Two New Triterpene Saponins from Acanthophyllum laxiusculum

by David Pertuit^a), Tayebe Baghery Lotfabad^b), Anne-Claire Mitaine-Offer^a), Tomofumi Miyamoto^c), Chiaki Tanaka^c), and Marie-Aleth Lacaille-Dubois^{*a})

^a) EA 4267, FDE/UFC Laboratoire de Pharmacognosie, UFR Pharmacie, Université de Bourgogne, 7, Bd Jeanne d'Arc, BP 87900, FR-21079 Dijon Cedex

(phone: +33-3-80393229; fax: +33-3-80393300; e-mail: m-a.lacaille-dubois@u-bourgogne.fr)

^b) National Institute of Genetic Engineering and Biotechnology (NIGEB), Shahrak-e Pajoohesh, km 15, Tehran-Karaj Highway, Tehran, Iran

^c) Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka 812-8582, Japan

Two new triterpene glycosides, **1** and **2**, together with three known ones, were isolated from roots of *Acanthophyllum laxiusculum* SCHIMAN-CZEIKA. The structures of the new compounds were established by extensive 1D- and 2D-NMR spectroscopic experiments and MS analyses as $23 - O - \beta$ -D-galactopy-ranosylgypsogenic acid $28 - O - [\beta$ -D-glucopyranosyl- $(1 \rightarrow 2)$ -6 - O - [4-carboxy-3-hydroxy-3-methyl-1-oxobutyl]- β -D-glucopyranosyl- $(1 \rightarrow 2)$ -6 - O - [4-carboxy-3-hydroxy-3-methyl-1-oxobutyl]- β -D-glucopyranosyl- $(1 \rightarrow 2)$ -6 - O - [4-carboxy-3-hydroxy-3-methyl-1-oxobutyl]- β -D-glucopyranosyl- $(1 \rightarrow 2)$ -6 - O - [4-carboxy-3-hydroxy-3-methyl-1-oxobutyl]- β -D-glucopyranosyl- $(1 \rightarrow 2)$ -6 - O - [4-carboxy-3-hydroxy-3-methyl-1-oxobutyl]- β -D-glucopyranosyl- $(1 \rightarrow 3)$]- β -D-galactopyranosyl- $(1 \rightarrow 3)$]- β -D-galactopyranosyl- $(1 \rightarrow 3)$ - β -D-galactopyranosyl-(2).

Introduction. – In a continuation of our studies on saponins from the plants of the Caryophyllaceae family [1-6], we have examined the saponins from the roots of *Acanthophyllum laxiusculum* SCHIMAN-CZEIKA (syn.: *Acanthophyllum heratense* SCHIMAN-CZEIKA). *Acanthophyllum* C.A.MEY is a genus with *ca*. 61 herbaceous species worldwide, of which 33 occur in Iran, with 23 being endemic [7]. Traditionally, all species of *Acanthophyllum* are used as soup in Khorasan Province, and the aqueous extract of their roots is used to make a special type of candy [5]. No previous phytochemical study has been reported on saponins of *A. laxiusculum*. Herein, we report the isolation and structure elucidation of two new triterpene saponins, **1** and **2** (*Fig.*), and the identification of three known ones, **3**–**5** (*Fig.*), from the H₂O extract of the roots of this plant.

Results and Discussion. – The H_2O extract of roots of *A. laxiusculum* was fractionated by vacuum liquid chromatography (VLC) and purified by repeated medium-pressure liquid chromatography (MPLC) on normal or reversed-phase (RP) silica gel to yield **1** and **2** (*Fig.*), and three known compounds. Their structures were elucidated by extensive NMR spectroscopy, including a series of 2D-NMR experiments (¹H,¹H-COSY, TOCSY, NOESY, HSQC, and HMBC), and by mass spectrometry. The known saponins were identified by comparison of their spectral data with those reported in the literature as glanduloside C (**4**) from *Acanthophyllum glandulosum*, *Acanthophyllum sordidum*, *Acanthophyllum lilacinum*, and *Acanthophyllum elatius* [3][6], its prosapogenin, **3**, from *Gypsophila oldhamania* [8], and 3-*O*-

