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Catalytic C-C bond-formation using a simple nickel precatalyst system: 
base– and activator–free direct C–allylation by alcohols and amines.** 
Joseph B. Sweeney,*, † Anthony K. Ball, ¶ and Luke J. Smith¶  

 

Abstract: A 'totally catalytic' nickel(0)-mediated method for base-
free direct alkylation of allyl alcohols and allyl amines is reported. 
The reaction is selective for monoallylation, uses an inexpensive 
Ni(II) precatalyst system, and requires no activating reagents to be 
present. 
 

Catalytic bond-forming processes have become indispensible tools 
in all aspects of synthetic chemistry, for both academic and 
industrial chemists, and there has been a recent and increasing 
emphasis on methods which avoid catalysts derived from high-cost, 
non-abundant metals. Within the diverse research into the 
application of catalytic complexes used for synthesis and 
manufacturing, this has led to a focus on the use of nickel as a 
replacement for palladium in catalytic transformations. In addition 
to the cost advantages in using nickel, the differences in character 
of this more electropositive metal allow quite different 
opportunities for catalytic bond-formation compared with 
palladium, facilitating some chemical processes not available to the 
more expensive metal.[1 ] Notwithstanding these advantages, the 
adoption of nickel catalysis as an alternative to palladium has been 
slow, perhaps due to the comparative difficulty in handling Ni(0) 
complexes: the most widely used catalytic complex of nickel, 
Ni(COD)2 is well-known to be highly air-sensitive, making it 
difficult to handle, and compromising the robustness and 
practicality of nickel-catalysed processes. To meet this obstacle, 
several elegant Ni(0) precatalysts systems have been developed to 
circumvent the use of Ni(COD)2 using either synthesized 
precatalysts,[ 2 ] or combinations of simple nickel salts with 
stoichiometric reducing agents. Though several reports[ 3 ] have 
described the use of main group metals as in situ reducing agents to 
convert Ni(II) into catalytically active Ni(0), to our knowledge 
there has been no ‘totally catalytic’ combination (i.e., where the 
reducing agent is present in the same catalytic amount as the nickel 
component) and there are no reports of such a method being used 
in catalytic alkylation using allyl alcohols and amines. We report 
here an air-insensitive Ni(0)-catalyzed allylation process which is 
selective for monoallylation using allylic alcohols, and which 
employs an inexpensive nickel salt and equimolar elemental zinc as 
an effective precatalyst combination. 
Catalytic alkylation of allylic acetates[4] and analogous reagents 
using Earth-scarce metal complexes is one of the most-employed 
synthetic methods for C-C bond formation, but traditional 
processes generate stoichiometric amounts of by-products 
(typically acids or their salts). The use of allylic alcohols and 
amines in such processes represents a more atom-economical 

transformation (since water or ammonia – in the case of primary 
allylamines – are the by-products), but the lower reactivity of these 
substrates typically demands the presence of stoichiometric 
amounts of activators (often Brønsted or Lewis acids). [5], [6] The 
ability of nickel complexes to mediate oxidative insertion into C-O 
and C-N bonds without the need for activating reagents has led to 
these catalysts being used in allylation using alcohols[7],[8] and 
amines; [7b], [9],[10] to date, the reported processes using alcohols 
have required Ni(COD)2, and (where mixtures are possible11 ) 
often do not show selectivity for monoallylated products. [12]  
 
 

 
 
Figure	1:	Catalytic	allylation	strategies.	
 
We commenced our study with two aims: to develop a nickel-
catalysed method using allyl amines or alcohols which delivered 
monoallylated products selectively, and to devise a means of 
accessing the crucial Ni(0) catalysts from an inexpensive, air-stable 
precursor. We chose to use NiBr2•3H2O, one of the most 
inexpensive nickel salts,[13] as our nickel source, and elemental zinc 
as the reducing agent (due to its low toxicity compared to other 
metal reducing agents, such as manganese); as mentioned, key 
goals of our study were to reduce the amount of reducing agent to a 
low level, and to avoid the use of a base in the reaction, thereby 
simplifying still further the process. 
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The first conditions examined proceeded with poor conversion, but 
in 50% yield based on recovered starting materials) (Figure 2). 
 

 
 
Figure	2.	Ni(0)-mediated	'totally	catalytic'	allylation	using	allyl	alcohol.	
 
After an extensive analysis of the effects of variation in ligand, 
solvent and additive, the optimum conditions for the reaction of 
allyl alcohol with malonate were identified (Table 1, entry 16); 
using this reagent/catalyst combination, high selectivity for 
monoallylated product 1 was observed, in contrast to previously 
reported catalytic nickel allylation processes,[11] and despite the use 
of two equivalents of the nucleophile (used in excess to improve 
yield). Moreover, the relative stoichiometry in the process 
described here does not require large excesses of either reagent, or 
reducing agent, or ligand. These facts endow this method with 
enhanced utility, improved environmental impact and great 
practicality. 
 
