

Synthetic Methods

Room Temperature C—P Bond Formation Enabled by Merging Nickel Catalysis and Visible-Light-Induced Photoredox Catalysis

Jun Xuan,^[a] Ting-Ting Zeng,^[a] Jia-Rong Chen,^[a] Liang-Qiu Lu,^{*[a]} and Wen-Jing Xiao^{*[a, b]}

Abstract: A novel and efficient C–P bond formation reaction of diarylphosphine oxides with aryl iodides was achieved by combining nickel catalysis and visible-light-induced photoredox catalysis. This dual-catalytic reaction showed a broad substrate scope, excellent functional group tolerance, and afforded the corresponding products in good to excellent yields. Compared with the previously reported use of photoredox/nickel dual catalysis in the construction of C–C bonds, the methodology described herein was observed to be the first to allow for C-heteroatom bond formation.

Over the past several years, transition-metal-catalyzed crosscoupling reactions have been established as one of the most useful and efficient methods for creating new C-C and C-heteroatom bonds.^[1] More intriguingly, dual catalysis realized by merging transition-metal catalysis with visible-light-induced photoredox catalysis has recently attracted considerable attention.^[2] Exploration of this dual-catalytic strategy has allowed for the development of various useful chemical transformations, which are unfeasible or not easily accessible by a single catalytic system. In 2011, Sanford and co-workers published a seminal contribution on the arylation of unactivated arenes by combining palladium catalysis and visible-light photoredox catalysis.^[3a] Since that study, many other transition metals, such as copper,^[4] gold,^[5] and rhodium,^[6] have been subsequently introduced to this emerging research area. However, very recently, a milestone was reached in the field of photoredox/nickel dual catalysis when two elegant examples of this catalytic process appeared simultaneously. One example was

[a]	J. Xuan, TT. Zeng, Prof. Dr. JR. Chen, Dr. LQ. Lu, Prof. Dr. WJ. Xiao CCNU-u Ottawa Joint Research Centre Key Laboratory of Pesticide & Chemical Biology Ministry of Education, College of Chemistry
	Central China Normal University (CCNU)
	152 Luoyu Road, Wuhan, Hubei 430079 (China)
	E-mail: luliangqiu@mail.ccnu.edu.cn
	wxiao@mail.ccnu.edu.cn
	Homepage: http://chem-xiao.ccnu.edu.cn/
[b]	Prof. Dr. WJ. Xiao
	Collaborative Innovation Center of Chemical Science
	and Engineering, Tianjin (China)
	State Key Laboratory of Organometallic Chemistry
	Shanghai Institute of Organic Chemistry
	345 Lingling Road, Shanghai 200032 (China)

Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/chem.201500227.

Scheme 1. Photoredox/nickel dual catalysis. Boc = tert-butyloxy carbonyl, $\{dF(CF_3)ppy\} = 2-(2,4-difluorophenyl)-5-(trifluoromethyl)pyridine, dtbbpy = 4,4'-di-tert-butyl-2,2'-bipyridine, bpy = 2,2'-bipyridine, CFL = compact fluorescent light.$

the coupling of α -carboxyl sp³-carbons with aryl halides (Scheme 1 a),^[7] and the other was the coupling of benzylic trifluoroborates with aryl bromides (Scheme 1 b).^[8] In each study, the photogenerated carbon-centered radical was intercepted by a Ni^{II} intermediate II to yield Ni^{III} complex III, followed by a reductive elimination to give the final product of C–C bond formation. Despite these impressive advances, further exploration of the photoredox/nickel dual-catalytic system to develop other useful chemical transformations, especially the formation of new C–heteroatom bonds, remains a highly desirable but challenging goal.

