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ABSTRACT: A redox-neutral Ni-catalyzed intramolecular hydroarylation of alkene with simple arene has been developed, in 

which DMF played a proton shuttle role in facilitating the intramolecular coupling, avoiding the use of additional reductants and 

oxidants. A series of oxindoles with a quaternary center were obtained in up to 99% yield. 

INTRODUCTION

Transition metal-catalyzed hydroarylation of alkene has 

proved to a versatile synthetic method for construction of al-

kylated (hetero)arenes.
1
 However, in contrast with well-

established C–H alkylations of (hetero)arene with alkene,
2-5

 

this process mainly relies on the use of activated arenes such 

as aryl halides, aryl boronic acid and other aryl metallic rea-

gents (Scheme 1a).
6
 Although several examples have been 

reported to apply simple arenes in intra- or intermolecular 

reactions,
7
 all of them have to employ a high-valent metal-

catalyzed radical process (Scheme 1b), in which metallic hy-

dride (silane or borane) is used as a hydride source for the 

hydrometallation step and additional oxidant (
t
BuOO

t
Bu, O2, 

etc) is used for the regeneration of catalyst. This requirement 

of reductant and oxidant leads to not only stoichiometric 

amounts of undesired waste but also a challenging reaction 

system that is tolerant of both the metallic hydride and the 

oxidant. Considering that an appropriate proton source and a 

low-valent transition metal can form a M–H species,
8
 we envi-

sioned that this M–H species may participate into an alkene 

hydrometallation and a subsequent arylation with a simple 

arene through C–H activation (Scheme 1b). Moreover, the C–

H activation step could regenerate the proton source and the 

low-valent metal, thus avoiding the use of additional oxidant 

for regeneration of the catalyst. All these steps would result 

into a more atom-economical and byproduct-free hydroaryla-

tion of alkene with simple arene. Herein we report the first 

alkene hydrometallation-initiated C–H alkylation under re-

ductant- and oxidant-free conditions, in which only N,N-

dimethylformamide (DMF) is needed to promote the Ni(0)-

catalyzed C–H alkylation of N-arylacrylamide (Scheme 1c), 

providing a series of oxindoles with a quaternary center in up 

to 99% yield.
9
 

 

Scheme 1. Transition metal-catalyzed C–H alkylation of 

(hetero)arenes with alkenes. a) Traditional hydroarylation of 

alkene with activated arenes (Ar–FG). b) Hydroarylation of 

alkene with simple arenes (Ar–H). c) This work: Ni–DMF 

system (M–H and oxidant-free).  

We commenced our studies by investigating the Ni-

catalyzed intramolecular coupling reation of N-arylacrylamide 

1a in the presence of methanol as the proton source (Table 

1).
10

 Various mono- and bidentate phosphine ligands proved to 

be ineffective, whereas carbene ligands led to a trace amount 

of the desired product with complete 5-exo selectivity (entries 

1–4). Encouraged by this result, we next examined various 

other proton sources, including other alcohols (entries 5–7), 

phenol (entry 8), and amides (entries 9–15). Results showed 
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that 1 equivalent of 
t
BuOH greatly improved the yield to 22% 

(entry 7), whereas other alcohols and phenol were not good. 

To our surprise, N,N-dimethylforamide (DMF) provided a 

better yield than 
t
BuOH (entry 9). Further increasing the 

loading of DMF to 2 equivalents led to 96% yield (entry 10). 

More than 2 equivalents of DMF gave the same results, but 

0.5 equivalents of DMF significantly decreased the yield 

(14%, entry 11). 

Table 1. Reaction Optimization.  

 

a
Reaction Conditions: 1a (0.2 mmol) in toluene (2 mL) at 100 

°C under N2 for 24 h. 
b
Determined by 

1
H NMR using CH2Br2 

as the internal stand. 

The structure of formamide had a big influence on the 

reaction (entries 12–15). For example, N-methylformamide 

H1 did not promote this reaction at all (entry 12), whereas 

morpholine-derived foramide H3 gave a high yield (entry 14). 

