

PII: S0957-4166(97)00563-6

Asymmetric total syntheses of hydroxylated piperidine alkaloids via the intramolecular reaction of γ -aminoallylstannane with aldehyde †

Isao Kadota,[‡] Miho Kawada, Yoko Muramatsu and Yoshinori Yamamoto * Research Center for Organic Resources and Materials Chemistry, Institute for Chemical Reaction Science, and Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-77, Japan

Abstract: Asymmetric total syntheses of (+)-desoxoprosopinine and (-)-desoxoprosophylline were accomplished using L-glutamic acid as the chiral source, in which the intramolecular reaction of a γ -aminoallylstannane with an aldehyde was used as a key step. © 1997 Elsevier Science Ltd. All rights reserved.

Introduction

During the past several years we have been investigating the stereocontrolled synthesis of polycyclic ethers via the intramolecular reaction of a γ -alkoxyallylstannane with an aldehyde (Eq. 1, X=O).¹ More recently, the methodology has been applied successfully to the synthesis of hydroxylated nitrogen heterocycles by using γ -aminoallylstannane derivatives (Eq. 1, X=NBoc).² It occurred to us that certain natural alkaloids could be synthesized by applying the newly developed allylstannane cyclization methodology. Now we report that the stereoselective synthesis of (+)-desoxoprosopinine 1 and (-)-desoxoprosophylline 2,^{3,4} the reduction product of prosopinine, has been achieved via the γ -nitrogen-containing allyltin method.⁵

Results and discussion

The L-glutamic acid derived starting material 3^6 was quantitatively converted to the silyl ether 4 by the usual method (Scheme 1). Selective cleavage of the *N*,*O*-acetal protection of 4 was performed with PdCl₂(CH₃CN)₂ in refluxing acetonitrile⁷ to give the alcohol 5 in 98% yield. Tosylation of 5 with TsCl/Et₃N/DMAP followed by alkylation with C₁₁H₂₃Li/CuI furnished, in 80% overall yield, the compound 7 via the tosylate 6. Allylation of 7 with allyl bromide/KH gave 8 (92%), which upon desilylation with TBAF led to 9 (74%). Treatment of 9 with *sec*-BuLi/TMEDA followed by the reaction of the corresponding allylic anion with *n*-Bu₃SnCl afforded the allylstannane derivative 10 in 61% yield. Oxidation of 10 with SO₃·py/DMSO/Et₃N produced the cyclization precursor 11 in 92% yield.

[†] Dedicated to Herbert C. Brown on the occasion of his 85th birthday.

^{*} Corresponding author. Email:yoshi@yamamoto1.chem.tohoku.ac.jp

[‡] Institute for Chemical Reaction Science

I. KADOTA et al.

"(a) TBDPSCl, imidazole, CH,Cl,, π, 100%; (b) PdCl₂(CH,CN)₂, CH₃CN, reflux, 98%; (c) TsCl, Et₁N, DMAP, CH₂Cl₂, π, 98%; (d) C₁₁H₂Li, CuI, Et₂O, -35 °C, 82%; (e) allyl bromide, KH, THF, 0 °C to π, 92%; (f) TBAF, THF, π, 74%; (g) sec-BuLi, TMEDA, THF, -78 °C, then *n*-Bu₃SnCl, -78 °C to π, 61%; (h) SO₃-py, DMSO, Et₁N, CH₂Cl₂, 0 °C, 92%.

Scheme 1. "

Table 1. Cyclization of 11^a

1	11 C ₁₂ H ₂₅ *** N	N + C12H25N		H + C ₁₂ H ₂₅ ···· N		
		^{DC} 12	Boc	13 ^{Bo}	Boc 14	
entry	reagent (eqiv)	temp (°C)	time (h)	ratio (12: 13:14)b	yield (%) ^c	
1	$BF_3 \cdot OEt_2$ (1.5)	-78	1.5	70:30:0	98	
2	TiCl ₄ (1.5)	-78	0.4	68:32:0	93	
3	$ZrCl_4(1.5)$	0	0.5	78:22:0	72	
4	$SnCl_4$ (1.5)	-78	0.3	47:53:0	42	
5	MgBr ₂ ·OEt ₂ (1.5)	0	4.0	52:48:0	72	
6	HCl (2.0)	-78	4.5	32:0:68	58	
7	CF3CO2H (2.0)	-78	3.5	22:0:78	72	
8	-d	110	4.5	0:0:100	72	

^aThe reactions were carried out with 1.0 M substrate in CH₂Cl₂ under the conditions indicated in the table, and quenched with Et₃N at the reaction temperature. ^bRatios were determined by ¹H NMR analysis. ^cIsolated yields. ^dToluene was used as a solvent.