Organophosphine compounds are an important class of chemicals that have been widely used in organic synthesis, medicinal chemistry, polymers, photoelectric materials, and coordination chemistry.^[9] Consequently, great effort has been devoted to the development of new and efficient catalytic methods for their synthesis.^[10] Generally, the visible-light-mediated C-P bond formation reaction can be divided into two categories. One is the utilization of a phosphite ester as the nucleophile to capture the photogenerated reactive species, such as iminium ion^[11] and arylgold(III) intermediates,^[12] to create new C-P bonds. The other strategy has been reported by the Kobayashi group and involves the visible-light-induced hydrophosphinylation of unactivated alkenes.^[13] In the study by Kobayashi and co-workers, a P-centred radical, generated by reductive guenching of the excited state of the photoredox catalyst with diarylphosphine oxide, was considered the key intermediate. Inspired by these elegant studies, we hypothesized

Chem. Eur. J. **2015**, 21, 1–5

Wiley Online Library

1

These are not the final page numbers! **77**

that the photogenerated P-centred radical can also be added to the metal center of the Ni^{II} intermediate II in the photoredox/nickel dual-catalytic system, thus providing an efficient alternative method for forging C–P bonds in a controllable manner. As part of our ongoing research interest in the development of new photocatalytic chemical transformations,^[14] we herein describe an efficient redoxneutral C–P bond formation reaction by merging nickel catalysis with visible-light photoredox catalysis (Scheme 1 c). To the best of our knowledge, this is the first example of a C–heteroatom bond formation reaction by using the combination of visible-light photoredox catalysis and nickel catalysis.

Our proposed dual-catalytic C–P formation reaction was initially evaluated by using 4-iodoanisole (**1 a**) and diphenylphosphine oxide **2 a** along with 10 mol% [Ni(cod)₂], 10 mol% dtbbpy as the ligand, 2 mol% [Ir{dF(CF₃)ppy}₂(dtbbpy)]PF₆ photoredox catalyst, Cs₂CO₃, and a 3W blue LED at room temperature (Table 1).^[15] To our delight, we observed the desired C–P bond formation product **3 a** when using DMSO as the reaction media, albeit in a modest 16% yield (entry 1). It was observed that the solvent selection had a significant effect on the yield of the coupling reaction (entries 2–4), with MeOH being the best choice (entry 3, 65% yield). Moreover, the use of a number of commonly used nickel catalysts did not improve the reaction efficiency (entries 5 and 6). Further investigations

Table 1. Optimization of the reaction conditions. ^[a]							
MeO 1a Entry	0 + Ph−P−H Ph 2a [Ni]	[Ni] (10 r PC (2 ba	nol%), dtbbpy (mol%), 3 W blu se, solvent, deg RT, 24 h Solvent	10 mol%) µe LED Jas Ph Base	O −P Ph 3a Yield [%] ^[b]		
1	Ni(cod)	[lr]	DMSO	Cs ₂ CO ₂	16		
2	Ni(cod) ₂	[lr]	CH₃CN	Cs ₂ CO ₃	6		
3	Ni(cod) ₂	[lr]	MeOH	Cs ₂ CO ₃	65		
4	Ni(cod) ₂	[lr]	DCM	Cs ₂ CO ₃	4		
5	NiCl ₂ (PPh ₃) ₂	[lr]	MeOH	Cs ₂ CO ₃	45		
6	NiCl₂ [·] glyme	[lr]	MeOH	Cs ₂ CO ₃	42		
7	Ni(cod) ₂	[Ru]	MeOH	Cs ₂ CO ₃	72		
8	Ni(cod) ₂	[Ru]	MeOH	K ₂ CO ₃	63		
9	Ni(cod) ₂	[Ru]	MeOH	KOH	39		
10	Ni(cod) ₂	[Ru]	MeOH	DBU	71		
11 ^[c]	Ni(cod) ₂	[Ru]	MeOH	Cs ₂ CO ₃	70		
12 ^[d]	Ni(cod) ₂	[Ru]	MeOH	Cs ₂ CO ₃	83		
13 ^[e]	Ni(cod) ₂	[Ru]	MeOH	Cs ₂ CO ₃	91 (90) ^[f]		
14	-	[Ru]	MeOH	Cs ₂ CO ₃	6		
15	Ni(cod) ₂	-	MeOH	Cs ₂ CO ₃	0		
16	Ni(cod) ₂	[Ru]	MeOH	-	trace		
17 ^[g]	Ni(cod) ₂	[Ru]	MeOH	Cs ₂ CO ₃	0		
18 ^[h]	Ni(cod) ₂	[Ru]	MeOH	Cs ₂ CO ₃	0		