In addition, the ligand loading proved to be important (entries 

16–17), and 30 mol% of ligand provided the optimal result in 

the presence of 2 equivalents of DMF (entry 17). Notably, 

potassium salt played another critical role in the reaction 

(entries 18–20). Replacing 
t
BuOK with 

t
BuONa gave no 

reaction (entry 18), but additional KCl enabled the reaction to 

be complete again (entry 19). We reasoned that both 
t
BuO 

anion and K cation could assist the C–H bond cleavage.
11

 

With the above optimized reaction conditions in hand, we 

first explored substituent effect on the aryl moiety of N-

methyl-N-arylacrylamide (Table 2). Substitution at the para 

position of the aryl ring with various alkyls (2b–2e), phenyl 

(2f) and alkoxys (2g–2i) were well tolerated in the current 

reaction, leading to good to high yields of the corresponding 

oxindoles. However, the reaction was highly sensitive to steric 

hindrance of the substituents, for example, bulky tert-butyl 

group provided 5-exo and 6-endo cyclized products in 51% 

total yield (2e, exo:endo = 4.6:1). In addition, more electron-

deficient group such as CF3O (2i) and F (2j) also provided a 

mixture of 5-exo and 6-endo cyclized products. However, tun-

ing the loading of DMF can change their ratio (see the Sup-

porting Information). This result suggested that DMF could 

participate into the reductive elimination step in the arylation. 

However, no matter how many loadings of DMF were used, 

strong electron-withdrawing CF3 preferred the 6-endo cycliza-

tion (2k′′′′). These results meant steric and electronic nature of 

the substituted group on the aryl ring would have a big influ-

ence on the regioselectivity of alkene hydrometallation, sug-

gesting that the hydrometallation could be an initial and re-

versible step. This result was quite different from those report-

ed radical addition reactions,
9
 wherein 5-exo cyclizations are 

generally preferred. Various substituents at the meta- or ortho-

position such as alkyls and phenyl provided cyclized products 

in good to excellent yields (2l–2r). And again, meta-F led to a 

mixed 5-exo and 6-endo cyclized products, but 0.3 equivalents 

of DMF can provide nearly single 6-endo product in 36% 

yield (endo:exo = 45.1:1, 2o′). In addition, aryl ring bearing 

two substituents also worked well to give 38% and 80% yield, 

respectively (2s and 2t). A gram scale reaction was conducted 

for the model substrate 1a and the yield reached as high as 91% 

when using 5 mol% of catalyst (see the Supporting Infor-

mation). 

Table 2. Substituted Group Effects on Aryl Moiety.  

 

a
Reaction Conditions: acrylamide 1 (0.2 mmol) in toluene (2 

mL) under N2 for 24 h; isolated yields and all ratios were de-

terminined by 
1
H NMR. 

b
exo:endo = 4.6:1, total yield for two 

isomers. 
c
DMF (1 equiv.), exo:endo = 15.0:1 

d
DMF (0.6 

equiv.), exo:endo = 73.0:1. 
e
DMF (0.3 equiv.), exo:endo = 

1:45.1. 

Next, we examined the substituent effect on the acrylamide 

moiety (Table 3). Substituents at the N1 position of the sub-

strate proved to be critical (4a–4e). Electron-rich group such 

as alkyls and phenyl was well compatible with the current 

reaction and provided the corresponding oxindoles in good to 

excellent yields (4a–4d), whereas electron-deficient group like 
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acetyl was ineffective (4e). The hydroarylation reaction was 

also tolerant of diverse acrylamides, but α-substitution and 

terminal alkene proved to be requisite. No α-substitution led to 

an alkene dimerization, suggesting alkene hydrometallation 

could be the initial step once again. Acrylamides with ethyl 

and aryl at the α-position reacted well to provide products 4f–

4k in 44% to 95% yield. However, sterically hindered isopro-

pyl resulted into a mixture of 5-exo and 6-endo cyclized prod-

ucts (4g and 4g′′′′), and herein the loading of DMF cannot 

change the ratio. This result indicated that the bulky isopropyl 

preferred the less-hindered 6-endo cyclization. In addition, the 

reaction is sensitive to the electronic nature of aryl ring at the 

α-position, for example, electron-rich aryl elevated the yield to 

95% (4i and 4j), whereas electron-deficient aryl completely 

inhibited this reaction (4k). 