^{© 2015} Verlag Helvetica Chimica Acta AG, Zürich

Figure. Structures of 1-5

 $\begin{array}{l} \beta\mbox{-}D\mbox{-}galactopyranosyl-(1\rightarrow2)\mbox{-}[\beta\mbox{-}D\mbox{-}xylopyranosyl-(1\rightarrow3)\mbox{-}\beta\mbox{-}D\mbox{-}pglucuronopyranosyl-(1\rightarrow4)\mbox{-}a\mbox{-}L\mbox{-}hamnopyranosyl-(1\rightarrow2)\mbox{-}[(4\mbox{-}O\mbox{-}a\mbox{-}e\mbox{-}p$

Compounds 1 and 2 were isolated as white amorphous powder. The monosaccharides obtained by acid hydrolysis of each compound were identified as galactose and glucose for **1** and **2** by TLC comparison with authentic samples. The absolute configurations were determined as D for all sugars (see the *Exper. Part*) by GC analysis [9].

The HR-ESI mass spectrum of 1 exhibited a quasi-molecular-ion peak at m/z1463.6311 ($[M + Na]^+$) consistent with the molecular formula $C_{66}H_{104}O_{34}$. The positiveion-mode ESI-MS of 1 exhibited two quasi-molecular-ion peaks at m/z 1479 ([M+ K^{+} and 1463 ($[M + Na]^{+}$). The HSQC spectrum of the aglycone exhibited six Me signals at $\delta(H)/\delta(C)$ 1.46 (s)/11.5 (C(24)), 0.82 (s)/15.7 (C(25)), 0.92 (s)/17.0 (C(26)), 1.03 (s)/25.6 (C(27)), 0.76 (s)/32.7 (C(29)), and 0.82 (s)/23.3 (C(30)), one olefinic CH signal at 5.32 (s)/123.1 (C(12)), and a C_q signal at 143.8 (C(13); Table 1). These data were indicative of an olean-12-ene-type aglycone [2][6]. The HMBC cross-peaks between $\delta(H)$ 1.46 (Me(24)), and $\delta(C)$ 74.8 (C(3)), 54.7 (C(4)), 51.6 (C(5)), and 177.5 (C(23)) indicated that one secondary OH and one ester group were located at C(3) and C(23), respectively. Another upfield-shifted carboxylate C-atom signal at $\delta(C)$ 176.3 (C(28)) evidenced that 1 was a bidesmosidic saponin with two glycosyl ester linkages at C(23) and C(28). An extensive analysis of 1D- and 2D-NMR spectroscopic data indicated that the aglycone of **1** was gypsogenic acid (= (3β) -3-hydroxyolean-12-ene-23,28-dioic acid), and they were in good agreement with those in [2] and [6]. The ¹H-NMR spectrum of **1** exhibited signals of five anomeric H-atoms at $\delta(H)$ 6.25 (d, J = 7.8), 6.06 (d, J=7.3), 5.26 (d, J=7.6), 4.88 (d, J=7.6), and 5.23 (d, J=7.8), which correlated in the HSQC spectrum with signals of five anomeric C-atoms at $\delta(C)$ 95.9, 94.9, 104.7, 102.4, and 104.5, respectively, indicating the presence of five sugar units. Complete assignments of each sugar were achieved by extensive 1D- and 2D-NMR analyses, allowing the identification of two β -galactopyranosyl (Gal1 and Gal2) and three β -glucopyranosyl (Glc1–Glc3) units, respectively. The HMBC cross-peak 6.25 (H-C(1) of Gal1)/177.5 (C(23) of the aglycone unit (Agly)) established that the Gal1unit was linked to C(23) of Agly. The HMBC cross-peaks at $\delta(H)/\delta(C)$ 6.06 (H–C(1) of Gal2)/176.3 (C(28) of Agly); 5.26 (H–C(1) of Glc1)/86.9 (C(3) of Gal2); 4.88 (H–C(1) of Glc2)/69.1 (C(6) of Gal2); and 5.23 (H-C(1) of Glc3)/82.0 (C(2) of Glc2) indicated that the oligosaccharide sequence Glc3- $(1 \rightarrow 2)$ -Glc2- $(1 \rightarrow 6)$ -[Glc1- $(1 \rightarrow 3)$]-Gal2 was linked to C(28) of Agly. These linkages were also confirmed by the following NOESY cross-peaks: $\delta(H)$ 5.26 (H–C(1) of Glc1)/ $\delta(H)$ 4.25 (H–C(3) of Gal2); 4.88 (H–C(1) of Glc2)/4.25 (CH₂(6) of Gal2); and 5.23 (H–C(1) of Glc3)/4.05 (H–C(2) of Glc2). Furthermore, the deshielded signals of CH₂(6) of Glc2 at δ (H) 4.48, 4.82/ δ (C) 63.9 indicated an acylation in this position. The presence of a dicrotalic acid moiety (=3hydroxy-3-methylpentanedioic acid) was ascertained by the observation of a set of additional signals in the 1D- and 2D-NMR spectra corresponding to a 4-carboxy-3hydroxy-3-methyl-1-oxobutyl moiety (see Table 2), which were in good agreement with those reported in [10-12]. The linkage of this unit to CH₂(6) of Glc2 was confirmed by the HMBC $\delta(H)$ 4.48/ $\delta(C)$ 170.8. Thus, **1** was elucidated as 23-O- β -D-galactopyranosylgypsogenic acid 28-O-{ β -D-glucopyranosyl-(1 \rightarrow 2)-6-O-[4-carboxy-3-hydroxy-3-methyl-1-oxobutyl]- β -D-glucopyranosyl- $(1 \rightarrow 6)$ -[β -D-glucopyranosyl- $(1 \rightarrow 3)$]- β -Dgalactopyranosyl ester.