The results of the cyclization of 11 are summarized in Table 1. The use of Lewis acids such as $BF_3 \cdot OEt_2$, $TiCl_4$, and $ZrCl_4$ predominantly afforded the 2,3-*trans*-2,6-*trans* isomer 12 in good yields (entries 1-3). The reactions mediated by $SnCl_4$ and $MgBr_2 \cdot OEt_2$ gave unsatisfactory results (entries 4 and 5). Interestingly, the reactions mediated by protic acids afforded the 2,3-*cis*-2,6-*trans* isomer 14 as a major product (entries 6 and 7). Although the reason is not clear, the 2,3-*trans*-2,6-*cis* isomer 13 was not detected when the protic acids were utilized. As expected, the thermal cyclization gave 14 with very high stereoselectivity (entry 8).

The stereochemistry of 12, 13 and 14 was confirmed by the ¹H-NMR analysis and NOE experiments of the corresponding acetate 15, acetonide 16, and 17 (Figure 1).⁸ The 2,6-*trans* stereochemistry of 15 was determined by observing NOEs between C-6 and olefinic protons. Although the stereochemistry of the C-3 acetoxy group of 15 is not clear, we assumed the *trans* relationship between the C-2 vinyl and C-3 acetoxy group from the comparison with 17. The 2,3-*trans*-2,6-*cis* stereochemistry of 16 was determined by the coupling constant (J=10.5 Hz) between the C-2 and C-3 protons, and NOE

Figure 1. Observed NOEs are shown by arrows.

between C-2 and C-6 protons. Irradiation of the C-3 proton of 17 gave a significant enhancement of the resonance at the C-2 proton, indicating the 2,3-*cis* stereochemistry of 17.

The hydroxy piperidine derivatives 12 and 13 obtained above were converted to the target molecules 1 and 2, respectively, as shown in Scheme 2. Ozonolysis of 12 followed by treatment with NaBH₄ gave the corresponding diol in 80% yield. The *N*-Boc desoxoprosopinine thus obtained was treated with 6 N HCl in refluxing dioxane, giving the desired (+)-desoxoprosopinine 1, mp 90.0–90.5°C; $[\alpha]_D^{20}$ +14.6 (c 0.30, CHCl₃) {lit.^{4b} mp 90.7–91°C; $[\alpha]_D^{18}$ +13 (c 0.31, CHCl₃)}, in 66% yield. A similar transformation starting from 13 afforded (–)-desoxoprosophylline 2, mp 91.0–91.5°C; $[\alpha]_D^{21}$ –11.4 (c 0.24, CHCl₃) {lit.^{4a} mp 90–91°C; $[\alpha]_D$ –14 (c 0.24, CHCl₃)}, in 48% yield. The ¹H NMR spectra of the synthetic 1 and 2 were in good agreement with the literature data.^{4a,b}

Scheme 2.

In summary, new and concise syntheses of (+)-desoxoprosopinine 1 and (-)-desoxoprosophylline 2 were accomplished by using the intramolecular reaction of a γ -aminoallylstannane with an aldehyde as a key step. We believe that the strategy developed here is widely applicable to the stereoselective synthesis of naturally occurring nitrogen heterocycles.

