Synthesis and Pharmacological Effects of Optically Active 2-[4-(4-Benzhydryl-1-piperazinyl)phenyl]-ethyl Methyl 1,4-Dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate Hydrochloride

Atsuyuki Ashimori, Takeshi Uchida, Yutaka Ohtaki, Mikio Tanaka, Kazuhito Ohe, Chikara Fukaya,* Masahiro Watanabe, Masao Kagitani, and Kazumasa Yokoyama

Research Division, The Green Cross Corporation, 1180-1, Shodaiotani 2-chome, Hirakata-shi, Osaka 573, Japan. Received June 21, 1990

Optically active 2-[4-(4-benzhydryl-1-piperazinyl)phenyl]ethyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate [(S)-(+)-1] and (R)-(-)-1] hydrochlorides were synthesized with high optical purities from (R)-(-)-1 and (S)-(+)-1,4-dihydro-5-methoxycarbonyl-2,6-dimethyl-4-(3-nitrophenyl)-3-pyridinecarboxylic acids [(R)-(-)-6] and (S)-(+)-6], which are available from $(\pm)-6$ by optical resolution using quinidine and cinchonidine, respectively. From pharmacological investigations of (S)-(+)-1 and (R)-(-)-1 such as the antihypertensive effect on spontaneously hypertensive rats and inhibition of [3+1]nimodipine binding to rat cardiac membrane homogenate, the active form of 1 was defined to be the (4S)-(+)-enantiomer of 1.

Keywords 1,4-dihydropyridine; calcium antagonist; antihypertensive effect; receptor binding assay; optically active compound; AE0047

Introduction

In a previous paper,¹⁾ we reported the synthesis and antihypertensive activity of 1,4-dihydropyridine derivatives with 3-[4-(substituted amino)phenylalkyl] ester, and that among them, 2-[4-(4-benzhydryl-1-piperazinyl)phenyl]ethyl methyl 1,4-dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate dihydrochloride (1·2HCl, AE0047) had long lasting antihypertensive activity and selective vasodilating activity on canine vertebral artery. AE0047 has been selected as a promising candidate from other pharmacological investigations also. Since 1 has an asymmetric center at C-4 of the dihydropyridine ring, it is a racemic mixture (Fig. 1). We have been interested in biological activities of each enantiomer of 1 because a

NO₂
NO₂
N
H
Fig. 1

number of reports described that one optical isomer of 1,4-dihydropyridine derivatives showed much more potent biological activities than the other.²⁻⁸⁾ Therefore, we synthesized each enantiomer of 1, and investigated the difference of *in vivo* and *in vitro* biological activities, namely antihypertensive activity on spontaneously hypertensive rats (SHR) and the effect on the binding of [³H]nimodipine to rat cardiac membranes.

In this paper, we report the synthesis of each enantiomer of 1 and their biological activities.

Synthesis Method for synthesis of each enantiomer of 1 is shown in Charts 1 and 2.

Optically active nicardipine³⁾ and other such 1,4-dihydropyridine derivatives⁶⁻⁸⁾ were synthesized from (+)-and (-)-6 which were obtained by an optical resolution of 1-ethoxymethylated (\pm)-6 and subsequent removal of the ethoxymethyl group. Tamazawa *et al.*⁶⁾ and Kajino *et al.*⁸⁾ independently determined the absolute configuration of 6 by X-ray crystallographic analysis of its derivatives to assign unambiguously that (+)-6 and (-)-6 have S and R configurations at C-4, respectively.

We tried to ascertain the utility of the direct optical resolution of (\pm) -6 reported by Genain. 9) Several hundreds of grams of (\pm) -6 was easily prepared from ethylene

