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Asymmetric Stepwise Reductive Amination of Sulfonamides, 
Sulfamates and a Phosphinamide via Nickel Catalysis 
Xiaohu Zhao, Haiyan Xu, Xiaolei Huang and Jianrong Steve Zhou* 

Abstract: asymmetric reductive amination of poorly 
nucleophilic sulfonamides is realized in the presence of 
nickel catalysts and titanium alkoxide. A wide range of 
enolizable ketones, including some dialkyl and biaryl ones, 
were converted to sulfonamides in excellent enantiomeric 
excess. Cyclization of sulfamates and intermolecular 
reductive amination of a diarylphosphinamide were also 
successful. Formic acid was used as a safe and economic 
surrogate of high-pressure hydrogen gas.  

Chiral alkylamines are commonly structural elements in 
modern medicines and their enentioselective synthesis has 
attracted significant research interest.[1] Sulfonamides, in 
particular, are common pharmacophores and are considered 
to be useful isosteres of carboxylic acids and carboxamides 
in drug discovery.[2] In fact, the sulfonamide family of 
antibiotics are the first family of antibiotics that were used 
systematically.[3] Sulfonamides are also present in many 
other medicines, such as antiviral, anticancer and 
antiinflammatory agents.[4] Moreover, chiral sulfonamides 
containing α-stereogenic centers have also emerged 
recently in medicine, for example, ramatroban, a drug for the 
treatment of coronary artery disease and asthma[5] and MK-
7246, a drug candidate targeting respiratory diseases.[6] 
Other chiral sulfonamide drugs target cancers,[7] Type II 
diabetes[8] and Alzheimer’s disease[9] (Figure 1).  

Compared to asymmetric hydrogenation of pre-formed 
ketimines and enamines using rare noble metal catalysts[10] 
and abundant 3d metal catalysts,[11] reductive amination of 
ketones and amines avoids the isolation and purification of 
ketimines, some of which are unstable during purification and 
storage.[12] To date, most late metal-catalyzed[13] or 
organocatalytic[14] methods for asymmetric reductive 
amination are limited to arylamines and acylhydrazines, 
which undergo facile condensation with ketones to form 
ketimines in the presence of acid catalysts and molecular 
sieves. For instance, in 2016 we reported nickel-catalyzed 
asymmetric reductive amination using arylamines and 
benzhydrazide.[15] Reductive amination using amines of 
attenuated nucleophilicity, such as sulfonamides and 
phosphinamides, still remains a challenge, especially when 
enolizable ketones are used.[16] Thus, in existing Rh- and Pd-
catalyzed asymmetric hydrogenation, for example, N-sulfonyl 
ketimine needed to be prepared first, by condensing ketones 

with more nucleophilic sulfinamides followed by oxidation.[17] 
In a typical example, Zhang et al. reported that 1 mol% 
palladium/TangPhos catalyzed hydrogenation of pre-formed 
N-tosyl ketimines, although 75 bar of hydrogen pressure was 
required.[17a] Similarly, simple condensation of 
diarylphosphinamides and ketones has remained difficult.[18] 
In asymmetric hydrogenation,[11c,17b] borohydride reduction[19] 
and hydrosilylation of these ketimines,[20] they were prepared 
beforehand via a moderately-yielding condensation of 
oximes and chlorodiarylphosphines.[21] Notably, high 
pressure of hydrogen gas (40-75 bar) was needed in 
hydrogenation of the two types of ketimines. 

 

Figure 1. Chiral sulfonamides in medicines  

 
Scheme 1. The effect of chiral bisphosphines on reductive amination 
of acetophenone and p-tosylamine.  
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Initially, we attempted nickel-catalyzed reductive 
amination of acetophenone 1a and p-tosylamine using formic 
acid under various condensation conditions (Scheme 1). 
Often we observed facile ketone reduction, self-aldol 
condensation of acetophenone to form an enone. The latter 
also underwent nonselective reduction in the reaction 
mixture. Eventually, we attempted the condensation using 
titanium ethoxide in refluxing toluene,[16] which led to the 
desired ketimine  in good yield. Subsequent treatment of the 
N-sulfonyl ketimine[17] with a nickel catalyst ligated with 
binapine,[22] formic acid and triethylamine afforded 
sulfonamide 2a in 93% yield and 93% ee. Notably, when this 
model reaction was conducted without prior formation of the 
ketimine, 2a was still obtained in 87% yield in the presence 
of Ti(OEt)4. A detailed catalyst screening revealed that 
several other chiral bisphosphines also provided >90% ee for 
this hydrogenation, including Ph-BPE, QuinoxP* and BenzP* 
(see Scheme 1). We also tested catalytic performance of 
[(S)-binapine]NiCl2 complex, which was similar to the catalyst 
cocktail described in Scheme 1. When 1, 2 and 5 mol% 
nickel complex was used, the yield of 2a was 43, 65 and 
82% after 48 h, respectively. 