Experimental section

General procedure

¹H- and ¹³C-NMR spectra were recorded on JEOL GSX-270, JNM-LA300, and JNM-A500 spectrometers. Chemical shifts are reported in delta (δ) units, in parts per million (ppm) downfield from tetramethylsilane or in ppm relative to the singlet at 7.26 ppm for chloroform. Coupling constants are reported in hertz (Hz). IR spectra (cm⁻¹) were measured with neat compounds on a Shimadzu FTIR 8200A infra-red spectrophotometer. High resolution mass spectra were obtained with a JEOL JMS-HX110 spectrometer. Optical rotations were recorded on a JASCO DIP-1000 polarimeter. Capillary GC analyses were performed with a Shimadzu GC-14A flame ionization instrument with a CPB1-M25-025 column. All reactions were monitored by thin layer chromatography using Merck precoated

aluminum plates (Kieselgel 60F254, 0.2 mm). Column chromatography was done on Merck silica gel 60 (70–230 mesh ASTM), and for flash chromatography, Merck silica gel 60 (230–400 mesh ASTM) was employed. All solvents were dried immediately before use. Ether and THF were distilled from sodium/benzophenone ketyl; dichloromethane, hexane, benzene, triethylamine, pyridine, DMF, DMSO, and TMEDA were distilled from CaH₂; methanol was distilled from Mg(OMe)₂. All reactions involving air- and/or moisture-sensitive materials were carried out in an argon atmosphere.

(S)-1-(tert-Butoxycarbonyl)-5-[3-(tert-butyldiphenylsiloxy)propyl]-2,2-dimethyloxazoline 4

To a solution of **3** (3.6 g, 13.9 mmol) and imidazole (1.4 g, 21 mmol) in CH₂Cl₂ (140 mL) at 0°C was added TBDPSCl (4.4 mL, 17 mmol), and the mixture was stirred at rt for 1.5 h. The reaction mixture was diluted with ether, washed with water and brine, dried over MgSO₄, and concentrated. Silica gel column chromatography (hexane:AcOEt=20:1) gave **4** (6.9 g, 100%): colorless oil; R_f =0.33 (hexane:AcOEt=10:1); [α]_D²⁶ +22.4 (c 1.0, CHCl₃); IR (neat) 3071, 3050, 2978, 2958, 2933, 2859, 1699, 1473, 1428, 1390, 1375, 1366, 1112, 1106, 1091, 702 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 7.69–7.63 (m, 4H), 7.43–7.33 (m, 6H), 3.93–3.85 (m, 1H), 3.72–3.61 (m, 3H), 3.49 (d, 1H), 1.6–1.5 (m, 4H), 1.5–1.4 (m, 15H), 1.04 (s, 9H). Anal. Calcd for C₂₉H₄₃O₄NSi: C, 69.98; H, 8.71; N, 2.81. Found: C, 69.81; H, 8.79; N, 2.86.

(S)-2-[N-(tert-Butoxycarbonyl)amino]-5-(tert-butyldiphenylsiloxy)pentan-1-ol 5

A mixture of **4** (6.8 g, 13.7 mmol) and PdCl₂(CH₃CN)₂ (186 mg, 0.72 mmol) in CH₃CN (140 mL) was refluxed overnight. The reaction mixture was concentrated and the residue was subjected to silica gel column chromatography (hexane:AcOEt=4:1 \rightarrow 2:1) to give **5** (5.4 g, 86%) and **4** (850 mg, 13%): colorless oil; R_{f} =0.33 (hexane:AcOEt=3:1); $[\alpha]_{D}^{26}$ -5.2 (c 1.0, CHCl₃); IR (neat) 3409, 3393, 3370, 3357, 3071, 3049, 2999, 2957, 2932, 2895, 2853, 1735, 1712, 1692, 1507, 1474, 1428, 1392, 1367, 1172, 1112 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 7.73–7.60 (m, 4H), 7.49–7.32 (m, 6H), 4.82–4.68 (m, 1H), 3.74–3.44 (m, 5H), 2.68–2.56 (m, 1H), 1.8–1.4 (m, 4H), 1.43 (s, 9H), 1.05 (s, 9H). HRMS calcd for C₂₆H₃₉O₄NSi 426.2462, found 426.2462.

