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Abstract: To effectively modulate the molecular energy lsvef indacenodithiophene (IDT)-
based donor-acceptor (D-A) polymers, 4-hexyloxyrptheand 3-fluorine-4-hexyloxy-phenyl
substituted IDT derivatives were designed and ogpetized with fluorinated quinoxaline
derivatives (OF, 1F and 2F) to construct a serfemuel alternating polymers. The effects of the
side-chain modification in IDT units and the ingtus of fluorine atoms on quinoxaline units on
the absorption performances, energy levels, ha@sporting properties and photovoltaic
performances of the resulting polymers were systaltyi studied. All polymers show high
molecular weight, good solubility in common soh&nexcellent thermal stabilities, finely
tunable bandgaps and gradient adjusted energysle&bbve 5% power conversion efficiencies
(PCEs) were achieved for all six polymers in corivegral structural solar cells blending with

[6,6]-phenyl-C71 butyric acid methyl ester (RBM), in which the 3-fluorine-4-hexyloxy-
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phenyl substituted IDT and quinoxaline based poly(R®-TQ) showed a high PCE of 5.97%
due to its high hole mobility and suitable energyell.
Keywords: Alternating polymers, Alkoxy-phenyl substitutecdactenodithiophene, Fluorinated

qguinoxaline derivatives, Photovoltaic Cells.

1. Introduction

Polymer solar cells (PSCs) have attracted mucintaitein recent years due to their advantages
of low-cost, lightweight, and flexibility[1-3] Up till now, above 11% power conversion
efficiency (PCE) in single active layer devices édeen achieved in bulk heterojunction (BHJ),
[4-9] in which the conjugated donor polymers hauwead absorption spectra, high hole
mobilities and low-lying highest occupied molecutabital (HOMO) energy levels are the key
driving force. Through combining electron-rich agldctron-withdrawing units in one backbone,
a variety of novel donor-acceptor (D-A) polymerssgpessing high performances have been
developed. [10{etting insight into the structures of the varid\ polymers, one excellent
electron-rich donor unit is indacenodithiophene T)Dfor its planarity structure to provide
enhanced electron delocalization and thus highgehearrier mobility. [11] Many promising
polymers had been designed and fabricated by ttwrporation of IDT unit and multifarious
electron-withdrawing moieties, [12-15] in whickhéxyl-phenyl side-chains were included to the
IDT unit to ensure the solubility of the resultipglymers in common solvents for the film
fabrications.

It was demonstrated that the side-chains both em® A segments could finely modulate the
energy levels, bandgaps, charge transport propeatid even the morphology and domain size

of the polymers in the active layers. [16-22] Byngs3-hexyl-phenyl instead of 4-hexyl-phenyl
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as side chain, a relatively deep HOMO energy lanel thus enhanced open circuit voltageXV
and PCE (7.5%) had been accomplished for an indatfmophene-quinoxaline based polymer
(PIDTTQ-m). [23] Very recently, using 5-hexyl-thidror 3-hexyl-phenyl groups as out-of-plane
side-chains to replace the 4-hexyl-phenyl groupalile energy levels and high performances
were achieved for the side-chain modified smallenolar non-fullerene acceptors (ITIC-Th and
m-ITIC). [24,25] So the side-chains and their gositon the phenyl groups of the IDT units are
particularly important to construct promising donor acceptor materials with desirable
properties. Compare to alkyl groups, the alkoxyssitieents in the donor segment possess
relatively strong electron-donating ability, whiahe favourable to the absorptive properties of
the polymers. [26,27]

As is well known, adjustment of molecular energyels is one of the most important themes
in the structural design of donor polymer becaysenecircuit voltages () of PSCs are closely
dependent on the gaps between the HOMO levels @fetkctron donors and the lowest
unoccupied molecular orbital (LUMO) of the electracceptor materials in their active layers.
[28] Since the LUMO energy level of [6,6]-phenyl-CButyric acid methyl ester (RBM) is
fixed as -3.91eV, [29] deepening the electron-dopolymeric HOMO energy levels is an
effective approach to achieve improveg. ¥nd photovoltaic properties for PBM-based PSCs.
There are two methods have been mainly used to letedthe molecular energy levels of
conjugated polymers. First, introduction of stroglgctron-withdrawing groups (i.e. fluorine
atom, [30]ketone, [31] sulfonyl group [323nd cyano group [33]) onto the A-units of D-A
polymer and according to this method, improved &d PCEs have been achieved in a variety
of D-A polymers. Second, decreasing the electramdaability of the D-unit to therefore

prepare so-called ‘weak-donor-strong-acceptor mass is alternative way to obtain deep
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HOMO energy levels. [34] In line with this methdtijorinated side chains pending on the D-
units were prepared in several D-A polymers. [3p,86 expected, lowered HOMO energy
levels and enhanced photovoltaic properties wereraplished.