With the optimal conditions using the nickel/binapine 
catalyst in hand, we explored the scope of ketones in 
reaction of p-tosylamine (Scheme 2a). Aryl ketones with 
different electronic properties (2b-j) and heteroaryl ketones 
(2n-p) gave the desired products in good yields and >95% 
ee values. Interestingly, both cyclic 1-indanone and 1-
tetralone provided products (2r-s) in almost perfect ees. In 
the reaction of indanone, a moderate yield of 2r resulted, 
owing to facile aldol condensation of 1-indanone. 
Unfortunately, titanium ethoxide failed to promote 
condensation of highly electron-deficient 1,1,1-
trifluoroacetophenone with tosylamine.  

Excitingly, we found that some biaryl ketones furnished 
the corresponding tosylamines (2u-2x) in excellent ee values 
(Scheme 2b).[23] On the ketimines, to our delight, the 
nickel/binapine catalyst successfully differentiated a phenyl 
ring and a larger o-tolyl or 1-naphthyl group (2u-2v). 
Furthermore, the same catalyst also discriminated a phenyl 
ring versus thiophene and benzothiophene (2w-2x). The 
absolute configuration of product 2u was determined by X-
ray diffractional analysis.[24] 

In reactions of common aliphatic ketones (Scheme 2c), 
we found that nickel catalysts can successfully provide >90% 
ee, when a suitable bisphosphine was used judiciously. Thus, 
methyl ketones bearing t-butyl, cyclohexyl, sec-butyl and 
isopropyl groups (2y-2ab) were hydrogenated in excellent ee 
by nickel catalysts of binapine, Josiphos CyPF-Cy and 
QuinoxP*, respectively. However, asymmetric reductive 
amination of ethyl methyl ketone (2ac) still remained a 
significant challenge as expected (73% ee).  

 

 

 
Scheme 2. Reductive amination of different types of ketones with p-
tosylamine.  
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condensation of acetophenone accounted for most of the 
remaining material. Unfortunately, the reaction of bulky t-
butylsulfonamide with acetophenone resulted in only 10% 
yield of the target product. 

 
Scheme 3. Asymmetric reductive amination of other sulfonamides (3a-p) 
and synthesis of drug candidates (3q-s).  
 

Furthermore, the nickel catalysis was successfully 
applied to asymmetric synthesis of biarylmethylamines (3q-
s), which were identified to be promising candidates for the 
treatment of Type II diabetes.[8] In particular, 3s is a disruptor 
of human glucokinase and its regulatory protein at 
nanomolar concentrations. In the two examples containing 
benzothiophene rings, over 90% ee was achieved. We have 
ascertained the absolute stereochemistry of 3q and 3s with 
single crystal X-ray diffraction.[24] 

We also attempted intermolecular reductive amination of 
ketones and sulfamates, but unfortunately sulfamates were 
unstable towards titanium alkoxides and p-tosylic acid. 
Luckily, we found that intramolecular condensation of 
sulfamate 4a was readily catalyzed by p-tosylic acid, which 
allowed us to prepare cyclized product 5a in one pot 
(Scheme 4). Alternatively, 10 mol% of Ti(OEt)4 can be used 
for the condensation to give almost identical results. From 
catalyst screening, the nickel catalyst of Ph-BPE delivered 
5a in excellent yield and 95% ee. The absolute configuration 
of 5a was established by single-crystal X-ray diffraction.[24] 
This stepwise procedure was readily applied to asymmetric 
synthesis of other benzofused sulfamates.[25]  

 
Scheme 4. Asymmetric synthesis of benzosulfamates.  

 

 
Scheme 5. Asymmetric reductive amination of ketones and 
diphenylphosphinamide. 
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Scheme 6. Product transformation.  

 
In conclusion, we developed a nickel-catalyzed 

asymmetric reductive amination of sulfonamides for the first 
time. A diverse set of ketones, including some biaryl ketones 
and aliphatic ketones, reacted to afford chiral sulfonamides 
in excellent ees. A similar stepwise procedure also proved 
successful in asymmetric cyclization of sulfamates and 
intermolecular reductive amination of a diarylphosphinamide. 
Formic acid was used as safe, easy-to-handle source of 
hydrogen, which helped avoid the use and handling of high-
pressure hydrogen gas, a safety hazard.  
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Asymmetric Stepwise Reductive 
Amination of Sulfonamides, Sulfamates 
and  a Phosphinamide via Nickel 
Catalysis   

 

Intermolecular reductive amination of amines with attenuated nucleophilicity, 
including sulfonamides, sulfamates and a phosphinamide, proceeds without the need of 
isolating ketimines. Formic acid is used as a safe and easy-to-handle hydrogen source.  
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