[a] Reaction conditions: **1a** (0.36 mmol), **2a** (0.3 mmol), Ni catalyst (10 mol%), dtbbpy (10 mol%), **PC** (2 mol%), base (0.6 mmol), and solvent (3 mL) at RT for 24 h under the irradiation of a 3W blue LED. [b] GC yield by using tetradecane as the internal standard. [c] **1a** (0.6 mmol), **2a** (0.3 mmol). [d] **1a** (0.3 mmol), **2a** (0.6 mmol). [e] [Ni(cod)₂] (2 mol%), dtbbpy (2 mol%), photocatalyst (5 mol%). [f] Isolated yield in parentheses. [g] Without visible-light irradiation. [h] Without the degassing procedure. [Ir]: [Ir{dF(CF_3)pp}_2(dtbbpy)]PF₆, **[Ru**]: [Ru(bpy)₃Cl₂)-6H₂O, cod = 1,5-cyclooctadiene, glyme = 1,2-dimethoxyethane, DMSO = dimethyl sulfoxide, DBU = 1,8-diazabicyclo[5.4.0]undec-7-ene. **PC** = photocatalyst.

revealed that the GC yield of 3a could be slightly increased when [Ru(bpy)₃Cl₆][·]6H₂O was used as the photoredox catalyst (entry 7, 72% yield). Next, we examined the influence of the base on this C-P bond formation reaction. Compared with the reaction involving Cs₂CO₃, the reaction proceeded less efficiently with other bases, such as K₂CO₃, KOH, and 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU; entries 8-10). Other reaction parameters, including the ratio of 1 a to 2 a and the catalyst loading, were also carefully screened (entries 11-13). A similar GC yield was obtained when 2.0 equivalents of 1 a were employed (entry 11). To our delight, the yield of 3a could be increased to 83% when a 1:2 ratio of 1a to 2a was used. Finally, 91% GC yield (90% isolated yield) was achieved when the reaction was performed in the presence of 5 mol% [Ru(bpy)₃Cl₆]·6H₂O and 2 mol% [Ni(cod)₂]/dtbbpy with 2.0 equivalents of Cs₂CO₃ (entry 13). The critical role of the nickel catalyst, the photoredox catalyst, light irradiation and the base, as well as the degassing procedure were demonstrated through control experiments in which no or only a trace amount of the desired product was detected upon omission of any of these components (Table 1, entries 14–18).

With the optimal reaction conditions in hand, we next probed the scope of this dual catalytic C-P formation process. As shown in Table 2, a series of diversely substituted aryl iodides reacted readily with diphenylphosphine oxide 2a under the optimal conditions. Incorporation of electron-donating (-Me, -OMe) or electron-withdrawing groups (-F, -Cl, -Br) at the para-position of iodobenzene were tolerated well, affording the corresponding coupling products 3a-f in generally high yields (entries 1-6, 71-91% yields). In addition, this dual catalytic reaction allowed for a broad range of functional groups on the aryl ring (e.g., phenols, amines, amides, and ethers) to be accommodated (entries 7-11, 81-86% yield). More significantly, the sterically encumbered 1-iodonaphthalene 11 proved to be a viable partner, affording the C-P formation product 31 in 90% yield (entry 12). To our delight, the methyl-modified secondary phosphine oxide 2b also proved to be a competent reactant to provide triarylphosphine oxide 3m in 69% yield (entry 13). It is well documented that electron-rich secondary phosphine oxides exist nearly exclusively in their pentavalent tautomeric form, which prevents them from participating in the photo-oxidation step to give the key P-centered radical intermediates.^{13,16} As expected, no desired C-P bond formation products were detected when dicyclohexylphosphine oxide 2c and ethyl phenylphosphinate 2d were utilized under the best reaction conditions (entries 14 and 15).