The positive-ion-mode HR-ESI-MS of **2** exhibited a *quasi*-molecular-ion peak at m/z 1301.5774 ($[M + Na]^+$) consistent with the molecular formula C₆₀H₉₄O₂₉. The positive-ion-mode ESI-MS of **2** exhibited a *quasi*-molecular-ion peak at m/z 1301

2	
	$\delta(C)$
	38.7
	26.9
	75.3
	53.9
	51.3
	23.6
	32.0
	39.9
L(m)	47.6
	36.5
	23.4
5)	123.1
·	144.0
	41.8
-2.12(m)	27.9
	21.4
	46.8
d, J = 12.0)	41.3
	46.0
	30.4
	33.6
-1.58(m)	32.2
	183.0
	12.5
	15.8
	17.2
	25.8
	176.4
	32.8
	23.4
de	determined.

Table 1. ¹*H*- and ¹³*C*-*NMR* Data (600 and 150 MHz, resp.; in C_5D_5N) of the Aglycone of **1** and **2** from 1D- and 2D-NMR Experiments^a). δ in ppm, J in Hz.

 $([M + Na]^+)$, 162 mass units lower than that for **1**. The ¹H- and ¹³C-NMR assignments of **2** (*Tables 1* and 2) accomplished by extensive 2D-NMR analyses were almost superimposable to those of **1** except for the disappearance of the signals of a terminal galactopyranosyl moiety. The characteristic upfield ¹³C-NMR signal of an carboxylate C-atom in **1** at $\delta(C)$ 177.5 (C(23)) was replaced by a signal at 183.0 in **2**, indicative of a COOH group. This was confirmed by the HMBCs between $\delta(H)$ 1.47 (*s*, Me(24)), and $\delta(C)$ 183.0 (C(23)), 75.3 (C(3)), and 53.9 (C(4)). Thus, the structure of **2** was elucidated as gypsogenic acid 28-*O*-{ β -D-glucopyranosyl-(1 \rightarrow 2)-6-*O*-[4-carboxy-3-hydroxy-3-methyl-1-oxobutyl]- β -D-glucopyranosyl-(1 \rightarrow 6)}-[β -D-glucopyranosyl-(1 \rightarrow 3)]-

A literature survey revealed that the sequence 23-O-Gal-gypsogenic acid 28-O-Gal with a terminal Gal moiety at C(23), and additional substitutions at C(3) and C(6) of

 β -D-galactopyranosyl ester.