OHC
$$NO_2$$
 H_2N O A Chart A

© 1991 Pharmaceutical Society of Japan

January 1991 109

cyanohydrin (2) via 1,4-dihydropyridine 5 in a ca. 60% overall yield without chromatographical purification (Chart 1). The compound (S)-(+)-6 was obtained in a 46% yield from a quinidine salt of 6 in pure form by recrystallizing it to a constant optical rotation. On the other hand, 6 recovered from the mother liquor gave (R)-(-)-6 by recrystallizing it as cinchonidine salt (yield 48%). Treatment of (R)-(-)-6 and (S)-(+)-6 with SOCl₂, and a subsequent reaction with 7 gave (S)-(+)-1 and (R)-(-)-1, respectively. They were treated with a solution of hydrogen chloride in 1,2-dimethoxyethane (DME) in Et₂O-CH₂Cl₂ (90:10, v/v) to afford monohydrochlorides, (S)-(+)-1·HCl, 62%, mp 143.5—147 °C, $[\alpha]_D^{20}$ +31.0° (c=0.50, acetone) and (R)-(-)-1·HCl, 59%, mp 145—149 °C, $[\alpha]_D^{20}$ -31.4° (c=0.50, acetone) (Chart 2).

Determination of Optical Purities of (S)-(+)-1 and (R)-(-)-1 The optical purities of (S)-(+)-1·HCl and (R)-(-)-1·HCl were determined by high performance liquid chromatography (HPLC) analyses using chiral stationary phase columns, Chiralcel OF® (4.6 mm i.d. × 250 mm) [column temperature, 50 °C; mobile phase, hexane-2-propanol-trifluoroacetic acid (50:50:0.05, v/v); flow rate, 1.0 ml/min; detection, ultraviolet (UV) at 254 nm] and Chiralpak AD® (4.6 mm i.d. × 250 mm) [column temperature, 40 °C; mobile phase, hexane-ethanol (9:1, v/v); flow rate, 1.0 ml/min; detection, UV at 254 nm] purchased from Daicel Chemical Industries, Tokyo, Japan. Retention times of the compounds are as follows: in Chiralcel OF®, (S)-(+)-1, 22.5 min; (R)-(-)-1, 50.3 min; in Chiralpak AD®, (S)-(+)-1, 23.1 min; (R)-(-)-1, 27.0 min. Since in both

Table I. Effects of (\pm) -1, (S)-(+)-1, and (R)-(-)-1 on SBP in SHR (p.o. Administration)

Drug and dose (mg/kg)		Reduction of SBP (%) (mean ± S.E.)				
	n	Before	1 h ^{b)}	2 h ^{b)}	4 h ^{b)}	7 h ^{b)}
Vehicle ^{a)}	6	0	0 ± 2	1 ± 2	0 ± 1	3±2
(\pm) -1						
1	6	0	10 ± 3	14 ± 2	16 ± 2	12 ± 2
3	6	0	31 ± 1	36 ± 3	35 ± 1	26 ± 1
10	6	0	41 ± 2	43 ± 2	41 ± 2	38 ± 1
(S)- $(+)$ -1						
0.3	6	0	1 ± 3	11 ± 2	5 + 3	8 + 3
1	6	0	19 ± 3	21 ± 2	17 ± 2	15 ± 2
3	3	0	43 ± 4	51 ± 2	41 + 1	33 + 4
(R)- $(-)$ -1					_	_
30	6	0	4 ± 2	11 ± 2	11 ± 3	11 ± 3

a) 0.3% Tween 80 solution. b) Time after administration.

cases the peaks of antipodal compounds were not detected at all, the optical purities of each compound were concluded to be almost 100% ee.

Pharmacological Results and Discussion The antihypertensive effects of (\pm) -AE0047 and each enantiomer of AE0047 on SHR are shown in Table I. The compound (S)-(+)-1 showed a dose dependent potent antihypertensive effect, particularly at doses of 1 and 3 mg/kg, and the duration was estimated to be over 7 h, whereas at a dose of 30 mg/kg the antihypertensive effect of (R)-(-)-1 was barely comparable to the effect of (S)-(+)-1 at a dose of 0.3 mg/kg. Although the antihypertensive effect of (\pm) -1

110 Vol. 39, No. 1

Table II. Inhibition of [³H]Nimodipine Binding to Rat Cardiac Membrane Homogenate

Drug	Concentrations required for 50% inhibition (nm)			
(±)-1	0.26			
(S)-(+)-1	0.13			
(R)- $(-)$ -1	18.2			
(\pm) -Nicardipine	0.48			

was less than (S)-(+)-1, it had enough potency at doses 3 and $10 \,\mathrm{mg/kg}$. The doses necessary for a 30% reduction of systolic blood pressure (SBP) (ED₃₀) obtained from the dose–response curves were $1.1 \,\mathrm{mg/kg}$ in (S)-(+)-1 and $2.6 \,\mathrm{mg/kg}$ in (\pm) -1, respectively. These results indicate that the antihypertensive effect of (\pm) -1 depends mostly on (S)-(+)-1, which is supported by the fact that the ED₃₀ value of (S)-(+)-1 is about a half of the value of (\pm) -1.