Notably, this photoredox/nickel dual-catalytic process could be extended further to the coupling of diarylphosphine oxide with heteroaryl iodides. For example, 5-iodo-1*H*-indole (**1 m**) and 2-iodopyridine (**1 n**) can facilely react with diphenylphosphine oxide **2a**, giving the corresponding C–P bond formation products **3p** and **3q** in 84 and 75% yield, respectively [Eq. (1) and (2)]. It is worth noting that the photoredox catalyst [Ir(ppy)₂(bpy)]PF₆ was observed to be superior in the latter case.

A plausible reaction mechanism was proposed in Scheme 2 to explain this dual catalytic C–P bond formation process. The photocatalytic cycle starts with the reductive quenching of ex-

Chem. Eur. J. **2015**, 21, 1–5

www.chemeurj.org

2

 $\ensuremath{\mathbb{C}}$ 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

FF These are not the final page numbers!

[a] Reaction conditions: 1 (0.3 mmol), 2 (0.6 mmol), [Ni(cod)₂] (2 mol%), dtbbpy (2 mo%), [Ru(bpy)₃Cl₂]⁻6H₂O (5 mol%), Cs₂CO₃ (0.6 mmol), and MeOH (3 mL) at RT for 24 h under the irradiation of a 3W blue LED. [b] Yield of the isolated product. [c] 1c (0.6 mmol), 2a (0.3 mmol). [d] 1b (0.6 mmol), 2b (0.3 mmol). [e] n.d. = not detected. Ts = p-toluenesulfonyl, Ac = acetvl.

sponding radical-cation intermediate VI and the low-valence Ru^I complex. Then, the base-promoted deprotonation of VI delivers the key P-centered radical VII.^[13] Meanwhile, the oxidative addition of the Ni⁰ species I to aryl halide 1 would give the Ni^{II} intermediate II, which rapidly intercepts the P-centered radical VII to afford the organometallic Ni^{III} complex III.^[7,8] Reductive elimination of III gives the final C-P bond formation product **3**, as well as the Ni¹ species **IV**. Finally, single-electron reduction of the Ni^I species IV by the low-valence photocatalyst Ru^I completes both of the catalytic cycles. Another reaction pathway involving the addition of P-centered radical VII to the Ni^{0} species might be possible and cannot be totally ruled out at the current stage (see Section S4 in the Supporting Information for details).

In conclusion, we have developed an efficient dual-catalytic C-P formation reaction by combining nickel catalysis and visible-light-induced photoredox catalysis. The method takes advantage of the visible-light photoredox catalytic cycle to generate P-centered radicals from diarylphosphine oxides under very mild reaction conditions (room temperature, visible-light irradiation) and combines the reaction with the nickel-catalyzed functionalization of aryl iodides. These reactions are compatible with a wide range of functional groups (e.g., phenols, amines, amides, and ethers) and give the corresponding important triarylphosphine oxides in good to excellent yields.

Experimental Section

Representative procedure

To a 10 mL Schlenk flask equipped with a magnetic stir bar 1a (0.3 mmol), **2a** (0.6 mmol), [Ru(bpy)₃Cl₂]·6H₂O (0.015 mmol),

Chem. Eur. J. 2015, 21, 1-5 www.chemeurj.org

3

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

These are not the final page numbers! 77

Scheme 2. Plausible reaction mechanism.

