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ABSTRACT: B-to-f Directly linked cyclic Ni(II) porphyrin
trimer, tetramer, and pentamer ([3]CP, [4]CP, and [5]CP)
have been synthesized by reaction of a 2,12-diborylated Ni(II)
porphyrin with Pt(cod)Clz followed by reductive elimination.
The structures of these cyclic porphyrin arrays have been
revealed by X-ray diffraction analysis. The strain energies of
these cyclic oligomers are calculated to be 77, 57, and 47
kcal/mol for [3]CP, [4]CP, and [5]CP, respectively. In-
tramolecular excitation energy hopping was observed be-
tween the 3(d,d) states of the Ni(I) porphyrins with rates of
3.0, 4.4, and 4.6 ps for [3]CP, [4]CP, and [5]CP, respectively,
reflecting the close proximity of the Ni(II) centers.

n-Conjugated nanorings have been attracting increasing
attention in light of the curved conjugation along their pe-
ripheries, convex-concave host-guest interactions, synthetic
challenges associated with achieving their highly distorted
structures, and potential application in the bottom-up
growth of uniform carbon nanotubes.” Recently, the inven-
tion of effective synthetic routes to cycloparaphenylenes
([n]JCPPs), cyclic conjugated nanorings that consist of dis-
torted benzene rings linked at the para-positions, has spark-
ed a boom in this field (Chart 1).> Through the successful and
independent explorations of [n]JCPPs by Jasti, [tami, Yamago,
and Isobe,” it has now been revealed that structural and
electronic properties of [n]JCPPs and related analogues de-
pend on a delicate balance of strain and conjugation. The
smallest CPP so far synthesized is [5]CPP that displays a con-
siderably distorted structure.® Tetrameric macrocycles have
been synthesized from larger polycyclic aromatic segments
such as pyrene and chrysene.”

Cyclic porphyrin arrays have also been targets of exten-
sive studies because of their potentials as models of artificial
light-harvesting antenna complexes, hosts possessing con-
vergent inward-pointing coordinating sites, and scaffolds to
achieve efficient hole delocalization.” While non-covalently
linked supramolecular cyclic porphyrins have been con-
structed in short steps with the aid of self-assembling strate-
gies, covalently linked cyclic arrays are more difficult to con-
struct,” mostly due to the entropic disadvantage in the final
macrocyclization step. We described the successful synthetic

realization of a meso-meso directly linked cyclic porphyrin
tetramer, hexamer and octamer by Ag(I)-promoted oxidative
coupling of 5,10-diaryl Zn(II) porphyrin unit.”” However, the-
se porphyrin rings are hardly regarded as porphyrin analogs
of [n]JCPPs because of their orthogonal linking topologies,
which lead to disruption of the overall macrocyclic conjuga-
tion.

Chart 1. Structures of [n]CPPs, [4]cyclo-3,9-chrysenylene,
and [n]CPs.
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Scheme 1. Synthesis of 4 -borylated porphyrins.
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“conc. HCl, CH,CL,, rt, 4 h. °Ni(acac),, toluene, reflux, overnight.
acac = acetylacetonate. Ar = 3,5-di-tert-butylphenyl.

Here we report the synthesis and characterizations of cy-
cloporphyrinylene nanorings, namely [n]CPs that consist of
Ni(II) porphyrins directly linked at the 2- and 12-positions.
As a macrocyclization strategy, we utilized a Pt(I)-mediated
homo-coupling strategy developed by Yamago and Isobe.*
Along this strategy, we employed 2,12-diborylated Ni(II) por-
phyrin 3c as a building block, in which the two connection
points (2 and 12-positions, Scheme 1) are situated at the steri-
cally least hindered locations with a diagonal separation dis-
tance of ca. 8.5 A. In addition, Ni(II) porphyrins can adopt a
ruffled or saddled conformation, which is favorable to reduce
the overall ring strain of the resulting [n]CPs.