Position	1	2		
	$\delta(\mathrm{H})$	$\delta(C)$	$\delta(\mathrm{H})$	$\delta(C)$
23-O-Sugar				
Gal1				
1	6.25 (d, J = 7.8)	95.9		
2	4.10	73.5		
3	4.20	77.9		
4	4.14	70.6		
5	3.93	78.7		
6	4.17, 4.32	61.6		
28-O-Sugars				
Gal2				
1	6.06 (d, J = 7.3)	94.9	6.06 (d, J = 7.3)	94.3
2	4.22	72.5	4.22	72.6
3	4.25	86.9	4.23	87.1
4	4.23	68.5	4.24	68.5
5	4.02	76.9	4.04	76.9
6	4.25, 4.43	69.1	4.25, 4.46	69.4
Glc1	,		<i>,</i>	
1	5.26 (d, J = 7.6)	104.7	5.23	104.8
2	4.02	75.4	4.03	75.3
3	4.06	77.5	4.09	77.3
4	3.96	71.3	3.95 (dd, I = 8.8, 8.0)	70.9
5	3.85 - 3.90 (m)	77.9	3.84 - 3.88 (m)	77.8
6	4 10 4 42	62.0	4 24 4 40	61.9
Glc2	1.10, 1.12	02.0	1.21, 1.10	01.9
1	4.88(d I - 7.6)	102.4	4 89	102.5
2	4.05 (<i>a</i> , <i>s</i> = 7.0)	82.0	4.09	82.0
2	4.16	77.4	4.14 - 4.18 (m)	77.3
1	3.03	70.8	3.06 (dd I - 8.8.80)	70.7
4 5	2.78 - 2.82 (m)	70.8	3.90 (uu, J = 0.0, 0.0)	70.7
5	5.76 - 5.82 (m)	62.0	3.81 - 3.84 (m)	64.9
0	4.48 (aa, J = 10.7, 4.0), 4.82 (br. d. J = 10.4)	05.9	4.40, 4.09	04.0
Glc3				
1	5.23 (d, J = 7.8)	104.5	5.24	104.8
2	4.03	75.3	4.02	74.9
3	4.09	77.5	4.09	77.3
4	4.05	70.5	4.09	70.9
5	3.81 - 3.84 (m)	77.8	3.84 - 3.88 (m)	77.8
6	4.23, 4.42	62.0	4.10, 4.42	61.9
Acid at C(6) of Glc2				
1		170.8		171.1
2	2.80 - 2.86 (m, 2 H)	46.9	2.82–2.89 (<i>m</i> , 2 H)	47.0
3	× / /	70.0		69.9
4	2.70 (d, J = 15.2), 2.90 (d, J = 15.0)	47.7	2.72 (d, J = 15.4), 2.90	47.6
5		179.8		179.2
6	1.49 (s)	27.8	1.51 (s)	28.0
^a) Overlapped signals	are reported without multiplicity.			

Table 2. ¹H- and ¹³C-NMR Data (600 and 150 MHz, resp.; in C_5D_5N) of the Sugar Moieties of **1** and **2** from 1D- and 2D-NMR Experiments^a). δ in ppm, J in Hz.

Gal at C(28) in **1** occurs in several saponins isolated only from *Acanthophyllum* species of Caryophyllaceae, such as *A. glandulosum*, *A. sordidum*, and *A. lilacinum* [3][6]. These conclusions suggested that this sequence might represent a chemotaxonomic marker for the genus *Acanthophyllum*.

Experimental Part

General. TLC and HP-TLC: silica gel 60 F_{254} (SiO₂; Merck); identification of saponins with 1% vanillin in EtOH/H₂SO₄ 50 :1. VLC/MPLC: SiO₂ 60 (15–40 µm; Merck), RP-18 (75–200 µm; SiliCycle). MPLC: Alltech pump, Büchi column (460 × 15 mm and 230 × 15 mm), Büchi precolumn (110 × 15 mm). GC: ThermoQuest gas chromatograph, DB-1701 cap. column (30 m × 0.25 mm i.d; J&W Scientific); detector, FID; detector temp., 250°; injection temp., 230°; initial temp., 80° for 5 min and then increased to 270° at a rate of 15°/min; carrier gas, He [12]. Optical rotations: AA-OR automatic polarimeter. ¹H-and ¹³C-NMR spectra: Varian Unity-600 and Inova-600 instruments equipped with a Sun-4-L-X computer system (at 600 and 150 MHz, resp.); for details see [1]; δ in ppm rel. to Me₄Si as internal standard, J in Hz. ESI-MS (pos.): MicrOTOF spectrometer; in m/z. HR-ESI-MS (pos.): Q-TOF-1 Micromass spectrometer; in m/z.