[Ni(cod)₂] (0.006 mmol), dtbbpy (0.006 mmol), Cs₂CO₃ (0.6 mmol), and dry MeOH (3.0 mL) were added. The resulting mixture was degassed by using a "freeze-pump-thaw" procedure (3 times). Afterwards, the solution was placed at a distance of ~5 cm from a 3W blue LED and stirred at room temperature for 24 h. Then, the solvent was removed in vacuum and the crude product was purified by flash chromatography on silica gel (silica: 200–300 μ m; eluent: petroleum ether/ethyl acetate 3:1 to 1:1) to provide the pure product 3a as a white solid in 90% (83.2 mg, 0.27 mmol) yield.

Acknowledgements

We are grateful to the National Science Foundation of China (NO. 21232003, 21202053, 21272087, and 21472057) and the National Basic Research Program of China (2011CB808603) for support of this research.

Keywords: C–P bond formation · dual catalysis · nickel · photochemistry · radicals

- [1] For selected books and reviews, see: a) Metal-Catalyzed Cross-Coupling Reactions (Eds.: F. Diederich, P. J. Stang), Wiley-VCH, Weinheim, 1998; b) Handbook of C-H Transformations: Applications in Organic Synthesis (Ed.: G. Dyker), Wiley-VCH, Weinheim, 2005; c) M. L. Crawley, B. M. Trost, H.C. Shen, Selected Applications of Transition Metal-Catalyzed Carbon-Carbon Cross-Coupling Reactions in the Pharmaceutical Industry, Wiley-VCH, Weinheim, 2012; d) J.-P. Corbet, G. Mignani, Chem. Rev. 2006, 106, 2651-2710; e) J. Magano, J. R. Dunetz, Chem. Rev. 2011, 111, 2177-2250.
- [2] For selected reviews on visible-light-induced photoredox catalysis, see: a) T. P. Yoon, M. A. Ischay, J. Du, Nat. Chem. 2010, 2, 527-532; b) F. Teplý, Collect. Czech. Chem. Commun. 2011, 76, 859-917; c) J. M. R. Narayanam, C. R. J. Stephenson, Chem. Soc. Rev. 2011, 40, 102-113; d) J. Xuan, W.-J. Xiao, Angew. Chem. Int. Ed. 2012, 51, 6828-6838; Angew. Chem. 2012, 124, 6934-6944; e) L. Shi, W. Xia, Chem. Soc. Rev. 2012, 41, 7687-7697; f) J. Xuan, L.-Q. Lu, J.-R. Chen, W.-J. Xiao, Eur. J. Org. Chem. 2013, 6755-6770; g) Y. Xi, H. Yi, A. Lei, Org. Biomol. Chem. 2013, 11, 2387-2403; h) D. P. Hari, B. König, Angew. Chem. Int. Ed. 2013, 52, 4734-4743; Angew. Chem. 2013, 125, 4832-4842; i) X.-J. Dai, X.-L. Xu, X.-N. Li, Chin. J. Org. Chem. 2013, 33, 2046-2062; j) C. K.; Xu, H.; Hu, F.; Yang, Y. Wu, Eur. J. Org. Chem. 2013, 319-325 Prier, D.A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113, 5322-5363; k) D. M. Schultz, T. P. Yoon, Science 2014, 343, 6174; for reviews on dual catalysis merging visible-light photocatalysis with other catalytic manners, see: I) B. König in Chemical Photocatalysis, De Gruyter, Berlin, 2013, Chap. 9, pp. 151-168; m) M. N. Hopkinson, B. Sahoo, J. Li, F. Glorius, Chem. Eur. J. 2014, 20, 3874-3886.
- [3] a) D. Kalyani, K. B. McMurtrey, S. R. Neufeldt, M. S. Sanford, J. Am. Chem. Soc. 2011, 133, 18566-18569; b) S. R. Neufeldt, M. S. Sanford, Adv.

Synth. Catal. 2012, 354, 3517-3522; c) J. Zoller, D. C. Fabry, M. A. Ronge, M. Rueping, Angew. Chem. Int. Ed. 2014, 53, 13264-13268; Angew. Chem. 2014, 126, 13480-13484.