We performed a receptor binding assay to evaluate phamacological profiles of these compounds *in vitro*. Drug concentrations required for 50% inhibition of [3 H]nimodipine binding to rat cardiac membrane homogenate (IC $_{50}$) of these compounds and (\pm)-nicardipine are shown in Table II. The compound (S)-(+)-1 shows the highest affinity to the receptor, and the affinity was decreased in the following order; (\pm)-1 (0.26 nm)>(\pm)-nicardipine (0.48 nm)>(R)-(-)-1 (18.2 nm). The affinity of (S)-(+)-1 was found to be 140-fold higher than (R)-(-)-1 and to be 2-fold higher than (\pm)-1. This result is consistent with the potency of the antihypertensive effects obtained in the *in vivo* study.

Conclusion

We synthesized the compounds (S)-(+)-1 and (R)-(-)-1 with high optical purities from (R)-(-)-6 and (S)-(+)-6, respectively, which were obtained by the direct optical resolution of (\pm) -6 through its quinidine and cinchonidine salts. From pharmacological investigations in vivo and in vitro, the active form of 1 was defined to be the (4S)-(+)-enantiomer of 1. The 4S configuration of 1 was found to be important for interaction with the 1,4-dihydropyridine receptor, as is found in other 1,4-dihydropyridine enantiomers.

Experimental

Melting points were determined on a Yanagimoto micromelting point apparatus and were uncorrected. Infrared (IR) spectra were recorded on a Shimadzu IR-420 spectrophotometer. ¹H-Nuclear magnetic resonance (¹H-NMR) spectra were determined on a BRUKER AC-200 spectrometer with tetramethylsilane (TMS) as an internal standard. Optical rotations were measured on a JASCO DIP-181 digital polarimeter. Extraction solvents were dried over anhydrous MgSO₄. Silica gel 60, 230—400 mesh (Nacalai Tesque) was used for flash column chromatography, and Kieselgel 60, F₂₅₄ (Merck) plates were used for thin layer chromatography (TLC).

(\pm)-1,4-Dihydro-5-methoxycarbonyl-2,6-dimethyl-4-(3-nitrophenyl)-3-pyridinecarboxylic Acid [(\pm)-6] Diketene (106 ml, 1.36 mol) was added dropwise to ethylene cyanohydrin (2, 96.5 g, 1.36 mmol) preheated at about 80 °C at temperatures between 75 and 100 °C over 1.5 h. After the addition was completed, the mixture was stirred at 70—80 °C for 2.5 h. After dissolving the resulting mixture in 2-propanol (450 ml), *m*-nitrobenzaldehyde (3, 205.2 g, 1.36 mmol), methyl 3-aminocrotonate (4, 156.3 g, 1.36 mmol) and 2-propanol (510 ml) were added to the solution, and

then refluxed for 7 h, stirred at room temperature for 11 h, and with icewater cooling for 3h. A precipitated solid was collected by filtration, and rinsed with 2-propanol. After drying in vacuo at 50 °C overnight, the compound 5 was obtained as a yellow powder (332.4 g). To a solution of 5 obtained above in acetone (1300 ml) was added 1 N NaOH (2600 ml at a time) with water cooling. After the mixture was stirred at 28 °C for 1 h, the resulting solution was diluted with water (2600 ml) and then washed with CH2Cl2 (three times). With ice-water cooling, the aqueous layer was acidified with 35% HCl to pH 1-2, and stirred for 3h to afford a precipitated solid. The solid collected by filtration was rinsed with water and then dried in vacuo at 50 °C for 4d to give the product $[(\pm)-6]$ as a slightly yellow powder (268.9 g, 60%), mp 199—200 °C. IR (KBr): 3325, 2925, 2700, 2600, 1670, 1655, 1605, 1525, 1480, 1435, 1350 cm⁻¹. ¹H-NMR [DMSO- d_6 + CDCl₃ (10:1, v/v)] δ : 2.29, 2.30 (each 3H, s), 3.56 (3H, s), 5.00 (1H, s), 7.45-7.65 (2H, m), 7.9-8.05 (2H, m), 8.94 (1H, s), 11.82 (1H, br s). Anal. Calcd for C₁₆H₁₆N₂O₆: C, 57.83; H, 4.85; N, 8.43. Found: C, 57.74; H, 4.67; N, 8.33