Ir-catalyzed borylations of porphyrins via C-H bond acti-
vation proceed regioselectively at the S-positions next to an
unsubstituted meso-position, hence providing a reliable
means for the preparation of S-borylated porphyrins.” 2,12~
Diborylated Ni(II) porphyrin 3¢, a key precursor of [n]CPs in
the present study, was formed in the borylation of 1c but was
very difficult to separate from an accompanying side product,
2,8-diborylated Ni(II) porphyrin 4¢, due to almost identical
retention times on silica gel. Thus, 3¢ was prepared via an
indirect route. Borylation of 5,15-bis(3,5-di-tert-butylphenyl)
porphyrin ~ Zn(II)  complex 1a  with  equimolar
bis(pinacolato)diboron under Ir(I)-catalyzed conditions gave
a product mixture that contained p-borylated porphyrin
products (Scheme 1). Separation by silica gel column chro-
matography and recycling preparative gel permeation chro-
matography (GPC) gave a mixture of 3a and 4a in 50% yield
along with pB-monoborylated porphyrin 2a (26%). Fortu-
nately, it was found that slow vapor diffusion of methanol
into a solution of the product mixture in chloroform caused
preferential recrystallization of 3a. Almost complete separa-
tion of 3a was possible via repeated recrystallization on large
scale. Then, Zn(II) porphyrin 3a was converted to Ni(II) por-
phyrin 3¢ via acid-catalyzed de-zincation followed by Ni(II)
insertion using Ni(acac),.

By following the one-pot reaction procedure of CPP mac-
rocyclization,‘“:l 2,12-diborylated Ni(II) porphyrin 3¢ was re-
acted with equimolar Pt(cod)Cl, for 4 days at room tempera-
ture in the presence of cesium fluoride in THF. The resulting
reaction mixture containing platinum-bridged porphyrins
was refluxed in the presence of PPh; in toluene to induce
reductive elimination (Scheme 2). After repeated separations,
cyclic oligomers [3]CP, [4]CP and [5]CP were obtained in 5.0,
4.4 and 2.4% yields, respectively, in a reproducible manner.
We attempted to optimize the reaction conditions by adjust-
ing variables such as concentration, temperature, and adding
extra equivalents of 1,5-cyclooctdiene, but we found that the
conditions mentioned above have provided the best result
with regard to the yields of [n]CPs with suppression of unde-
sirable linear polymeric side products. The parent ion peaks
for the [n]CPs were observed at m/z = 2220.90 (caled. for
CiyHisoNLNiy = 222102, [M]") for [3]CP, at m/z = 2961.48
(caled. for Cog,H,00N6Ni, = 2961.36, [M]") for [4]CP, and at
m/z = 370159 (caled. for C,,0H,5oN,oNis = 3701.69, [M]") for
[5]CP by MALDI-TOF MS. Although it was possible to detect
cyclic oligomers with n values greater than [5]CP by MALDI-
TOF MS, very poor yields made it extremely difficult to iso-
late them and so we abandoned full characterization of these

products. It is worth to note that none of [n]CPs were
formed from either the zinc or freebase forms of 2,12-
diborylated porphyrin 3a or 3b under similar conditions,
suggesting that a Ni(II) porphyrin scaffold is of vital impor-
tance in the successful formation of [n]CPs.

Scheme 2. Synthesis of 2,12-porphyrinylene nanorings.
Ar
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Figure 1. 'H NMR spectra of (a) [3]CP, (b) [4]CP, (c) [5]CP and (d) 1c
in the aromatic region in CDCl; at room temperature.