- [4] a) Y. Ye, M. S. Sanford, J. Am. Chem. Soc. 2012, 134, 9034-9037; b) Y. Ye, S. A. Kunzi, M. S. Sanford, Org. Lett. 2012, 14, 4979-4981; c) M. Rueping, R. M. Koenigs, K. Poscharny, D. C. Fabry, D. Leonori, C. Vila, Chem. Eur. J. 2012, 18, 5170-5714; d) I. Perepichka, S. Kundu, Z. Hearne, C.-J. Li, Org. Biomol. Chem. 2015, 13, 447-451.
- [5] a) B. Sahoo, M. N. Hopkinson, F. Glorius, J. Am. Chem. Soc. 2013, 135, 5505-5508; b) X.-Z. Shu, M. Zhang, Y. He, H. Frei, F. D. Toste, J. Am. Chem. Soc. 2014, 136, 5844-5847; c) M. N. Hopkinson, B. Sahoo, F. Glorius, Adv. Synth. Catal. 2014, 356, 2794 - 2800.
- [6] D. C. Fabry, J. Zoller, S. Raja, M. Rueping, Angew. Chem. Int. Ed. 2014, 53, 10228-10231; Angew. Chem. 2014, 126, 10392 - 10396.
- [7] Z. Zuo, D. T. Ahneman, L. Chu, J. A. Terrett, A. G. Doyle, D. W. MacMillan, Science 2014, 345, 437-440.
- [8] J. C. Tellis, D. N. Primer, G. A. Molander, Science 2014, 345, 433-436.
- [9] For selected books and reviews, see: a) L. D. Quin, A Guide to Organophosphorus Chemistry, Wiley, New York, 2000; b) W. Tang, X. Zhang, Chem. Rev. 2003, 103, 3029-3070; c) T. Baumgartner, R. Reau, Chem. Rev. 2006, 106, 4681-4727; d) S. Van der Jeught, C. V. Stevens, Chem. Rev. 2009, 109, 2672-2702; e) C. S. Demmer, N. Krogsgaard-Larsen, L. Bunch, Chem. Rev. 2011, 111, 7981-8006; f) C. Queffélec, M. Petit, P. Janvier, D. A. Knight, B. Bujoli, Chem. Rev. 2012, 112, 3777-3807; g) A. Skarżyńska, Coord. Chem. Rev. 2013, 257, 1039-1048; h) J. L. Montchamp, Acc. Chem. Res. 2014, 47, 77-87.
- [10] For selected recent contributions, see: a) E. L. Deal, C. Petit, J. L. Montchamp, Org. Lett. 2011, 13, 3270-3273; b) S. M. Rummelt, M. Ranocchiari, J. A. van Bokhoven, Org. Lett. 2012, 14, 2188-2190; c) Y.-L. Zhao, G.-J. Wu, Y. Li, L.-X. Gao, F.-S. Han, Chem. Eur. J. 2012, 18, 9622-9627; d) G. Hu, W. Chen, T. Fu, Z. Peng, H. Qiao, Y. Gao, Y. Zhao, Org. Lett. 2013, 15, 5362-5365; e) O. Berger, C. Petit, E. L. Deal, J. L. Montchamp, Adv. Synth. Catal. 2013, 355, 1361-1373; f) K.; Xu, H.; Hu, F.; Yang, Y. Wu, Eur. J. Org. Chem. 2013, 319-325; g) Y.-M. Li, M. Sun, H.-L. Wang, Q.-P. Tian, S.-D. Yang, Angew. Chem. Int. Ed. 2013, 52, 3972; Angew. Chem. 2013, 125, 4064; h) Y. Wu, L. Liu, K. Yan, P. Xu, Y. Gao, Y. Zhao, J. Org. Chem. 2014, 79, 8118-8127; i) A.-X. Zhou, L.-L. Mao, G.-W. Wang, S.-D. Yang, Chem. Commun. 2014, 50, 8529-8532; j) G. Hu, Y. Gao, Y. Zhao, Org. Lett. 2014, 16, 4464-4467.