On the basis of the above consideration, to sydteatly investigate alkoxy-phenyl-IDT-
based D-A polymers and effectively modulate thegrgy levels, we herein synthesized six D-A
polymers through the copolymerization of 4-hexylphenyl and 3-fluorine-4-hexyloxy-
pheneyl substituted IDT derivatives with three qualine derivatives §cheme ). The
fluorinated quinoxaline derivatives (OF, 1F and 2iF¢ adopted as electron-withdrawing units
due to their excellent electron-deficient N-hetgmde structure and facile synthesis process. [16,
37-39] The obtained polymers show excellent therstalbilities and gradient adjusted HOMO
energy levels. Moderate PCEs (>5%) are obtainethfopolymers/P&BM-based conventional
solar cells, with the best PCE value of 5.97% fer B-fluorine-4-hexyloxy-phenyl substituted

IDT and quinoxaline based polymer (FO-TQ).

O-TQ: Ri=H, Ry=H FO-TQ: R=H, R,=H
O-FTQ: R=F, Ry=H FO-FTQ: R=F, R=H
O-DFTQ: R=F, R=F FO-DFTQ: R=F, R=F

Scheme 1. Chemical structures of the polymers.
2. Experimental Section
2.1 Materials
All chemicals and solvents were purchased from i8kdor Alfa & Aesar. Tetrahydrofuran
(THF) is dried over sodium (Na) /benzophenone kaityll freshly distilled prior to use. The

synthetic routes of the monomers and polymers laosvs in Scheme 2 The monomers 5,8-



bis(5-bromothiophen-2-yl)-2,3-bis(3-(octyloxy)phdmuinoxaline M3), 5,8-Bis(5-
bromothiophen-2-yl)-6-fluoro-2,3-bis(3-(octyloxy)phyl) quinoxaline ¥4) and 5,8-Bis(5-
bromothiophen-2-yl)-5,6-di-fluoro-2,3-bis(3-(octygphenyl)quinoxaline NI5) were
synthesized according to the literature. [37-39]

C,Hs00C CoHs00C
I\
s B(OH), + Br Br —> g \ /)

N, N ., g
(:8H17OOC8H17 CSH17OOC8H17 CsH17OOC8H17

O-TQ: Ry=H, Ry=H
O-FTQ: Ry=F, R=H
O-DFTQ: R;=F, R=F

" FO-TQ: R;=H, R=H
FO-FTQ: R,;=F, R=H
FO-DFTQ: R;=F, R=F

Scheme 2The synthetic routes of the polymers. (a) THRARD),/PPh_(b,c) n-BulLi, -78C,then room
temperature; CRCOOH/H,SO;,. (d) THF, n-BuLi, MgSnCl, -40°C. (e) Pd(dba), P(o-Tol) toluene.
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Diethyl-2,5-di(thiophen-2-yl)terephthalate (1).

To a solution of thiophen-2-ylboronic acid (3.20 26 mmol) and diethyl 2,5-dibromo-
terephthalate (3.80 g, 10 mmol) in THF (80 mL) wadded saturated solution of sodium
carbonate (15 ml), then (Pd(Ac)40 mg) and triphenylphopine (P80 mg) were added
under nitrogen. After stirred at ?C overnight, the reaction was quenched with 100waler
and extracted with ethyl acetate. Then, the contborganic solvent was washed with brine and
dried over anhydrous magnesium sulfate (MgS@fter removing the solvent, the compouhd
was purified with column chromatography on silieg-gsing mixture of ethyl acetate (EA) and
hexane (1: 5 by volume) as a white solid (3.141g3%).'"H NMR (500 MHz, CDC}, ppm),
7.81 (s, 2H), 7.39 (dd, J = 5 Hz, J = 1 Hz, 2H)87(m, 4H), 4.21 (g, J = 5 Hz, 4H), 1.15 (t, J=5
Hz, 6H).
4,4,9,9-tetrakis(4-hexyloxyphenyl)-s-indaceno[1,2:8,6-b']dithiophene (2)

To a solution of 4-hexyloxy-1-bromobenzene (6.2%,mmol in THF (30 mL) at -7& was
added n-BuLi (10 mL, 2.5 M in hexane) under nitmogiaen the mixture was kept stirring at -78
°C for 1 h. After that a solution of compound 1 @€, 5 mmol) in THF (20 mL) was added
slowly and then stirred overnight at room tempemtiWater was added to quench the reaction
and the mixture was extracted with dichloromethakiéer the removal of solvent, the crude
product was charged into 100 mL flask and acetid @© mL) and concentrated sulfuric acid (1
mL) were added. Then the mixture was refluxed fdr. Zfter pouring into water, the mixture
was extracted with chloroform (CHgland washed with brine. The resulting crude compou
was purified by silica gel to give a white solld2.95g, 61%)™H NMR (500 MHz, CDC}, ppm),
§7.39 (s, 2H), 7.23 (m, 2H), 7.14 (d, J = 5 Hz, 86196 (m, 2H), 6.76 (d, J = 5 Hz, 8H), 3.90 (t,

J = 5 Hz, 8H), 1.74 (br, 8H), 1.42 (br, 8H), 1.3, (16H), 0.88 (t, J = 5 Hz, 12H)C NMR
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(125 MHz, CDC4, ppm),é 157.9, 156.1, 153.7, 141.0, 136.7, 134.9, 1290,41 122.9, 117.2,
114.1, 67.9, 61.8, 31.5, 29.2, 25.7, 22.5, 14.0.
4,4,9,9-Tetrakis(3-fluoro-4-hexyloxyphenyl)-s-indaeno[1,2-b:5,6-b"]dithiophene (3)