Optical Resolution of (±)-1,4-Dihydro-5-methoxycarbonyl-2,6-dimethyl-4-(3-nitrophenyl)-3-pyridinecarboxylic Acid [(±)-6] Quinidine (293.66 g, 0.91 mol) was added portionwise to a suspension of (\pm) -6 (300.81 g, 0.91 mol) in N,N-dimethylformamide (DMF) (500 ml) with warming. After the addition was completed, further DMF (370 ml) was added to the mixture, and the remaining solid was completely dissolved at about 85 °C. Hot water (ca. 60-70 °C, 580 ml) was added portionwise to the solution, and then kept at room temperature for 53 h. The crystals formed were collected by filtration and recrystallized from DMF-water (3:2, v/v) to give the (R)-(-)-6-quinidine salt (151.4 g) as yellow needles, mp 199—200 °C, $[\alpha]_D^{20}$ +96.4° (\hat{c} = 0.50, acetone). IR (KBr): 3350, 3225, 2950, 1645, 1620, 1590, 1570, 1530, 1510, 1485, 1440, 1330 cm⁻¹. Anal. Calcd for C₃₆H₄₀N₄O₈: C, 65.84; H, 6.14; N, 8.53. Found: C, 65.85; H, 6.17; N, 8.46. The obtained (R)-(-)- $\mathbf{6}$ -quinidine salt was suspended in 0.47 N NaOH (507 ml, containing 1.03 eq of NaOH), and then washed with CH2Cl2 (three times). With ice-water cooling, the aqueous layer was acidified with 35% HCl to pH 1-2, and then stirred for 1.5 h. A precipitated solid was collected by filtration, and dried in vacuo at about 60 °C to afford (*R*)-(-)-6 (72.11 g, 48%) as a slightly yellow powder, mp 169—170 °C, $[\alpha]_D^{20}$ -24.6° (c=0.50, acetone) [lit.³⁾ $[\alpha]_D^{20}$ -19.6° (c= 0.542, acetone)]. Anal. Calcd for $C_{16}H_{16}N_2O_6$: C, 57.83; H, 4.85; N, 8.43. Found: C, 57.98; H, 4.79; N, 8.34. The mother liquor obtained after the first recrystallization was concentrated and the residue was worked up in the same way used in the case of (R)-(-)-6-quinidine salt. The obtained (S)-(+)- $\mathbf{6}$ (141.3 g, 0.43 mol) was treated with cinchonidine (125.2 g, 0.43 mol) in a similar manner used for the preparation of (\pm) -**6**-quinidine salt to give (S)-(+)-**6**-cinchonidine salt (144.2 g) as pale yellow fine needles, mp 188—189 °C, $[\alpha]_D^{20}$ -45.0° (c = 0.50, MeOH). IR (KBr): 3350, 3075, 2950, 1670, 1640, 1610, 1590, 1525, 1490, 1440, $1345\,\mathrm{cm}^{-1}$. Anal. Calcd for $C_{35}H_{38}N_4O_7$: C, 67.08; H, 6.11; N, 8.94. Found: C, 67.23; H, 6.21; N, 8.72. By the same work up described above, (S)-(+)-6 was obtained as a slightly yellow powder (69.46 g, 46%), mp 168.5—170 °C, $[\alpha]_D^{20}$ +24.4° (c=0.50, acetone) [lit.³⁾ $[\alpha]_D^{20}$ +19.1° (c= 0.556, acetone)]. Anal. Calcd for $C_{16}H_{16}N_2O_6$: C, 57.83; H, 4.85; N, 8.43. Found: C, 58.04; H, 4.85; N, 8.25.