(S)-2-[N-(tert-Butoxycarbonyl)amino]-5-(tert-butyldiphenylsiloxy)propan-1-yl p-toluenesulfonate 6

A mixture of 5 (3.0 g, 6,6 mmol), Et₃N (1.8 mL, 13 mmol), TsCl (1.4 g, 7.2 mmol), and a catalytic amount of DMAP in CH₂Cl₂ was stirred at rt overnight. The reaction mixture was diluted with ether, washed with water and brine, dried over MgSO₄, and concentrated. Silica gel column chromatography (hexane:AcOEt=5:1) gave **6** (3.9 g, 98%): colorless oil; R_f =0.50 (hexane:AcOEt=3:1); $[\alpha]_D^{24}$ -10.2 (c 1.0, CHCl₃); IR (neat) 3393, 3070, 2957, 2931, 1713, 1599, 1507, 1473, 1454, 1428, 1392, 1366, 1246, 1190, 1177, 1112, 1097, 974 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 7.78 (m, 2H), 7.61 (m, 4H), 7.47–7.29 (m, 8H), 4.61 (m, 1H), 4.05 (dd, J=4.6, 1.5 Hz, 1H), 3.96 (dd, J=4.8, 1.6 Hz, 1H), 3.80–3.66 (m, 1H), 3.62 (t, J=2.7 Hz, 2H), 2.40 (s, 3H), 1.39 (s, 9H), 1.640–1.44 (m, 4H), 1.04 (s, 9H).

(R)-4-[N-(tert-Butoxycarbonyl)amino]-1-(tert-butyldiphenylsiloxy)hexadecane 7

To a stirred suspension of CuI (495 mg, 2.6 mmol) in ether (10 mL) at -35° C was added C₁₁H₂₃Li (5.1 mL, 1.0 M in ether, 5.1 mmol), and then a solution of **6** (314 mg, 0.51 mmol) dissolved in ether (5 mL) was added. The mixture was stirred at the same temperature for 2 h. The reaction mixture was quenched with saturated aqueous NH₄Cl, filtered through a Celite pad, and extracted with ether. The extract was washed with saturated aqueous NaHCO₃ and brine, dried over MgSO₄, and concentrated. Silica gel column chromatography (hexane:AcOEt=20:1) gave **7** (250 mg, 82%): colorless oil; R_f =0.75 (hexane:AcOEt=3:1); $[\alpha]_D^{24}$ +3.6 (c 1.0, CHCl₃); IR (neat) 3448, 3415, 3356, 3135, 3071, 3050, 2999, 2956, 2927, 2855, 1719, 1740, 1502, 1466, 1428, 1389, 1365, 1246, 1174, 1112, 1095, 1008, 988, 824, 741, 701, 614 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 7.72–7.62 (m, 4H), 7.46–7.33 (m, 6H), 4.34–4.22 (m, 1H), 3.66 (t, J=5.4 Hz, 2H), 3.60–3.46 (m, 1H), 1.63–1.52 (m, 4H), 1.44 (s, 9H), 1.26 (s, 22H), 1.05 (s, 9H), 0.88 (t, J=5.4 Hz, 3H). HRMS calcd for C₃₇H₆₁O₃NSi 595.44174, found 595.4415.

(R)-4-[N-(tert-Butoxycarbonyl)-N'-(2-propenyl)amino]-1-(tert-butyldiphenylsiloxy)hexadecane 8

To a stirred suspension of KH (330 mg of a 35% suspension in mineral oil, 2.9 mmol, prewashed with hexane) in THF (5 mL) at 0°C were added allyl bromide (0.25 mL, 2.9 mmol) and a solution of **7** (1.1 g, 1.9 mmol) in THF (5 mL), and the mixture was stirred at rt. After 3 h, the reaction was quenched with MeOH followed by water at 0°C. The mixture was extracted with ether and washed with brine. The organic layer was dried over MgSO₄ and concentrated. The residue was subjected to silica gel column chromatography (hexane:AcOEt=20:1) to give **8** (1.1 g, 92%): colorless oil; R_f =0.50 (hexane:AcOEt=10:1); $[\alpha]_D^{22}$ +2.5 (c 1.0, CHCl₃); IR (neat) 3071, 3050, 2998, 2956, 2927, 2855, 1692, 1457, 1428, 1403, 1391, 1333, 1247, 1175, 1155, 1112, 701, 614 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 7.69–7.61 (m, 4H), 7.46–7.32 (m, 6H), 5.94–5.70 (m, 1H), 5.15–4.95 (m, 2H), 3.70–3.50 (m, 4H), 1.54–1.46 (brs, 4H), 1.46 (s, 9H), 1.26 (s, 22H), 1.04 (s, 9H), 0.88 (t, J=7.0 Hz, 3H). Anal. Calcd for C₄₀H₆₅O₃NSi: C, 75.54; H, 10.30; N, 2.20. Found: C, 75.60; H, 10.69; N, 2.13.