This compound was synthesized basing on 2-fluoboefro-1-(hexyloxy)benzene (8.25 g, 30
mmol) and compound 1 (2.28 g, 6 mmol) through #raesroutine as compound 2. Compound 3
was obtained as a white solid (3.8g, 628)NMR (500 MHz, CDC4, ppm),s 7.37 (s, 2H),
7.28 (d, 2H), 6.97 (br, 6H), 6.91 (dd, 4H), 6.82@H), 3.97 (t, J = 5 Hz, 8H), 1.78 (br, 8H),
1.33-1.30 (br, 24H), 0.89 (t, J = 5 Hz, 12HEL NMR (125 MHz, CDJ, ppm),s 155.1, 153.2,
151.3, 146.2, 141.2, 137.0, 135.0, 128.2, 123.2,6217.2, 116.0, 114.4,69.4, 61.5, 31.5, 29.1,
25.5, 22.5, 13.9.
4,4,9,9-Tetrakis(4-hexyloxyphenyl)-s-indaceno [1,8:5,6-b']dithiophene-2,7-
diyl)bis(trimethylstannane) (M1)

Compound (2.94 g, 3 mmol) and trimethylethyldiamine (0.4581mol) was dissolved in 60
ml of anhydrous tetrahydrofuran (THF) and 10 mlaohydrous hexane in a three-neck flask
under the protection of argon. The solution waseamb®o -40°C and n-BuLi (2.5 M in hexane,
3.3ml) was added dropwise with stirring in 15 mifiter that, the mixture was allowed to stir at
ambient temperature for 30min. Then the reactastesaled to -40C and trimethyltin chloride
(2.79, 9mmol) was added and stirred at “@Cfor 2h. Subsequently, the mixture was warmed to
room temperature and poured into water. After ex¢échwith ethyl acetate, the organic layer was
dried over anhydrous magnesium sulfate (MgS&hd concentrated to afford the yellow crude
product. After recrystallized twice from mixture ethanol and hexane, monomdl was
finally obtained as a white crystal (2.91g, 75%djie'H NMR (500 MHz, CDC4, ppm),5 7.34

(s, 2H), 7.14 (d, 8H), 6.98 (s, 2H), 6.75(d, 8HBB(t, J = 5 Hz, 8H), 1.75 (br, 8H), 1.43 (br,
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8H), 1.30 (br, 16H), 0.89 (t, J = 5 Hz, 12H), 0(3318H)*C NMR (125 MHz, CDGJ, ppm),
157.9, 157.8, 153.9, 147.1, 141.1, 137.1, 134.6,4329.1, 117.5, 114.1, 67.9, 61.3, 31.6, 29.3,
25.7, 22.6, 14.0, -8.0.
4,4,9,9-Tetrakis(3-fluoro-4-hexyloxyphenyl)-s-indaeno[1,2-b:5,6-b’] dithiophene-
2,7-diyl)bis(trimethylstannane) (M2)

Same process was adoptM$%, using compoun@® (3.12 g, 3 mmol) and trimethyltin
chloride (2.7g, 9mmol) to obtaikl2 as a yellow crystals (2.55g, 72% yielth. NMR
(500 MHz, CDC}, ppm),5 7.32 (s, 2H), 6.98 (br 6H), 6.91 (dd, 4H), 6.814), 3.97 (t,

J = 5 Hz, 8H), 1.78 (br, 8H), 1.33-1.30 (br, 24BI89 (t, J = 5 Hz, 12H), 0.33 (s, 18H).
13C NMR (125 MHz, CDQ, ppm), & 156.8, 153.3, 151.3, 147.2, 146.0, 142.3, 137.4,
134.7,129.9, 123.4, 117.5, 116.2, 114.3, 69.4,,611.5, 29.2, 25.6, 22.6, 14.0, -8.0.
Synthesis of the polymers.

M1 (91 mg, 0.07mmol) an3 (60mg, 0.07mmol) were dissolved in a 50ml dryKlas
in degassed toluene (15ml), the mixture was flushath argon for 30 min,
tris(dibenzylideneacetone)dipalladium(0) {etibak) (2.0 mg) and tri(o-tolyl)phosphine
(P(o-Tolk) (2.6 mg) were added, then flushed with argonragéhen the mixture was
vigorously stirred at 95C for 24 h. After cooling down, the solution wasupaed into
methanol. The polymer was collected by filtratiamdaSoxhlet extracted in order with
methanol, hexane, and then with chloroform. Themfibrm solution was concentrated
to a small volume, and the polymer was precipitabgdpouring this solution into
methanol. Finally, the polymer was collected byrdilion, dried under vacuum at 8C
overnight and afforde®-TQ as a dark solid (77 mg, 65%). NMR (500 MHz, CDC},

ppm),d 8.11 (s, 2H)$ 7.83 (s, 2H), 7.47-7.36(br, 4H), 7.30-7.22 (brH)67.15-6.97 (m,
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2H), 6.83-6.82 (m, 8H), 3.95-3.92 (m, 8H), 3.838%r#A, 4H), 1.85-1.75 (br, 8H), 1.60-
1.44 (br, 12H), 1.33-1.20(br, 36H), 0.89-0.79 (bt8H). Anal. Calcd for
(C1o8H120N206Ss)n: C 77.66, H 7.24. Found: C 77.01, H 6.92.