Table 3. Substituted Group Effects on Acrylamide Moiety.  

 

a
Reaction Conditions: acrylamide 3 (0.2 mmol) in toluene (2 

mL) under N2 for 24 h; isolated yields. 
b
Total isolated yield for 

two isomers and isomer ratio shown in parentheses was de-

termined by 
1
H NMR. 

To better understand the mechanism of this reaction, some 

control experiments were conducted. Radical trapping experi-

ments showed that BQ and TEMPO inhibited this reaction 

(see the Supporting Information), whereas butylated hydoxy-

toluene (BHT) and 1,1-diphenylethylene did not have big in-

fluence on the reaction. When 2 equivalents of d7-DMF were 

used instead of DMF, a 72% D-incorporation at the terminal 

position of alkene was observed (Scheme 2a, eq (1)). Further 

reducing the loadings of d7-DMF to 1 equivalent led to 10% of 

D-incorporation. In addition, parallel experiments disclosed a 

significant kinetic isotope effect for the C–H cleavage of DMF 

(kH/kD = 3.25, eq (2)). These results suggested the Ni–H spe-

cies for the alkene hydrometallation should come from the 

oxidative addition of nickel with DMF. Next, NMR-tracing 

experiments of the reaction showed that 95% of DMF can be 

recovered after the reaction (see the Supporting Information), 

suggesting that proton source could regenerate itself after the 

initial hydrometallation and the subsequent arylation. A signif-

icant kinetic isotope effect was observed in intra- ((kH/kD = 

2.2:1, eq (3)) and intermolecular ((kH/kD = 2.1:1, eq (4)) com-

petitive reactions.  

 

 

Scheme 2. Mechanistic Experiments and Proposed Mecha-

nism. a) Deuterium-labeling experiments. b) Proposed mecha-

nism.  

Based on these experiments, we proposed two possible 

mechanistic pathways for this reaction. One is the typical radi-

cal process (Scheme 2b, path 1).
9
 Hydrometallation of sub-

strate 1a with Ni–H species gave the intermediate (A) or (A′′′′), 

which generates the corresponding α-amido radical (B) or (B′′′′). 

Subsequent radical addition to the aromatic ring, followed by a 

hydride transfer, affords the final 5-exo or 6-endo cyclized 

product. However, considering that the selectivity of 5-exo and 

6-endo is highly sensitive to steric (tBu) and electronic (F, CF3) 

factor of the substituent of the aromatic ring, we speculated 

that electrophilic C–H activation of arene is also possible (path 

2). And thus, the intermediate (A) or (A′′′′) delivers primary 

alkylnickel (B2) or tertiary alkylnickel (C2) species through 

direct C–H cleavage. Further reductive elimination of them 

affords the final products. Considering that DMF loadings 

could affect the ratio of 5-exo or 6-endo product, we proposed 

that the hydrometallation step could be fast and reversible, and 

the intermediate (A) and (A′′′′) could be converted to one anoth-

er. Further evidence is still required to clarify this mechanism. 

In summary, we have successfully developed a Ni-catalyzed 

intramolecular hydroarylation of alkene with simple arene to 

synthesize a series of oxindoles with a quaternary center. Dif-

ferent from the reported methods that require stoichiometric 

amount of metallic hydride and oxidant, our reaction uses only 

DMF as a proton shuttle to achieve a redox-neutral and by-

product-free coupling. This use of Ni(0) and proton source 
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provides a promising strategy for future development of hy-

drometallation-initiated C–H functionalization in our lab. 
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