All the 'H NMR spectra of [3]CP, [4]CP, and [5]CP feature
a distinct signature set of signals consisting of one singlet
associated with the meso-protons (H%), one singlet (H") and
two doublets (H® and Hd) corresponding to the f-protons,
indicating their highly symmetric structures (Figure 1). The
assignments of the signals have been fully performed
through 2D NOESY experiments. The protons at the porphy-
rin peripheries were shifted up field compared with the cor-
responding peaks of the monomer 1c, reflecting the influence
of the ring-currents of adjacent porphyrins.” Such trend be-
comes more prominent in the order of [5]CP < [4]CP < 3[CP].
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Figure 2. X-ray crystal structures of [3]CP (a and b), [4]CP (c and d),
and [5]CP (e and f). tert-Butyl groups in (a) and (b), meso-Aryl
groups in (c), (d), (e) and (f), solvent molecules, and hydrogen atoms
are omitted for clarity. The ellipsoids are scaled to the 30% probabil-
ity. Disorders were found for [5]CP.

To our delight, crystals of [3]CP, [4]CP and [5]CP suitable
for single-crystal X-ray diffraction analysis were obtained by
slow solvent diffusion of a methanol/heptane mixture into
their respective solutions in chloroform. Definitive structural
determinations were then accomplished by revealing [n]CPP-
like hoop structures (Figure 2). In all cases, Ni(II) porphyrins
take severely saddled conformations, which is likely impor-
tant to accommodate large distortion arising from the hoop-
like cyclic architectures. The averaged C,—C, bond lengths
and diameters of the nanorings are 1.47 and 9.32 A, and 1.45
and 11.95 A, and 1.48 and 15.60 A for [3]CP, [4]CP, and [5]CP,
respectively. Upon increasing the ring size, the Ni(II)—Ni(II)
center-to-center sepration distances are increased to be 7.36,
8.31, and 8.80 A for [3]CP, [4]CP, and [5]CP, respectively.
These structural features are comparable to those of DFT
optimized structures (See SI).

The UV/Vis absorption spectra of [3]CP, [4]CP, and [5]CP
exhibit broader Soret-bands and red-shifted Q-like bands as
compared with those of monomer 3c (Figure 3); Soret-like
bands are observed at 409, 414, and 423 nm, and Q-like
bands are observed at 552 and 593 nm, 548 and 595 nm, and
535 and 595 nm, for [3]CP, [4]CP, and [5]CP, respectively.
Curiously, the peak positions in the absorption spectra of
[3]1CP, [4]CP, and [5]CP are not so much changed, implying
similar exciton coupling interactions. These spectral features
are reminiscent of those of cyclic Zn(II) porphyrin rings di-
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rectly linked at the s5,10-positions,” in line with the cyclic
structures.

The electrochemical properties of 1c, [3]CP, [4]CP, and
[5]CP were investigated by cyclic voltammetry and differen-
tial pulse voltammetry (SI). The monomer 1c shows two oxi-
dation potentials at 0.50 and 1.00 V and a reduction potential
at -1.78 V versus ferrocene/ferronenium ion couple, which
leads to an electrochemical HOMO-LUMO gap of 2.28 eV.
[3]CP exhibits split oxidation potentials at 0.36 and 0.60 V
and split reduction potentials at -1.71 and -1.91 V, reflecting
the electronic interactions among the Ni(II) porphyrins in
the ring. Similar but more complicated split potentials were
observed at 0.41, 0.58 and 0.64 V, and -1.64, -1.86, and -2.05
V for [4]CP, and 0.46, and 0.64 V, and -1.58, -1.65, and -1.80
V for [5]CP. Upon increase in the ring size, these potentials
are shifted to the anodic side.

The excited state dynamics of [n]CPs exhibited ultrafast
decay dynamics that are characteristic of Ni(II) porphyrin
derivatives (SI).” All [n]CPs exhibited broad excited-state
absorption bands (ESA) from 700 to 850 nm, which showed
very rapid decays. Simultaneous peak shifts in the ground-
state bleaching (GSB) around 600 nm and ESA near 500 nm
noticeably altered the shape of the initial transient absorp-
tion spectra. This initial decay with T = 0.6 ps, common to all
[n]CPs, is associated with the transition from the lowest
energy '(m,7*) state to Ni(Il)-centered 3(d,d) state and is re-
sponsible for the TA spectral changes on sub-picosecond
timescale. Relaxed 3(d,d) state decayed to the ground state
with time constants of 50, 40, and 30 ps for [3]CP, [4]CP, and
[5]CP, respectively (SI). Decreasing lifetimes of *(d,d) state
can be rationalized in terms of increasing nonradiative decay
rate with increasing molecular size.