The other five polymers were synthesized accorthripe same route as that@fTQ.
For O-FTQ, dark solid (83 mg, yield 70%JH NMR (500 MHz, CDC4, ppm),& 7.99
(s, 2H),$ 7.83 (s, 1H) 7.39-7.35(br, 4H), 7.29-7.17 (br, L6H05-6.97 (m, 2H), 6.83-
6.82 (m, 8H), 3.93 (m, 8H), 3.82-3.75(m, 4H), 1B35 (br, 8H), 1.58-1.44 (br, 12H),
1.33-1.20(br, 36H), 0.90-0.83 (br, 18H). Anal. @hfor (CiogH11-N206Ss)n: C 76.83, H

6.97. Found: C 76.17, H 6.97.

For O-DFTQ, dark solid (87 mg, yield 73%}H NMR (500 MHz, CDC{, ppm), §
8.02 (s, 2H), 7.40-7.37(br, 4H), 7.28-7.18 (br, 166.99-6.98 (m, 2H), 6.84-6.82 (m,
8H), 3.95-3.92 (br, 8H), 3.78-3.75(br, 4H), 1.8%8.(br, 8H), 1.54-1.44 (br, 12H), 1.33-
1.18(br, 36H), 0.90-0.80 (br, 18H). Anal. Calcd (G%ogH11872N206Ss)n: C 76.02 H 6.97.
Found: C 75.67, H 7.03.

For FO-TQ, dark solid (81 mg, 66%)}H NMR (500 MHz, CDC4, ppm), s 8.04 (s,
2H), 7.74 (s, 2H), 7.31-7.12(br, 10H), 6.99-6.88 (r@H), 6.81-6.78 (br, 4H), 3.95-3.92
(m, 8H), 3.74 (m, 4H), 1.74-1.71 (br, 8H), 1.528. (Br, 12H), 1.25-1.11(br, 36H), 0.82-
0.71 (br, 18H). Anal. Calcd for ¢ggH116FsN2O6eSs)n: C 74.45, H 6.71. Found: C 74.17, H
6.66.

For FO-FTQ, dark solid (76 mg, 62%JH NMR (500 MHz, CDC}, ppm),s 8.01 (s,
2H), 7.84 (s, 1H), 7.41-7.28 (br, 10H), 7.15 (m,)2RA06-6.86(br, 14H), 4.03-4.00 (m,

8H), 3.81-3.79 (m, 4H), 1.82-1.79 (br, 8H), 1.5@6L(br, 12H), 1.33-1.17(br, 36H), 0.90-
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0.82 (br, 18H). Anal. Calcd for gsH115F5N206Ss)n: C 73.69, H 6.58. Found: C 73.70, H
6.67.

For FO-DFTQ, dark solid (88 mg, 71%}H NMR (500 MHz, CDC}, ppm), 8.04 (s, 2H),
7.40-7.16 (br, 10H), 7.16 (m, 2H), 7.06-6.86 (btH), 4.01 (m, 8H), 3.78 (m, 4H), 1.82-1.79
(or, 8H), 1.54-1.46 (br, 12H), 1.33-1.17(br, 36H),90-0.82 (br, 18H). Anal. Calcd for
(C108H114FsN206Ss)n: C 72.94, H 6.46, Found: C 72.19, H 6.44.

2.2 Measurements

All the compounds were characterized by nuclearnmeig resonance spectra (NMR) recorded
(Bruker AV 500 spectrometer) in chloroform-d at modemperature using tetramethylsilane
(TMS) as an internal reference. The chemical siwise accounted in ppm related to the singlet
of CDCl; at 7.26 ppm and 77 ppm fbd and**C NMR, respectively. Molecular weights and
distributions of polymers were estimated by gelnpeation chromatography (GPC) method at
150 °C, 1,2,4-trichlorobenzene as eluent and polystyrasestandard. Thermogravimetric
analysis (TGA) of the polymers was investigatedaodniversal V2.6D TA instruments with a
thermal rate of 1W/min at N atmosphere. The absorption spectra were deterniiyed
PerkinElmer Lambda 750 UV/Vis/NIR spectrometer. rih@gravimetric analysis (TGA) of the
polymers was investigated on a Universal V2.6D hAatiuments. The electrochemical cyclic
voltammetry was conducted on a CHI 660D ElectroagbalmWorkstation with glassy carbon, Pt
wire, and Ag/Ad electrode as working electrode, counter electr@ohe, reference electrode
respectively in a 0.1mol/L tetrabutylammonium héxafophosphate (BINPFs;) acetonitrile
solution. Polymer thin films were formed by dropstiag chloroform solution (analytical
reagent, 1mg/mL) onto the working electrode, amah tthried in the air. Atomic force microscopy

(AFM) images were collected in air under ambienbdibons using the MultiMode scanning

10
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probe microscope (AFM, Veeco MultiMode V). Thickeex the active layer was measured on a
Bruker Dektak-XT surface profiler. Tansmission élexn microscopy (TEM) was performed on
a JEM-2100 (200 kV). Without the electrode deponitithe active layer was placed onto a
copper grid after dissolving the PEDOT:PSS in watet then dried at room temperature.

