ₂),
	1290, 1071, 971	118 (27), 105 (100), 77 (57)	2.57 (s, 3H, CH ₃)
4b	3063, 1686, 1626,	391 (M ⁺ , 26), 363 (29), 273 (2), 170 (46),	8.13~7.50 (m, 9H, ArH), 5.20 (s, 2H, CH ₂),
	1296, 1070, 977	105 (100), 91 (44), 65 (14)	2.54, 2.43 (2s, 6H, 2CH ₃)
5a	2936, 1718, 1624,	317 (M ⁺ , 82), 289 (7), 158 (100),	13.19 (s, 1H, OH), 7.67 (s, 5H, ArH),
	1267, 1073, 978	156 (33), 130 (56), 118 (84), 77 (65)	4.23 (s, 2H, CH ₂), 2.58 (s, 3H, CH ₃)
5b	2937, 1720, 1624,		13.31 (s, 1H, OH), 7.53~7.50 (m, 4H, ArH),
	1261, 1075, 980		4.23 (s, 2H, CH ₂), 2.56, 2.43 (2s, 6H, 2CH ₃)
6a	3328, 1635, 1272,	273 (2), 260 (15), 259 (100), 170 (13), 155	7.65~7.68 (m, 9H, ArH), 6.10 (s, 2H, CH ₂),
	1082, 975	(21), 91 (17), 77 (16), 379 (M+1, FAB)	5.54 (s, 1H, NH), 2.54, 2.31 (2s, 6H, 2CH ₃)
6b	3324, 1640, 1271,	317 (3), 273 (100), 198 (10), 184 (19), 169	7.47~6.89 (m, 9H, ArH), 6.08 (s, 2H, CH ₂),
	1082, 976	(44), 91 (21), 65 (13), 393 (M+1, FAB)	5.53 (s, 1H, NH), 2.51, 2.42, 2.22 (3s, 9H,
			3CH ₃)
7a	3029, 1622, 1257,		7.58 (s, 5H, ArH), 2.81 (s, 3H, SCH ₃), 2.70
	1072, 977		(s, 3H, CH ₃)
7b	3043, 1620, 1255,	287 (M ⁺ , 27), 212 (22), 172 (48),	7.60 (broad, 4H, ArH), 2.82 (s, 3H, SCH ₃),
	1072, 980	132 (48), 115 (52), 91 (100), 65 (80)	2.72, 2.65 (2s, 6H, 2CH ₃)
8a	3044, 1620, 1265,		7.65 (s, 10H, ArH), 3.82 (s, 4H, S-CH ₂ -
	1066, 974		CH ₂ -S), 2.58 (s, 6H, 2CH ₃)
8b	3044, 1623, 1271,	572 (M ⁺ , 17), 484 (3), 332 (11), 300 (36),	7.48 (br, 8H, ArH), 3.81 (s, 4H, S-CH ₂ -
	1070, 973	188 (22), 170 (100), 91 (30)	CH ₂ -S), 2.56, 2.43 (2s, 12H, 2*2CH ₃)
9a	3041, 1623, 1278,	572 (M ⁺ , 26), 445 (37), 314 (100),	7.67 (s, 10H, ArH), 3.40~3.31 (m, 4H,
	1070, 970	226 (30), 158 (45), 156 (76), 77 (42)	2SCH ₂), 2.58 (s, 6H, 2CH ₃), 1.97
			(m, 4H, 2SCH ₂ <u>CH</u> ₂)
9b	3038, 1623, 1270,		7.51~7.49 (s, 8H, ArH), 3.39~3.31
	1070, 973		(m, 4H, 2S CH ₂), 2.56, 2.43, 1.97 (m, 4H,
			2SCH ₂ <u>CH</u> ₂)
10a	3297, 1674, 1574,	339 (M ⁺ , 82), 337 (93), 309 (100),	12.22 (s, 1H, NH), 8.58 (s, 1H, CH),
	1287, 966	280 (52), 138 (77), 111 (34), 77 (55)	7.80~7.46 (m, 9H, ArH), 2.57 (s, 3H, CH ₃)
10b	3317, 1680, 1595,	353 (M ⁺ , 19), 323 (100), 294 (29),	12.20 (s, 1H, NH), 8.57 (s, 1H, CH),
	1277, 979	172 (29), 141 (13), 139 (29), 91 (5)	7.79~7.50 (m, 8H, ArH), 2.55, 2.43 (2s, 6H,
			2CH ₃)
11a	3297, 1674, 1575,		8.24 (s, 1H, CH), 7.84~7.36 (m, 9H, ArH),
	1282, 1069, 965		2.67, 2.50 (2s, 6H, 2CH ₃)
11b	3332, 1687, 1578,	395 (M ⁺ , 21), 353 (100), 268 (32),	8.24 (s, 1H, CH), 7.83~7.39 (m, 8H, ArH),
	1273, 1067, 981	216 (52), 172 (83), 144 (62), 91 (42)	2.65, 2.55, 2.43 (3s, 9H, 3CH ₃)

Table 2. IR, MS and ¹H NMR Data of Compounds 2-11

The crystal 0.42*0.38*0.38 mm was mounted with graphic monochromated MoK α ($\lambda = 0.71073$ Å), and data was collected in the range 1.97° - 25.00°. Details of the intensity collection are given in Table 3.