(4S)-(+)-2-[4-(4-Benzhydryl-1-piperazinyl)phenyl]ethyl Methyl 1,4-Dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate [(S)-**(+)-1] Hydrochloride** To a suspension of (R)-(-)-6 (62.32 g, 0.188 mol) in CH₂Cl₂ (400 ml) and DMF (100 ml) was added SOCl₂ (22.31 g, 0.188 mol) at 5-9 °C with ice-water cooling under N₂ atmosphere, and then stirred for 2.5 h at the same temperature. The solution of 7 (67.76 g, 0.182 mol) in CH₂Cl₂ (120 ml) was added to the reaction mixture and stirred for 16h at about 5°C. The resulting mixture was diluted with CH₂Cl₂ (500 ml) and then washed with water and brine, dried, and removed. After the addition of AcOEt to the residue, the mixture was washed with 5% K₂CO₃ and brine, and then dried. Concentration of the solvent following chromatography on silica gel with C₆H₆-AcOEt (4:1, v/v) afforded (S)-(+)-1 as a yellow powder (107.45 g, 83%). IR (KBr). 3325, 3025, 2950, 2800, 1680, 1645, 1610, 1520, 1485, 1450, 1430, 1345 cm⁻¹. ¹H-NMR (CDCl₃) δ : 2.30, 2.35 (each 3H, s), 2.55 (4H, br t, J= 5 Hz), 2.82 (2H, t, J=7 Hz), 3.15 (4H, brt, J=5 Hz), 3.64 (3H, s), 4.23 (2H, t)(2H, t, J=7 Hz), 4.26 (1H, s), 5.07 (1H, s), 5.80 (1H, s), 6.80, 7.04 (4H, s) A_2B_2q , J=8.5 Hz), 7.1—7.6 (12H, m), 7.97 (1H, ddd, J=8, 2.5, 1 Hz), 8.06 (1H, t, J=2.5 Hz). To a solution of (S)-(+)-1 (105.45 g) obtained above in Et₂O-CH₂Cl₂ (9:1, v/v) (2000 ml) was added dropwise a solution of hydrogen chloride in DME (2.45 N, 69 ml) at room temperature. After the addition was completed, the mixture was stirred at room temperature for 40 min. A precipitated solid was collected by filtration, which was rinsed with Et₂O, and then dried *in vacuo* to give (*S*)-(+)-1 HCl (83.69 g, 75%) as a yellow powder, mp 143.5—147 °C, $[\alpha]_D^{20}$ +31.0° (c=0.50, acetone). IR (KBr): 3375, 3050, 2925, 2550, 1690, 1610, 1520, 1485, 1455, 1435, 1350 cm⁻¹. ¹H-NMR (CDCl₃) δ : 2.25, 2.36 (each 3H, s), 2.82 (2H, t, J=6.5 Hz), 3.0—3.2 (2H, br), 3.35—3.6 (4H, br), 3.64 (3H, s), 3.75—4.05 (2H, br), 4.24 (2H, t, J=6.5 Hz), 4.88 (1H, br d, J=7 Hz), 5.06 (1H, s), 6.42 (1H, s), 6.76, 7.00 (4H, A₂B₂q, J=8 Hz), 7.2—7.65 (8H, m), 7.8—8.1 (6H, m), 13.10 (1H, br s). *Anal*. Calcd for C₄₁H₄₂N₄O₆ HCl: C, 68.09; H, 5.99; N, 7.75. Found: C, 68.43; H, 5.83; N, 7.65.

(4R)-(-)-2-[4-(4-Benzhydryl-1-piperazinyl)phenyl]ethyl Methyl 1,4-Dihydro-2,6-dimethyl-4-(3-nitrophenyl)-3,5-pyridinedicarboxylate [(R)-(-)-1] Hydrochloride The compound (R)-(-)-1 HCl was prepared from (S)-(+)-6 by the same method employed for the synthesis of (S)-(+)-1 HCl; yield 59%, mp 145—149°C, $[\alpha]_{\rm D}^{20}$ -31.4° (c=0.50, acetone). Anal. Calcd for C₄₁H₄₂N₄O₆·HCl: C, 68.09; H, 5.99; N, 7.75. Found: C, 68.07; H, 5.85; N, 7.74.