2.3 Fabrication and characterization of PSCs

The device structure was ITO/poly(3,4-ethylenedibigphene):poly(styrene sulfonic acid)
(PEDOT:PSS)/polymer:RGBM/poly[(9,9-dioctyl-2,7-fluoreneplt-(9,9-bis(3-N,N-
dimethylamino)propyl)-2,7-fluorendPFN)[31]/Al, a 40-nm-thick PEDOT:PSS anode buffer
layer was spin-cast on the ITO substrate, therddriea vacuum oven at 14CQ overnight. The
polymer:PG,;BM active layer was spin-coated through their lighlbrobenzene solution with
various weight ratios in a nitrogen-filled gloveb@x1ppm Q and HO). A 5 nm PFN layer was
then spin-coated from methanol solution in presesfca trace amount of acetic acid onto the
active layer. Subsequently, the films were tramsfiinto a vacuum evaporator and 100 nm of
Al were deposited as cathode under the vacuum @f drr. The effective area of a device was
0.16 cnf which was determined by the shadow mask used gldeposition of Al cathode. PCE
values were determined from current densilyvpltage (V) curve measurements (using a
Keithley 2400 source meter) under 1 sun, AM 1.5&cspim from a solar simulator (Newport
model 94021A, 100 mW ch). A monocrystal silicon cell (VLS| Standards Incalibrated by
the National renewable Energy laboratory (NREL) wesed as a reference. The external
guantum efficiency (EQE) of the devices was meabwsing a Hypermonolight System
(QTEST 1000 AD, Crowntech Inc.).

2.4 Hole mobility measurement

11
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The device structure of space charge limited curre(SCLC) studies s
ITO/PEDOT:PSS/polymer:PGBM/MoOs(10nm)/Al with the effective area of 0.16 &niThe
mobility was determined by fitting the dark currémtthe model of a single carrier SCLC, which
is described by the equation: J= (@8u((V?)/(d®), where J is the curren, is the zero-field
mobility, g is the permittivity of free space, is the dielectric constant of the polymer, d is th
thickness of the active layer, and V is the effectioltage. The effective voltage can be obtained
by subtracting the built-in voltage Y and the voltage drop ¢Vfrom the substrate’s series
resistance from the applied voltagesd), V=VapprVui-Vs. The hole-mobility can be calculated
from the slope of the"J~ V curves.

3. Results and discussion

3.1 Materials design and synthesis

The synthetic routes of the six polymers are show&cheme 2In our synthetic design, the 4-
hexyloxy-phenyl and 3-fluorine-4-hexyloxy-phenyl bstituted IDT units and fluorinated
qguinoxaline derivatives (OF, 1F and 2F) were ta&erhe D-units and A-units, respectively. All
polymers were prepared via the typical Stille-cougplreaction with moderate yield between
organotin monomers of IDT derivativesll andM2) and bromothiophene-flanked fluorinated
qguinoxaline derivativesM3, M4 andM5), using toluene as solvent, tris(dibenzylideneaoe}t
dipalladium (Pé(dba)) and tri(otolyl)phosphine (P(o-tg)) as catalyst. All the intermediates,
monomers and the polymers were fully charactertzgdH-NMR, *C-NMR, and elemental
analysis Figure S1-S14 ESI). The gel permeation chromatography (GPC)sowea molecular
weights and polydispersity index (PDI) of the sialymers are displayed iftable 1 All
polymers exhibit high molecular weight (1above 80 kDa. In contrast to the 3-fluorine-4-

hexyloxyphenyl substituted polymeis@-TQ, FO-FTQ, FO-DFTQ), the polymers@-TQ, O-

12
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FTQ andO-DFTQ) with 4-hexylxoy-phenyl side-chain display highdw, especially for the 4-
hexyloxy-phenyl IDT and mono-fluorinated quinoxa&itased polymerd-FTQ) owns the
highest Mw over 400 kDa, with a relatively narrolIPof 1.65. All polymers show good
solubility in chloroform, o-dichlorobenzene (oDCBjd other common solvents, which are
conducive to the film fabrication.

3.2 Properties of the polymers

The thermal properties of the polymers were ingastid by thermogravimetric analysis (TGA,
Figure S15 ESI). All polymers have decomposition temperature (defiae the 5% weight-loss
temperature, J) over 410°C and the polymeO-TQ shows the highestT(452C) under
nitrogen as determined by thermogravimetric anal{§{GA), indicating their excellent thermal
stabilities.

The optical absorption properties of the polymemsrevinvestigated by ultraviolet-
visible (UV-vis) absorption spectroscopy both inachform solutions Figure S16 ESI)
and in thin films Figure 1). The detailed data obtained from the absorptjmecsa are
summarized inTable 1 As shown inFigure S16 andFigure 1, two main absorption
bands are observed for the polymers both in chbonofsolutions and in solid state films.
The high-energy region absorption band in a raddg@50-470 nm is ascribed to ther*
transitions, and a low-energy region (470-700 nbgoaption band corresponding to the
intramolecular charge transfer (ICT) between thd I®) and quinoxaline (A) unit.
Unlike other D-A polymers with strong red-shiftssabption in the solid states, only
slight red-shifts are investigated for all polymiims compare to the chloroform
solutions, which indicate the polymers remain largisordered in the solid state and are