Compounds **2-11** were screened for their antibacterial activities against *E. coli*, *P. Aeruginosa*, *B. Subtilis* and *S. aureus* employing the cup-plate method at the concentration

Scheme II

Ortep 3 scheme of compound 3a

Table 3. X-ray Crystallography Data of 3a

Chemical formula	$C_{18}H_{15}N_5OS$
М	349.41
Crystal system	Triclinic
Space group	Pī
a (Å)	8.3530 (10)
b (Å)	10.331 (2)
c (Å)	10.843 (2)
α (°)	97.99 (2)
β (°)	101.610 (10)
γ(°)	111.170 (10)
$V(Å^3)$	831.4 (2)
F (000)	364
Z	2
Dc (g. cm^{-3})	1.396
Reflections collected	3221
Independent reflections	$2896 (R_{int} = 0.0103)$
T (K)	293 (2)
Final R indics $[I > 26 (I)]$	R ₁ : 0.0343, wR ₂ : 0.0842
R indics	R ₁ : 0.0467, wR ₂ : 0.0882
Extinction cofficient	0.029 (3)
Largest diff. Peak and hole (eÅ ⁻³)	0.191 and -0.204

of 100 μ g/mL in the nutrient agar media (41 g nutrient agar/ 1000 mL water).¹⁴ The investigation results are listed in Table 4. The results showed that all compounds were active except for **4b**, **5a** and **8-9a**. It is worthwhile to note that com-

Table 4. Inhibition Effect of Compounds 2-11

No.	E. coli	P. aeruginosa	B. subtilis	S. aureus
2a	++	+++	++	+
2b	+	+	+	++
3a	++	++	+	+
3b	++	+++	-	+
4a	+	-	+	+
4b	++	-	-	-
5a	+++	-	-	-
5b	+++	++	+	++
6a	++	++	+	+
6b	++	+++	-	+
7a	++	+	++	++
7b	+	+++	++	+
8a	-	-	+	++
8b	++	++	++	+++
9a	-	-	++	+
9b	++	++	++	++
10a	-	++	+	++
10b	++	+++	++	-
11a	++	++	++	+
11b	+	++	++	+

Zone diameter of growth inhibition: < 10 mm(-), 10-13 mm (+) and 14-17 mm (++). Diameter of the cup = 8 mm.

pounds **2-3a**, **7a-b**, **8-9b** and **11a-b** express significant antibacterial activity. The investigation on the structure-activity relationship shows that a thiadiazole ring enhances the antibacterial action of most of the title compounds.

EXPERIMENTAL

All reagents of laboratory grade were used without purification. The melting points are uncorrected and were taken on an X-4 microscopic melting point apparatus. IR spectra were recorded on a Nicolet AVATAR 360 FT-IR spectrometer in KBr disc. ¹H NMR was recorded on a Bruker AC-80 instrument in DMSO-d₆ with TMS as internal standard. Mass spectra were performed on a ZAB-HS (EI) and VG ZAB-HS (FAB) instruments. And the elemental analysis was performed on an Elementar Vario EL apparatus.

Compound 1-aryl-5-methyl-1,2,3-triazol-4-form hydrazide (1) was prepared from aryl amine by five steps according to the literature¹⁵

Preparation of 2-(1-aryl-5-methyl-1,2,3-triazol-4-yl)-5mercapto-1,3,4-oxadiazoles (2)

To an ethanol (100 mL) solution of KOH (75 mmol), hydrazide **1** (50 mmol) and carbon disulfide (100 mmol) were added and the mixture was refluxed for 36 h. It was concentrated to a small volume, poured into ice water and filtered. The filtrate on acidification gave a percipitate which was collected and recrystallized from ethanol.

General preparation of 2-(1-aryl-5-methyl-1,2,3-triazol-4-yl)-5-alkylthio-1,3,4-oxadiazoles (3)-(5)

A mixture of thione 2 (1 mmol), sodium hydroxide (1 mmol for 3-4, 2 mmol for 5) and the appropriate halide (1 mmol) was stirred in 25 mL of water (ω -bromo- ω -acetophenone was dissolved in 5 mL of ethanol and then added dropwise). Compound 3 was formed after stirring for 8 h at room temperature, but 4-5 were successfully synthesized by refluxing for only 4 h. The resulting thioether (5 appeared after being neutralized by 1N HCl) was collected by filtration, washed with water and recrystallized from a suitable solvent.

Preparation of 5-(1-aryl-5-methyl-1,2,3-triazol-4-yl)-3-N*p*-methylphenylaminomethyl-1,3,4-oxadiazolin-5-thiones (6)

A solution of 2 (1 mmol) in ethanol containing formaldehyde (0.15 mL) was stirred for 0.5 h under cooling by ice-water bath. *p*-Toluidine (1 mmol) was added and the reaction mixture was stirred for 8 h at room temperature. The excessive EtOH was removed and the resulting solid was washed with petroleum (5 mL) and recrystallized from ethanol to yield 6.