Plant Material. The roots of *A. laxiusculum* SCHIMAN-CZEIKA were collected from Torbat-e Heydarieh, Khorasan Province, Iran, in July 2012, and identified by Dr. *Atefeh Pirani*, plant taxonomist at the Traditional Medicine and Materia Medica Research Center, Shahid Beheshti University of Medical Sciences, where a voucher specimen (No. 09092013) was deposited.

Extraction and Isolation. Air-dried powdered roots of *A. laxiusculum* (30 g) were extracted with $H_2O(3 \times 500 \text{ ml})$ for 6 h under reflux to yield 8.5 g of a crude H_2O extract after evaporation. An aliquot of this extract (1.96 g) was submitted to VLC (SiO₂ 60; CHCl₃/MeOH/H₂O 60:32:7 and 0:100:0 (300 ml each)) to give six fractions, *Frs.* 1–6. *Fr.* 2 (186 mg; eluted with CHCl₃/MeOH/H₂O 60:32:7) was separated by MPLC (SiO₂ 60; CHCl₃/MeOH/H₂O 60:32:7) to give 15 subfractions, *Frs.* 2.1–2.15 (*Fr.* 2.14: **2** (7 mg) and *Fr.* 2.9: **5** (12 mg)). Furthermore, *Fr.* 4 (350 mg) was subjected to VLC (*RP-18*; MeOH/H₂O 0:100 \rightarrow 100:0) to give six subfractions, *Frs.* 4.1–4.6. *Frs.* 4.4 and 4.5 were combined (210 mg) and separated by MPLC (SiO₂ 60; CHCl₃/MeOH/H₂O 60:32:7) to give ten subfractions, *Frs.* 4.4.1–4.4.10. *Fr.* 4.4.6 was purified by MPLC (*RP-18*; MeOH/H₂O 30:70 \rightarrow 80:20) to give **1** (11 mg). *Fr.* 2.5 (59 mg) was separated by MPLC (*RP-18*; MeOH/H₂O 30:70 \rightarrow 80:20) to give **3** (7 mg) and **4** (9 mg).

23-O- β -D-Galactopyranosylgypsogenic Acid 28-O- $[\beta$ -D-Glucopyranosyl- $(1 \rightarrow 2)$ -6-O-[4-carboxy-3-hydroxy-3-methyl-1-oxobutyl]- β -D-glucopyranosyl- $(1 \rightarrow 6)$]- $[\beta$ -D-glucopyranosyl- $(1 \rightarrow 3)$]- β -D-galactopyranosyl Ester (=O- β -D-Glucopyranosyl- $(1 \rightarrow 3)$ -O- $[O-\beta$ -D-glucopyranosyl- $(1 \rightarrow 2)$ -6-O-(4-carboxy-3-hydroxy-3-methyl-1-oxobutyl)- β -D-glucopyranosyl- $(1 \rightarrow 6)$]-1-O- $[(3\beta)$ -23- $(\beta$ -D-galactopyranosyloxy)-3-hydroxy-23,28-dioxoolean-12-en-28-yl]- β -D-galactopyranose; **1**). White amorphous powder. $[a]_{25}^{25} = -10.2 \ (c = 0.09, \text{ MeOH})$. ¹H- and ¹³C-NMR: Tables 1 and 2. ESI-MS (pos.): 1479 ($[M + K]^+$), 1463 ($[M + Na]^+$). HR-ESI-MS (pos.): 1463.6311 ($[M + Na]^+$, C₆₆H₁₀₄NaO₃₄; calc. 1463.6301).

Gypsogenic Acid 28-O-[β -D-Glucopyranosyl-($1 \rightarrow 2$)-6-O-[4-carboxy-3-hydroxy-3-methyl-1-oxobutyl]- β -D-glucopyranosyl-($1 \rightarrow 6$)]-[β -D-glucopyranosyl-($1 \rightarrow 3$)]- β -D-galactopyranosyl Ester (=O- β -D-Glucopyranosyl-($1 \rightarrow 3$)-O-[O- β -D-glucopyranosyl-($1 \rightarrow 2$)-6-O-(4-carboxy-3-hydroxy-3-methyl-1-oxobutyl)- β -D-glucopyranosyl-($1 \rightarrow 6$)]-1-O-[(3β)-3,23-dihydroxy-23,28-dioxoolean-12-en-28-yl]- β -D-galactopyranose; **2**). White amorphous powder. [α] $_{25}^{25}$ = -16.8 (c = 0.07, MeOH). ¹H- and ¹³C-NMR: Tables 1 and 2. ESI-MS (pos.): 1301 ([M + Na]⁺). HR-ESI-MS (pos.): 1301.5774 ([M + Na]⁺, C₆₀H₉₄NaO₂₉; calc. 1301.5773).