coincided with previously reported IDT-based polym¢23] The absorption edges:4g9
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of the films are located at 674 nf@®{TQ), 679 nm O-FTQ), 675nm O-DFTQ), 671
nm FO-TQ), 667 nm FO-FTQ) and 661nmKEO-DFTQ), respectively, corresponding
to medium optical bandgaps ranged from 1.83 eV.&G &V {Table 1). Relative to the 4-
hexyloxy-phenyl substituted polyme®-{TQ, O-FTQ andO-DFTQ) possessing similar
bandgaps of 1.83-1.84 eV, the 3-fluoro-4-hexylokeipyl substituted polymers exhibit
wide optical bandgaps (1.85eV BO-TQ, 1.86 eV forFO-FTQ and 1.87 eV folFO-
DFTQ), which are attributed to the inclusion of thectlen-withdrawing fluorine atom
on the IDT unit. Furthermore, it is worth notingathwhen 1F is introducing to the
quinoxaline unit, slightly bigger or smaller optiteandgaps are simultaneously observed,
which mainly because of the random location offtherine atom. [40] Relative to the OF
and 1F substituted quinoxaline-based polymers,2thesubstituted polymers show the
largest bandgaps (1.84 eV fOorDFTQ and 1.87eV folFO-DFTQ), agreeing well with
other 2F substituted polymers. [41]

In order to investigate the frontier energy lewalshe polymers, cyclic voltammetry (CV) was
employed to measure the oxidation and reductioamiatls of the polymers filmd={gure S17,
ESI). For calibration, the redox potential of fereae/ferrocenium (Fc/Frwas measured under
the same conditions, and it was located at 0.08 e Ag/Ad electrode under our measurement.
It is assumed that the redox potential of F&/Ras an absolute energy level of -4.80 eV to
vacuum. [42] Then the HOMO energy levelsi¢ko) of the polymers were determined from the
onset oxidation potentials {f according to the following equationsidmo=-e(Ex + 4.71) (eV),
where the unit of potential is V vs Ag/Ag43] Subsequently, the lowest unoccupied molecular
orbital (LUMO) energy levels (bvwo) can be calculated from thendmo data and optical

bandgaps of the polymers. According to thg @ata, the calculatedybmo/ELumo values of the
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polymers were -5.20/-3.36 e\D{TQ), -5.21/-3.38 eV Q-FTQ), -5.26/-3.42 eV Q-DFTQ), -
5.23/-3.38 eV FO-TQ), -5.26/-3.40 eV KO-FTQ) and -5.28/-3.41 eV forFO-DFTQ,
respectively. Obviously, deeper HOMO energy leviels the 3-fluorine-4-hexyloxy-phenyl-
based polymersFO-TQ, FO-FTQ and FO-DFTQ) are observed in comparison to the 4-
hexyloxy-phenyl-substituted polyme®+{TQ, O-FTQ andO-DFTQ), which can be attributed
to the fluorine substituted on the IDT unit. Furthere, the mono-fluorinated and di- fluorinated
guinoxaline based copolymers display reduced HOM®ElE relative to the non-fluorinated
materials, which mainly due to the electron-witlvdray effect of the fluorine atoms on the A-
unit. The 3-fluorine-4-hexyloxy-phenyl modified ID&nd di-fluorinated quinoxaline based
polymer FO-DFTQ displays the deepest HOMO energy level of -5.28f@Vthe synergistic
effect of the six fluorine atom in one repeatingtumo make a clear comparison, the gradient
varied polymeric energy levels diagrams as welth@smolecular energy levels of other used
materials in this study are summarizedrigure 2b. Obviously, the LUMO energy levels of the
polymers are significantly higher than that of /BM (-3.90 eV in our measurement), which
facilitate electron transferring from the polymé&rshe PG,BM at the photoactive layer of PSCs.
To explore the electronic properties of the polysnemolecular simulations were also
performed on two repeated donor-acceptor unit &ittside chains reserved using the Density
Functional Theory (DFT) at B3LYP/6-31G(d) level4]4As shown inTable S1, the localization
of HOMOs distributed along the polymer backbonelgvhe LUMOs of both polymers are
somewhat more localized on the quinoxaline unitslicating the significant charge-transfer
character between IDT and quinoxaline segment, lware consistent with the observed strong

low-energy absorption band irigure 1. From the simulation data, the 3-fluoro-4-hexyloxy
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phenyl substituted polymers exhibit deeper HOMOrgydevels, agreeing well with the CV

measured data. The calculated energy levels gighgners are also listed fable 1.
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Figure 1. (a) Normalized absorption of the polymer films) Schematic illustration of relative positions of
HOMO/LUMO energy levels of the six polymers andestimaterials used in the PSCs.