Biological Tests Antihypertensive Activity¹¹⁾: The experiments were performed in groups of 3—6 male SHR. SBP was measured in a conscious state by a tail cuff plethysmographic method with an electrosphygmomanometer (PS-200A, Riken-Kaihatsu) at 0, 1, 2, 4 and 7h after oral administration. The test compounds were prepared as follows: A compound was dissolved in EtOH (0.3 ml) and Tween 80 (0.1 ml) and then diluted with distilled water for the volume of administration to be 10 ml/kg. Antihypertensive effects are shown as reductions in SBP (%) from 0 h values.

Receptor Binding Assay Rat cardiac membrane for the assay was prepared by the same method reported by Ishii $et\ al.^{12}$

To a solution of a test compound in 0.5 ml of 50 mm Tris buffer (pH 7.4) containing 0.1% albumin was added 0.05 ml of [³H]nimodipine (4.729 TBq/mmol) in 10% EtOH (160000 dpm) and 0.5 ml of cardiac membrane homogenate. After incubation at 25 °C for 3 h in the dark, the incubation mixture was filtered under vacuum through a glass fiber filter (Whatman GF/F), and washed twice with 1 ml of 50 mm Tris buffer (pH 7.4) which was used for washing the test tube, and three times with

another 5 ml of Tris buffer (pH 7.4). After the addition of 2 ml of Soluene-350 (Packard) to the cardiac membrane homogenate, and standing overnight, 13 ml of Hionic-Fluor was added to the mixture, and kept in a cool and dark place for 24 h. Subsequently, the radio activity was measured by liquid scintillation counter (Tri-carb Model 4640CD, Packard). Non-specific binding was determined by the result of measurement in the presence of $100 \, \text{ng/ml}$ of (\pm) -1.

References and Notes

- A. Ashimori, T. Ono, Y. Inoue, S. Morimoto, M. Eda, T. Uchida, Y. Ohtaki, Y. Fujino, H. Kido, Y. Ogura, C. Fukaya, M. Watanabe, and K. Yokoyama, *Chem. Pharm. Bull.*, 39, 91 (1991).
- R. Towart, E. Wehinger, and H. Meyer, Naunyn-Schmiedeberg's Arch. Pharmacol., 317, 183 (1981).
- T. Shibanuma, M. Iwanami, K. Okuda, T. Takenaka, and M. Murakami, Chem. Pharm. Bull., 28, 2809 (1980).
- T. Takenaka, I. Miyazaki, M. Asano, S. Higuchi, and H. Maeno, Jpn. J. Pharmacol., 32, 665 (1982).
- R. Towart, E. Wehinger, H. Meyer, and S. Kazda, *Arzneim.-Forsch.*, 32, 338 (1982).
- T. Tamazawa, H. Arima, T. Kojima, Y. Isomura, M. Okada, S. Fujita, T. Furuya, T. Takenaka, O. Inagaki, and M. Terai, J. Med. Chem., 29, 2504 (1986).
- 7) K. Muto, T. Kuroda, H. Kawato, A. Karasawa, K. Kubo, and N. Nakamizo, *Arzneim.-Forsch.*, 38, 1662 (1988).
- M. Kajino, T. Wada, Y. Nagai, A. Nagaoka, and K. Meguro, *Chem. Pharm. Bull.*, 37, 2225 (1989).
- G. Genain, Eur. Patent 273349 (1988) [Chem. Abstr., 109, 190260z (1988)].
- E. Wehinger and F. Bossert, Ger. Patent 2847237 (1980) [Chem. Abstr., 93, 150124c (1980)].
- 11) D. Pruneau and F. Roy, Arzneim.-Forsch., 37, 416 (1987).
- A. Ishii, K. Nishida, T. Oka, and N. Nakamizo, *Arzneim.-Forsch.*, 38, 1733 (1988).