- [11] a) M. Rueping, S. Zhu, R. M. Koenigs, Chem. Commun. 2011, 47, 8679-8681; b) W.-J. Yoo, S. Kobayashi, Green Chem. 2014, 16, 2438-2442.
- [12] Y. He, H. Wu, F. D. Toste, Chem. Sci. 2015, 6, 1194-1198.
- [13] W.-J. Yoo, S. Kobayashi, Green Chem. 2013, 15, 1844-1848.
- [14] a) Y.-Q. Zou, L.-Q. Lu, L. Fu, N.-J. Chang, J. Rong, J.-R. Chen, W.-J. Xiao, Angew. Chem. Int. Ed. 2011, 50, 7171-7175; Angew. Chem. 2011, 123, 7309-7313; b) Y.-Q. Zou, J.-R. Chen, X.-P. Liu, L.-Q. Lu, R. L. Davis, K. A. Jørgensen, W.-J. Xiao, Angew. Chem. Int. Ed. 2012, 51, 784-788; Angew. Chem. 2012, 124, 808-812; c) J. Xuan, X.-D. Xia, T.-T. Zeng, Z.-J. Feng, J.-R. Chen, L.-Q. Lu, W.-J. Xiao, Angew. Chem. Int. Ed. 2014, 53, 5653-5656; Angew. Chem. 2014, 126, 5759-5762; d) J. Xuan, Z.-J. Feng, J.-R. Chen, L.-Q. Lu, W.-J. Xiao, Chem. Eur. J. 2014, 20, 3045-3049; e) X.-Q. Hu, J.-R. Chen, Q. Wei, F.-L. Liu, Q.-H. Deng, A. M. Beauchemin, W.-J. Xiao, Angew. Chem. Int. Ed. 2014, 53, 12163-12167; Angew. Chem. 2014, 126, 12359-12363; f) J. Xuan, T.-T. Zeng, Z.-J. Feng, Q.-H. Deng, J.-R. Chen, L.-Q. Lu, W.-J. Xiao, H. Alper, Angew. Chem. Int. Ed. 2015, 54, 1625-1628; Angew. Chem. 2015, 127, 1645-1648; g) W. Guo, L.-Q. Lu, Y. Wang, Y.-N. Wang, J.-R. Chen, W.-J. Xiao, Angew. Chem. Int. Ed. 2015, 54, 2265-2269; Angew. Chem. 2015, 127, 2293-2297.
- [15] For more details on condition optimization, please see the Supporting Information.
- [16] A. Christiansen, C. Li, M. Garland, D. Selent, R. Ludwig, A. Spannenberg, W. Baumann, R. Franke, A. Börner, Eur. J. Org. Chem. 2010, 2733-2741.

Received: January 19, 2015 Published online on

Chem. Eur. J. 2015, 21, 1-5

www.chemeuri.ora

© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim **KR** These are not the final page numbers!

4

COMMUNICATION

Dual catalysis: A novel and efficient C– P bond formation reaction of diarylphosphine oxides with aryl iodides was achieved by combining nickel catalysis and visible-light-induced photoredox catalysis (see scheme). This dual-catalytic reaction showed a broad substrate scope, excellent functional-group tolerance, and afforded the corresponding products in good to excellent yields. Compared with previously reported photoredox/nickel dual catalytic systems, this methodology is the first to allow for C-heteroatom bond formation.

Synthetic Methods

J. Xuan, T.-T. Zeng, J.-R. Chen, L.-Q. Lu,* W.-J. Xiao*

Room Temperature C–P Bond Formation Enabled by Merging Nickel Catalysis and Visible-Light-Induced Photoredox Catalysis