Table 1 Optical, electrochemical and thermal propertiethe polymers

Polymer " M. oo | T Nedqge | ES”?® | HOMO® | LUMO® | E® | HOMO® | LUMOY
[°Cl | [nm] | [eV] [eV] [eV] \d [eV] [eV]
O-TQ 71130 | 144030 2.02 45p 67#  1.8@ -4.37 224 904 -5.20 -3.36
O-FTQ | 247921| 409209 1.65 411 679 1.83 -4.39 282500 -5.21 -3.38
O-DFTQ | 215204| 380797 1.7f 434 675 184 -4.43 28055 | -5.26 -3.42
FO-TQ 45380 | 89028] 1.9¢ 444 67 1.8p -4.46 -2.30 205 -5.23 -3.38
FO-FTQ | 88532 | 184869 2.0 434 667 1.86 -4.48 -288.550 -5.26 -3.40
FO-DFTQ | 91357 | 241914 265 436 662 187 -4.92 -24M57 [ -5.28 -3.41

3 estimated from the onset of electronic absorptibthe polymer films (g’pt =1240hggq{NM)). ®) calculated results from the

DFT at B3LYP/6-31G(d) leveF cyclic voltammetry resulté) calculated from the tested HOMO energy Ievelsthadif”‘.
3.3Characteristics and Optimization of Photovoltaic D&ices

To investigate the photovoltaic properties of thietamed polymers, PSCs with a
conventional device structure of ITO/PEDOT:PSS/pwy.PG:BM/PFN/AlI were
fabricated. The photoactive layer were spin-coatedop of pre-fabricated PEDOT:PSS
layer from their 1,2-dichlorobenzene solution. Thi#we blend film was pre-thermal
annealed at 78C for 10 min and followed by a THF solvent vaponaaling (SVA) of 35

sec to obtain the optimized morphology of the actihayer. After that, a 5 nm
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water/alcohol soluble PFN [45] as the electronaxilhg layer was spin-coated atop
photoactive layer before deposition of cathode. & been considered as an effective
post-treatment method for organic photovoltaic éllie to its universality to optimize
the active layer morphology and improve the chdrgasport properties. [46,47] THF
SVA 35 sec was chosen as the post-treated condiioits effectiveness in improving
the performances of quinoxaline-based polymersgchwvinere according to the literatures
and our previous results.[16,39,48] The device gvarthnces of both polymers are
critically dependent on the polymer:RBM weight ratios in their active layer. Optimal
weight ratios for the polymers and RBM blends are almost the same as 1:3, except for
the polymerO-FTQ (1:2). Figure S18 and Table S2J. The current density versus
voltage (-V) characteristics and the external quantum effye(EQE) curves of the
corresponding optimized PSCs under AM 1.5 G at bW cni? illumination are
presented inFigure 2. Photovoltaic parameters deduced from the correspgndVv
curvesare summarized iTable 2 Both six polymers showed moderate PCE values
(>5%) with slightly differences under their optinddvice condition. Compare to the 3-
fluorine-4-hexyloxy-phenyl modified polymers, thehéxyloxy-phenyl-based polymers
exhibit slightly higher short-current densitydJandO-FTQ possesses the highegiaf
11.07 mA cnif, which is ascribed to its small bandgap. As wevkmohigher molecular
weight (Mw) of the amorphous conjugated polymeelRTB7 leads to enhancegd ih
PSCs.[49] Therefore, the slightly improveg df O-FTQ and O-DFTQ-based devices
can also be ascribed to their higher Mw. As for tBdluoro-4-hexyloxy-phenyl
substituted polymers, higher open-circuit voltadk values are achieved with the

biggest \4: of 0.97 V for FO-DFTQ-based device as anticipation, due to their deep
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HOMO energy levels as illuminated above. It haverbeeported that the inclusion of
fluorine in the conjugated polymer can effectivéhcrease the dielectric constant to
reduce the energy loss between polymers and PCB8M1a] The higher ) values of
the fluorinated polymers are also be the resultb®increased dielectric constants

As shown inFigure 2a and 2b, the devices of these six polymers processed uedehn
optimal conditions show slightly different EQE @ofThe maximum responding wavelength is
400 nm corresponding the EQE peak value of 56.3%0f3Q, 423 nm forO-FTQ (61.4%),
399 nm forO-DFTQ (59.1%), 455 nm foFO-TQ (60.8%), 451 nm foFO-FTQ (60.7%) and
451 nm for FO-DFTQ (57.9%), respectively. For the three 3-fluoro-4ylexy-phenyl
substituted polymers, relatively low EQE responaes observed which are agreed with their
small 3. Although moderate ¥ and J.are observed, thEO-TQ and FO-FTQ-based device
exhibit high FF of 65% and 66%, leading to enhane&k of 5.97% and 5.92%. Clearly, the
slightly better photovoltaic performances in th®-TQ and FO-FTQ-based devices mainly

attributed to the high FF, indicating their bettbarge transport behaviour as discussed below.

0 70

—=—0TQ b
€ ,| ——0FTQ 60} =
I | A—O0DFTQ
E 4l —v-FOTQ -
g FO-FTQ S
G .gL —¢—FO-DFT = ¢
2 6 Q W of=-om
3 8 w 9—O-FTQ
= 8f —A— O-DFTQ
P 20}
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Figure 2. (a) TheJ-V curves of PSCs based on polymer BB/ under their optimal donor:acceptor ratios; (b)
the corresponding EQE curves.
Table 2. Photovoltaic performances of the six copolymerasnead under illumination of AM 1.5 G
condition, 100 mW crf