Interestingly, the transient absorption anisotropy for
[3]1CP, [4]CP, and [5]CP decayed from the respective initial
anisotropy values of r, = 0.05, 0.019, and 0.047 with time con-
stants of 1.0, 1.1, and 1.3 ps, respectively (SI). In contrast to the
high initial anisotropy value of 1c (r, = 0.14), the observed
initial low anisotropy values of CP are caused as a conse-
quence of efficient excitation energy hopping along the por-
phyrin nanorings. While the anisotropy decay of 1c showed a
simple rotational diffusion with a time constant of 370 ps,
depolarization processes of CP contained ultrafast inter-
chromophoric excitonic process. Considering sub-picosecond
lifetimes of the '(7,7*) state of the Ni(II) porphyrins, anisot-
ropy decays of CP can be interpreted in terms of EET be-
tween the metal-centered 3(d,d) states. Based on a polygon
model, the excitation energy hopping times have been
evaluated to be 3.0, 4.4, and 4.6 ps for [3]CP, [4]CP, and
[5]CP, respectively. Due to metal-localized orbital distribu-
tion of 3(d,d) states, the EET processes in [n]CPs are less effi-
cient than those in '(7,7*) states of meso-meso directly linked
Zn(II) porphyrin rings that occur with time constants of 0.12,
0.34, and 0.24 ps for tetramer, hexamer, and octamer, respec-
tively."” The small increase in energy hopping time with in-
creasing ring size is presumably attributed to increasing
Ni(I[)—Ni(Il) center-to-center separation distances between
the neighboring porphyrin chromophores.

MO calculations on these [n]CPs were performed using
the Gaussian o9 package at the B3LYP/6-31G*(for C, H, N)
+LANL2DZ (for Ni) level. While the HOMOs and LUMOs of
[3]CP and [5]CP are both degenerate, being similar to those
of monomeric porphyrins, the HOMO and LUMO of [4]CP
are both non-degenerate as a consequence of effective bond-
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ing interactions in the LUMO and anti-bonding interaction
in HOMO-1, a phenomena observed only for even-
membered nanorings as a characteristic feature of direct 5-f
connectivity. This odd/even feature can also be seen in the
calculated MOs of [6]CP (SI). Finally, the ring strain energies
(AH) have been calculated according to the homodesmotic
reaction model" to be 77.4, 57.7, and 47.4 kcal/mol for [3]CP,
[4]CP, and [5]CP, respectively. Therefore, it is possible to
infer that [3]CP, [4]CP, and [5]CP, are highly strained nanor-
ings comparable to [n]CPPs.”

5

o [5]CP
- [4]CP
§ 3- [3]CP
”z N N 3¢
®

’

0 e

T T T 1 T T T

300 350 400 450 500 550 600 650 700
Alnm

Figure 3. UV/Vis absorption spectra of [3]CP, [4]CP and [5]CP in
CH,CL,.

In summary, cyclo-2,12-porphyrinylene nanorings [3]CP,
[4]CP, and [5]CP have been synthesized as the first porphy-
rin analogues of CPPs via Pt-mediated cyclization of a 2,12-
diborylated Ni(II) porphyrin followed by reductive elimina-
tion. Among these nanorings, [3]CP is the most strained sys-
tem with a calculated strain energy of 77.4 kcal/mol. The
conjugative interactions have been calculated to be effective
only for even-membered [n]CPs, which results in non-
degenerate HOMO and LUMO orbitals for [4]CP, while such
conjugative interactions are ineffective for [3]CP and [5]CP.
Exploration of further elaborate architectures utilizing alter-
native metal complexes and detailed photophysical analysis
of efficient energy transfer along these architectures is an
active area of research in our laboratory.
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