Table	1:	Reaction	optimization	

	
Entry	 Ligand	 Solvent	 Temp	 Time	 Conv/%a	 Yield/%b	 Selectivity	c	

1	 dppb	 DMF	 80	°C	 18	h	 28	 50d	 77:23	

2	 dppb	 DMF	 80	°C	 96	h	 50	 60d	 91:9	

3	 PPh3	 DMF	 80	°C	 96	h	 <5	 0	 -	

4	 dppe	 DMF	 80	°C	 96	h	 <5	 0	 -	

5	 dppp	 DMF	 80	°C	 96	h	 <5	 0	 -	

6	 dppf	 DMF	 80	°C	 96	h	 90	 58	 82:18	

7	 XantPhos	 DMF	 80	°C	 96	h	 <5	 0	 -	

8	 BINAP	 DMF	 80	°C	 96	h	 <5	 0	 -	

9	 dppf	 NMP	 80	°C	 96	h	 <5	 0	 -	

10	 dppf	 MeCN	 80	°C	 96	h	 23	 70d	 >95:5	

11	 dppf	 DMA	 80	°C	 66	h	 >95	 51	 80:20	

12	 dppf	 DMA	 50	°C	 66	h	 75	 41d	 91:9	

13	 dppf	 DMA	 50	°C	 66	h	 35	 37d,	e	 95:5	

14	 dppf	 DMA	 50	°C	 66	h	 70	 44d,f	 90:10	

15	 dppf	 DMA	 50	°C	 66	h	 >95	 48g	 85:15	

16	 dppf	 DMA	 50	°C	 66	h	 >95	 71g,h	 >90:10	
a. Estimated from 1H NMR of crude product; b. Isolated yield; c. 

Monoallylated : diallylated (determined from 1H NMR of crude product); d 
Yield based on recovered starting material; f 5 mol% AcOH present; f 5 
mol% NH4OAc present; g 5 mol% NBu4OAc[14] present; h 2 eq. malonate 
used. 
 
Armed with a robust, operationally simple method for selective 
nickel-catalysed monoallylation, we next examined the scope of 
the reaction, from the perspective of the nucleophilic component. 
Thus, a range of nucleophilic partners were tested using the 

optimized conditions, furnishing a library of allylation products 1 
and 3a-n (Table 2). As demonstrated by these data, there is a clear 
effect of CH acidity upon the product composition, with more 
acidic substrates more likely to deliver mixtures of products. H-
bonding[15] seems to enhance diallylation (as seen in preparation of 
3l). There is also an effect of steric compression in the ester 
component: thus, whilst dimethyl malonate gives only monoallyl 
product 1, larger esters tend to give (separable) mixtures of 
products (vide 3g and 3j). Quaternary centres can be created in the 
reaction, as shown by obtention of 3d–f in good yields. 
 

 

Table	2:	Scope	of	the	Ni-catalysed	allylation	of	nucleophiles	with	allyl	
alcohol	

	

	

Reaction conditions: Allyl alcohol (1.0 mmol), nucleophile (2.0 
mmol), NiBr2•3H2O (0.05 mmol), dppf (0.05 mmol), nBu4NOAc (0.05 
mmol) , zinc (0.05 mmol), DMA, 50 ˚C, 66 h, sealed vial. a reaction 
carried out at 80 ˚C; b Monoallylated : diallylated. 
 
Having probed the scope of nucleophile in this nickel-catalysed 
processes, the reactions of a range of allyl alcohols with acetamide 
4 were next examined: these transformations generally proceeded 
in good yields, and with complete selectivity for monoallylated 

X NiBr2•3 H2O (5 mol%) CO2Me

CO2Me
+

MeO2C CO2Me

Zn (5 mol%), dppb (5 mol%)
DMF, 80 ˚C, 22 h

CO2Me

CO2Me

1 2

X = OAc: <5% conversion <5% yield
X = OH: 28% conversion 14% yield, 1 : 2 = 77 : 23

OH NiBr2•3 H2O (5 mol%) CO2Me

CO2Me

MeO2C CO2Me

Zn (5 mol%), ligand (5 mol%)
additive, solvent, temp., time

1

OH

NiBr2•3 H2O (5 mol%)
R Zn (5 mol%), dppf (5 mol%)

Bu4NOAc (5 mol%), DMA
50 ˚C, 66h 3

O

R1
R
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CO2Et
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OMe

Me O

CONH2

OMe

CO2Et

CN

CO2Me

CN

O

O

CONHPh

OMe

CO2Et

Ph O

CO2Me

CO2Bn

COPh

OMe CO2Me

CO2MeMe

O

OEtO

O

MeO

1 71% yield 3a 96% 3b 53%

3c 60% 3d 65%a 3e 86%

3f 68% 3g 51%a (88 : 12)b 3h 51% (71 : 29)

3i 99% (24 : 76) 3j 98% (86 : 14) 3k 99% (71 : 29)

3l 66% (42 : 58) 3m 73% 3n 89%
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products (Table 3). In all cases, where possible, linear products 
were favoured over branched isomers (vide substrates 5b, 5d and 
5h, entries 3,5 and 9), and alkene stereochemistry was retained 
(entries 6 and 7). The obtention of the same products (3aa, 3ab and 
3ae) from isomeric alcohols implies a common intermediate in 
each of these reactions. 
 