Polymer:PG,BM[ Voc Jsc PCE Uhole
Polymer X EE o
w/w] V] [mA cm™] [%] [emV=sT]
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O-TQ 1:3 0.83 10.70 0.61 | 5.37 (5.12) 1.48x16
O-FTQ 1:2 0.88 11.07 0.60 | 5.84 (5.65) 1.04x16
O-DFTQ 1:3 0.91 10.79 0.57 | 5.59 (5.32) 3.35x1D
FO-TQ 1:3 0.91 10.10 0.65 | 5.97 (5.83) 5.37x10
FO-FTQ 1:3 0.93 9.65 0.66 | 5.92 (5.71) 1.12x10
FO-DFTQ 1:3 0.97 9.56 0.61 | 5.66 (5.42) 3.46x10

®The average value from 8 individual devices is giireparentheses

3.4 Charge Transport Properties and morphology oftie polymers

To illuminate the morphologies of the six polymémased devices, atomic force microscopy
(AFM) study was carried out to investigate the ghssparated morphologies of the
polymers:PGBM blends corresponding to the best performancectwivere shown irFigure

3. All six blends exhibit interpenetrating featuréttwbicontinuous network between polymer
and PG;BM and show quite smooth surface with small rooemequare roughness (RMS)
value of less than 0.6 nm, indicating the good rhikty of the polymer with PGBM. To
explore the morphology throughout the active lajJj&M was employed to investigate the real-
space structures of the polymer/M blend films, which can be seenkigure 4. Blend films

of O-TQ, O-FTQ, FO-FTQ andFO-DFTQ form fine phase separations (1-10 nm). ForQhe
DFTQ andFO-TQ blend film, obvious P&BM aggregates are founed, which are consistent
with the observed higher RMS values in AFM. Polyraggregation cooresponding to the bright
dots in Figure 4 are found for th®©-FTQ, FO-TQ andFO-FTQ-based blends, indicating their

good hole transporting abilities.
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Figure 3. AFM topography images (@m x4 um) of ITO/PEDOT:PSS/Polymer:BBM.(a): O-TQ:PC;1:BM
(1:3) blend film (RMS: 0.35 nm); (p-FTQ:PC;:BM (1:3) blend film (RMS: 0.37 nm); (c)-

DFTQ:PG;:BM (1:3) blend film (RMS: 0.40 nm); (djO-TQ:PG;:BM (1:3) blend film (RMS: 0.61 nm); (e)

FO-FTQ:PG;1BM (1:3) blend film (RMS: 0.56 nm) and (HO-DFTQ:PC;:BM (1:3) blend film (RMS: 0.37

100 nm

4100 nm & : 100 nm

Figure 4. TEM bright field images of the optimized polynfe€71BM blend films (aP-TQ; (b) O-FTQ; (c)
O-DFTQ; (d) FO-TQ:PG/:BM; (e) FO-FTQ and (f)FO-DFTQ blend film.
The hole mobility () is crucial to achieve balance charge transpamsscthe device, we

used space-charge limited current (SCLC) methodhéasure the hole mobility in a device
structure of ITO/PEDOT:PSS/polymer:RBM/MoO4/Al, and the results are plotted Figure
S19(ESI) and summarized ifiable 2 The obtained hole mobility is 1.48xi@nfV*s* for O-
TQ, 1.04x10 cnfV's? for O-FTQ, 3.35x10 cnfV's! for O-DFTQ, 5.37x10 cnfV’s? for
FO-TQ, 1.12x1C cnfV?'s? for FO-FTQ and 3.46x18 cnf V' s ! for FO-DFTQ,

respectively. The 4-hexyloxy-phenyl substitutedypmérs exhibit relatively low hole mobility
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which result in their small FF. However, improvedléh mobilities are observed for the 3-
fluorine-4-hexyloxy-phenyl substituted polymers,igthare contributed to the higher FF values
and are accorded with the reported hole mobilityues of fluorinated polymers in the
literature.[50] Despite the different 3 and 4, FO-TQ and FO-FTQ possess high hole
mobilities of 5.37x1¢ and 1.12x18 cn? Vs, which give rise to the similar high FF (65% vs.
66%) and PCE value (5.97% vs. 5.92%).

4. Conclusion

In summary, six D-A polymers based on 4-hexyloxgqmyl and 3-fluorine-4-hexyloxy-phenyl
substituted IDT and fluorinated quinoxaline dernvas (OF, 1F and 2F) with excellent thermal
stability were synthesized and characterized. Tisksion of fluorine atoms both in donor unit
and in acceptor unit can effectively modulate thergy levels and absorptive behaviors of the
polymers. Benefit from their high hole mobility amsditable molecular energy level, the 3-
fluorine-4-hexyloxy-phenyl substituted IDT and goxaline based polymeFQ-TQ) exhibit an
open-circuit voltage (M) of 0.91V, a short-circuit current ¢§) of 10.10 mA/crh, and an
improved fill factor (FF) of 65 %, leading to a higpower conversion efficiency (PCE) of
5.97%. Consideration the obtained gradient adjusteergy levels of the polymers through
incorporation with side-chain modification and ftuwated both in the D and A-unit, we believe
that these results can promote the design andesistbf novel D-A polymers with deep HOMO
energy levels.
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Highlights

1. Six aternating polymers based on alkoxy-phenyl substituted IDT and quinoxaline derivatives
were synthesized.

2. All polymers showed high molecular weight, finely tunable bandgaps and gradient adjusted
energy levels.

3. A PCE of 5.97% was achieved for the fluorinated IDT-based polymer FO-TQ blended with
PC,.BM.



