A SIMPLE SYNTHESIS OF γ AND δ -KETO α -AMINO ACID DERIVATIVES

Norman Aubry, Raymond Plante and Robert Déziel* Bio-Méga Inc., 2100 Cunard, Laval (Québec) Canada H7S 2G5

Summary: The γ and δ-keto α-amino acid derivatives 1a and 1b were prepared from L-aspartic and L-glutamic acid respectively via alkylation of the corresponding β-ketoesters 3a and 3b followed by subsequent ester cleavage and decarboxylation.

The preparation of chiral non proteinogenic α -amino acid derivatives has become an area of great interest especially with the advent of peptide-derived chemotherapeutics¹. In this regard, we wish to report a simple synthesis of γ and δ -keto α -amino acid derivatives 1a and 1b². Our strategy for the preparation of these compounds relies on creating an active methylene center by converting commercially available protected aspartic or glutamic acid into a β -ketoester derivative. Subsequent anion formation and alkylation would be predicted to occur regioselectively under mild conditions to provide after a simple decarboxylative process the γ or δ -keto derivatives 1.

The β-ketoester derivatives 3a and 3b were prepared from N-Boc-L-aspartic and glutamic acid α-benzyl esters 2a and 2b in 88% yield using the Masamune protocol³ (see scheme). The introduction of various alkyl groups was best accomplished by treatment of 3 with Na₂CO₃ and the appropriate alkyl iodide in DMF at 60°C to give compounds 4 (Table). In addition to the desired C-alkylated product varying amounts of O-alkylated material were also obtained (10-30%). However this byproduct could easily be separated by silica gel chromatography. Several reaction conditions were investigated in order to suppress O-alkylation (solvent polarity, cation effects, phase transfer catalysis, etc...) but none proved to be better than Na₂CO₃ in DMF. Removal of the allyloxycarbonyl moiety was readily achieved with pyrrolidine and a catalytic amount of Pd(PPh₃)₄ in acetonitrile⁴ to give the desired keto derivatives 1 in 70-90% yield⁵.

Scheme

Reagents and conditions: a) Im₂CO₂ (C₂H₂OCOCH₂CO₂)₂MgVCH₃CN 25°C; b) Na₂CO₃ (3eq), RNDMF 60°C 18h; c) pyrrolidine, Pd(PPh₂), 2.5 mole%\ CH₂CN 25°C 18h.

In order to establish that no racemization had occurred during the reaction sequence we made the Mosher amide derivative 5 from 1a (entry 3) and its antipode 6 from D-aspartic acid. Proton NMR spectroscopy indicated no observable diastereomeric contamination.

In summary, mono, di and cycloalkylated γ and δ -keto α -amino acid derivatives can easily be obtained from commercially available protected aspartic and glutamic acid respectively.

5 (MeO) =3.25ppm

 δ (16eO) = 3.50ppm

Table: Conversion of (3) to the keto derivatives (1)

Entry	Derivatives	2	R'	Yield % (4)	Yield 0 (1)	[a]p (c in MeOE)
1		Сж3		58	85	-23.4 (2.14)
2		CE3	CE3	68	94 .	-15.9 (6.05)
3	•	-(CE ₂) ₄ -		55	71	-13.1 (5.15)
4		PhCH ₂	I	44	85	-10.0 (5.55)
5		n-C6#13	H	54	■0	-11.8 (0.65)
6		2-C4E9	E	54	79	~16.1 (0.39)
7	b	-(CH ₂) ₄ -		55	95	~23.3 (8.30)
8	ъ	n-C4H9	=	66	92	~22.3 (8.10)

ACKNOWLEDGMENTS:

The authors thank Dr. Neil Moss for his help during the preparation of this paper.

REFERENCES AND NOTES:

- For an excellent review: "Williams, R.M., "Synthesis of Optically Active \alpha-Amino Acids" (1989) Pergamon Press. Coppola, G.M., Schuster, H.F. "Asymmetric Synthesis: Construction of Chiral Molecules Using Amino Acids" (1987) John Wiley & Sons, New York.
- 2. For a recent method of preparation of L-γ-keto α-amino acid derivatives from L-serine see; Jackson, R.F.W., James, K., Wythes, M.J. and Wood, A. J. Chem. Soc., Chem. Commun., 1989, 644.
 Brooks, D.W., Lu, L.D. and Masamune, S. Angew. Chem. Int. Ed. Engl., 1979, 18, 72.
- 4. Déziel, R. Tetrahedron Lett., 1987, 28, 4371.
- The structure assigned to each compound was in full accord with its spectral (H NMR, IR and MS) characteristics.
- 6. Dale, J.A., Dull, D.L. and Mosher, H.S. J. Org. Chem., 1969, 34, 2543.