Acid Hydrolysis and GC Analysis. Compounds **1** and **2** (3 mg) were hydrolyzed with 2N aq. CF₃COOH (5 ml) for 3 h at 95°. After extraction with CH₂Cl₂ (3×5 ml), the aq. layer was repeatedly evaporated to dryness until neutral by addition of MeOH, and then analyzed by TLC (SiO₂; CHCl₃/ MeOH/H₂O 8:5:1), followed by comparison with authentic samples. Further, the residue of sugars was dissolved in anh. pyridine (100 µl), and L-cysteine methyl ester hydrochloride (0.06 mol l⁻¹) was added. The mixture was stirred at 60° for 1 h, then 150 µl of hexamethyldisilazane (HMDS)/Me₃SiCl; 3:1) were

616

added, and the mixture was stirred at 60° for another 30 min. The precipitate was centrifuged, and the supernatant was concentrated under N₂. The residue was partitioned between hexane and H₂O (0.1 ml each), and the hexane layer (1 µl) was analyzed by GC [9]. The absolute configurations were determined by comparing the $t_{\rm R}$ values with those of the thiazoline derivatives prepared in a similar way from standard sugars (*Sigma–Aldrich*): $t_{\rm R}$ (p-galactose) 19.6 and $t_{\rm R}$ (p-glucose) 18.6 min for **1** and **2**.

REFERENCES

- [1] G. Gaidi, T. Miyamoto, A. Rustaiyan, V. Laurens, M.-A. Lacaille-Dubois, J. Nat. Prod. 2000, 63, 1497.
- [2] M. Elbandy, T. Miyamoto, M.-A. Lacaille-Dubois, Helv. Chim. Acta 2007, 90, 260.
- [3] G. Gaidi, T. Miyamoto, M. Ramezani, M.-A. Lacaille-Dubois, J. Nat. Prod. 2004, 67, 1114.
- [4] D. Pertuit, S. Avunduk, A.-C. Mitaine-Offer, T. Miyamoto, C. Tanaka, T. Paululat, S. Delemasure, P. Dutartre, M.-A. Lacaille-Dubois, *Phytochemistry* 2014, 102, 182.
- [5] M. Haddad, T. Miyamoto, M. Ramezani, M.-A. Lacaille-Dubois, Helv. Chim. Acta 2004, 87, 73.
- [6] G. Timité, A.-C. Mitaine-Offer, T. Miyamoto, M. Ramezani, A. Rustaiyan, J.-F. Mirjolet, O. Duchamp, M.-A. Lacaille-Dubois, *Magn. Reson. Chem.* 2010, 48, 370.
- [7] S. M. Ghaffari, Biol. Bratislava 2004, 59, 53.
- [8] J.-G. Luo, L. Ma, L.-Y. Kong, Bioorg. Med. Chem. 2008, 16, 2912.
- [9] S. Hara, H. Okabe, K. Mihashi, Chem. Pharm. Bull. 1987, 35, 501.
- [10] G. Mihci-Gaidi, S. Ozbey, I. Orhan, B. Sener, T. Miyamoto, J.-F. Mirjolet, O. Duchamp, A.-C. Mitaine-Offer, M.-A. Lacaille-Dubois, *Planta Med.* 2010, 76, 818.
- [11] K. Koike, Z. Jia, T. Nikaido, *Phytochemistry* **1998**, *47*, 1343.
- [12] G. Mihci-Gaidi, D. Pertuit, T. Miyamoto, J.-F. Mirjolet, O. Duchamp, A.-C. Mitaine-Offer, M.-A. Lacaille-Dubois, *Nat. Prod. Commun.* 2010, 5, 1023.

Received July 29, 2014