Synthesis of 2-(1-aryl-5-methyl-1,2,3-triazol-4-yl)-5methylthio-1,3,4-oxadiazoles (7)

Dimethylsulfate (0.06 mmol) was added dropwise to the mixture of 2 (1 mmol) and sodium hydraoxide (1 mmol) and stirred overnight at room temperature to pricipate a white solid. The crude product was collected by filtration, washed with water and recrystallized from ethyl acetate-petroleum to get 7.

General preparation of 1,2/1,4-bis[2-(1-aryl-5-methyl-1,2,3-triazol-4-yl)-1,3,4-oxadiazolin-5-thio]ethanane/ butanane (8)-(9)

Appropriate 1,2-dichloroethanane/1,4-dibromobutane (1/2 mmol) was added dropwise to the solution of **2** (1 mmol) and equivalent NaOH in 30 mL of water and stirred for 0.5 h. Then the mixture was refluxed for 2 h. The precipitation was purified as **3-4** and **7** to get **8-9**.

Synthesis of 3-N-acetyl-5-(1-aryl-5-methyl-1,2,3-triazol-4-yl)-2-*p*-chlorophenyl- Δ_2 -1,3,4-oxadiazoline (11)

A solution of **2** (2 mmol), equivalent *p*-chlorophenylaldehyde was refluxed in 20 mL of ethanol for 4 h catalyzed by *p*-toluene sulfonic acid. Intermediate *p*-chlorophenylaldehyde-(1-aryl-5-methyl-1,2,3-triazol-4-yl)-formhydrazo ne **10** was precipitated in high yield. It was collected, dried and refluxed in anhydrous acetic acid (5 mL) for 2 h. After removal of excessive solvent, the residue was poured into crushed ice to get a white powder. The crude product was recrystallized from ethanol-ethyl acetate to afford **11**.

ACKNOWLEDGEMENT

We wish to thank the National Natural Science Foundation (QT Program) of the PRC for its financial support. Received December 3, 2001.

Key Words

1,2,3-Triazole; 1,3,4-Oxadiazole; X-ray crystallography; Antibacterial test.

REFERENCES

- (a) Naito, K.; Watanabe, Y.; Egusa, S. Jpn. J. Appl. Phys. Part 1 1999, 38(5A), 2792. (b) Xu, Z. M.; Li, G. W.; Ma, Y. G.; Wu, F.; Tian, W. J.; Shen, J. C. J. Chin. Univ. Chem. 2000, 21(11), 1719.
- (a) Eissa, A. A. H. Bull. Fac. Pharm. 1998, 36(3), 99. (b) Holla, B. S.; Gonsalves, R.; Shenoy, S. Eur. J. Med. Chem. 2000, 35(2), 267. (c) Tinperciuc, B.; Parvu, A.; Palage, M.; Oniga, O.; Ghiran, D. Farmacia (Bucharest) 1999, 47(5), 77.
- Al-Talib, M.; Orabi, S. A.; Al-Majdalawi, S.; Tashtoush, H. India J. Heterocycl. Chem. 1999, 8(3), 183.
- Tashtoush, H.; Abu-orabi, S.; Ta'an, E.; Al-Talib, M. Asian J. Chem. 1999, 11(2), 444.
- 5. Milcent, M.; Barbier, G. J. Heterocycl. Chem. 1983, 20, 77.
- Nassr, A. M.; Mahmoud, D. Org. Prep. Proced. Int. 1983, 15(5), 329.
- Werber, G.; Buccheri, F.; et al. J. Heterocycl. Chem. 1978, 15(8), 1537.
- Liu, F. M.; Yu, J. X.; Wang, W.; Liu, G.; Liu, Y. T.; Chen, Y. Z. *Youji Huaxue* 1999, 19, 316.
- 9. Shama, R. S.; Bahel, S. C. Bakin Bobai 1982, 10(7), 293.
- 10. Chen, H. S.; Li, Z. M.; Wang, Z. W. *Hecheng Huaxue* **1999**, 7(2), 164.
- Dong, H. S.; Wei, K.; Wang, Q. L.; Quan, B. J. Chin. Chem. Soc. 2000, 47, 541.
- 12. Liu, F. M.; Yu, J. X.; Lu, W. J.; Liu, G.; et al. *Chin. J. Chem.* **1999**, *17(1)*, 62.
- Chu, C. H.; Sun, X. W.; Sun, L.; Zhang, Z. Y.; et al. J. Chin. Chem. Soc. 1999, 46, 229.
- Xu, S. Y.; Bian, R. L.; Chen, X. Methodology of Pharmacology Experiments; People's Sanitation Publishing Company: Beijing, 1994, 1356.
- 15. El-khadem, H.; Mansour, H. A. R.; Meshreki, M. H. J. Chem. Soc. (C) 1968, 1329.