Table	3:	Scope	of	the	Ni-catalysed	allylation	with	various	allyl	alcohols	

	
Entry	 Alcohol	5	 Product	 Yield/%a	

1	  
	 	

3a	

96	

2	 	
5a	

	
3aa	

73	

3	 	
5b	

27	

4	 	
5c	

	
3ab	

69	

5	 	
5d	

56	

6	
	

5e	 	
3ac	

54	

7	 	
5g	 	

3ad	

66	

8	 	
5g	

	
3ae	

48	

9	 	
5h	

94	

10	 	
5k	 	

3af	

73	

Reaction conditions: Allyl alcohol (1.0 mmol), N-phenyl 
acetoacetamide (2.0 mmol), NiBr2•3H2O (0.05 mmol), dppf (0.05 
mmol), nBu4NOAc (0.05 mmol) , zinc (0.05 mmol), DMA, 50 ˚C, 66 
h, sealed vial; a. Isolated yield. 
 
Though palladium-mediated processes are well-known,[16] there are 
no reports of a general method for nickel-catalysed allylation 

reactions using allyl amines.[10] We were gratified, therefore, to 
observe that our method was also productive when using N,N-
diethyl allylamine or allylamine itself as a π-allyl precursor (Table 
4).  
 
Table	4:	Ni-catalysed	allylation	using	allylamine	

	
Entry	 R	 a	 Ligand	 Yield/%a	 Selectivityb	

1	 Et	 15	 dppb	 89	 85:15	

2	 Et	 10	 dppb	 80	 85:15	

3	 Et	 5	 dppb	 90	 85:15	

4	 Et	 5	 dppb	 74c	 85:15	

5	 H	 5	 dppb	 86	 85:15	

6	 H	 5	 dppf	 0d	 –	
a. Isolated yield; b Monoallylated : diallylated; c. NiCl•6H2O used; d. 
Complex mixture of products obtained. 

 
In the process using allylamine, mixtures of mono- and diallylated 
products were more often obtained, perhaps being a reflection of 
the relative basicity of the leaving group (an amide, rather than 
hydroxide), which more rapidly deprotonates the monoallylated 
product and thereby encouraging diallylation. Using a range of 
active methylene nucleophiles, allylamine reacted to give products 
of C-allylation (Table 5). 
 
Table	5:	Scope	of	the	Ni-catalysed	allylation	with	allyl	amine	

	
Entry	 R	 R1	 Product	 Yield	%		 Ratioa	

1	 CO2Me	 OMe	
	

89	 71	:	29	

2	 CONHPh	 Me	
	

53	 62	:	38	

3	 CO2Et	 Ph	
	

30b	 100:0	

4	 CO2Et	 OEt	
	

75	 73	:	27	

5	 CO2Me	 OBn	
	

84	 76	:	24	

6	 CO2Bn	 Me	
	

40	 100	:	0	

7	 CN	 OEt	
	

96	 27	:	63	

8	 CONH2	 Me	
	

23	 30	:	70	

Reaction conditions: Allyl amine (1.0 mmol), nucleophile (1.5 mmol), 
NiBr2•3H2O (0.05 mmol), dppb (0.05 mmol), zinc (0.05 mmol), 

OH NiBr2•3 H2O (5 mol%)
+

Zn (5 mol%)
dppf (5 mol%)

Bu4NOAc (5 mol%)
DMA, 50 ˚C, 66h

CONHPh
O

R3

R1

R2 CONHPh

O
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R3

R1
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5 4
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O
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O
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Me Me
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O
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O
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O
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O
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Ph

OHMe
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O

Me

NR2
NiBr2•3 H2O (5 mol%)

+
Zn (a mol%)

Ligand (5 mol%)
DMF, 80 ˚C, 22h 1

MeO2C CO2Me
CO2Me

CO2Me

NH2
NiBr2•3 H2O (5 mol%)

+ R Zn (5 mol%), dppb (5 mol%)
DMF, 80 ˚C, 22h

O

R1
R

OR1

CO2Me

CO2Me
1

CONHPh

OMe
3a

CO2Et

Ph O
3b

CO2Et

CO2Et
3g

CO2Me

CO2Bn
3j

CO2Bn

Me O
3k

CO2Et

CN
3i

CONH2

OMe
3l
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DMF, 80 ˚C, 66 h, sealed vial. a Monoallylated : diallylated; b N,N-
diethylallylamine used. 
 
In summary, we have described a practical, scalable and cost-
effective method for executing nickel-catalysed C-allylation 
reactions using readily available, inexpensive, air-insensitive 
reagents. The use of allyl alcohols and amines as substrates in 
such reactions offers significant advantages and can be easily 
applied to gram-scale preparations. We are currently engaged 
in exploring the mechanistic nuances and extending the 
boundaries of this highly practical catalytic process. 
 

Keywords: • Catalytic • nickel • C-C bond formation • allylation • 
sustainable • quaternary  
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