(R)-4-[N-(tert-Butoxycarbonyl)-N'-(2-propenyl)amino]hexadecan-1-ol 9

A mixture of **8** (2.5 g, 4.0 mmol) and TBAF (4.8 mL, 1.0 M in THF, 4.8 mmol) in THF (30 mL) was stirred at rt for 2 h. The reaction mixture was concentrated, and the residue was purified by silica gel column chromatography (hexane:AcOEt=20:1 \rightarrow 10:1) to give **6** (1.2 g, 74%): colorless oil; R_{f} =0.11 (hexane:AcOEt=10:1); [α]_D²² +3.0 (c 1.0, CHCl₃); IR (neat) 3600–3010, 3079, 2955, 2925, 2855, 1694, 1668, 1456, 1405, 1365, 1334, 1267, 1250, 1174, 1145, 1062, 994, 917, 772, 665 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 5.98–5.74 (m, 1H), 5.18–5.00 (m, 2H), 4.04–4.02 (m, 1H), 3.96–3.75 (m, 1H), 3.72–3.50 (m, 4H), 1.56–1.47 (m, 4H), 1.44 (s, 9H), 1.24 (s, 22H), 0.88 (t, J=7.0 Hz, 3H). Anal. Calcd for C₂₄H₄₆O₃N: C, 72.68; H, 11.69; N, 3.53. Found: C, 72.41; H, 11.90; N, 3.66.

(R)-4-{N-(tert-Butoxycarbonyl)-N'-[(Z)-3-tributylstannyl-1-propenyl]amino]hexadecan-1-ol 10

To a solution of **9** (1.5 g, 3.8 mmol) in THF (20 mL) at -78° C were added *sec*-BuLi (7.4 mL, 1.1 M in cyclohexane, 8.3 mmol) and TMEDA (1.3 mL, 8.3 mmol), and the resulting yellow solution was stirred at the same temperature. After 0.5 h, *n*-Bu₃SnCl (1.2 mL, 4.5 mmol) was added, the cooling bath was removed, and the reaction mixture was allowed to warm to rt. The mixture was quenched with water and extracted with ether. The organic layer was washed with brine, dried over MgSO₄, and concentrated. Silica gel column chromatography (hexane:AcOEt=20:1 \rightarrow 10:1) gave **10** (1.6 g, 61%): colorless oil; R_f =0.31 (hexane:AcOEt=3:1); $[\alpha]_D^{23}$ +5.3 (c 1.0, CHCl₃); IR (neat) 2956, 2925, 2871, 2855, 1693, 1666, 1641, 1465, 1406, 1365, 1252, 1153, 1106, 1070 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 5.48–5.34 (m, 2H), 4.06–3.88 (m, 1H), 3.69–3.60 (m, 1H), 1.45 (s, 9H), 1.70–1.17 (m, 40H), 0.96–0.84 (m, 18H). HRMS calcd for C₃₆H₇₃O₃NSn 687.46086, found 687.4612.

(R)-4-{N-(tert-Butoxycarbonyl)-N'-[(Z)-3-tributylstannyl-1-propenyl]amino]dodecan-1-al 11

To a stirred solution of **10** (1.5 g, 2.2 mmol), DMSO (3 mL) and Et₃N (2.1 mL, 15 mmol) in CH₂Cl₂ (10 mL) at 0°C was added SO₃·py (3.3 g, 21 mmol), and the mixture was stirred for 1 h at the same temperature. The reaction mixture was diluted with ether, washed with water and brine, dried over MgSO₄, and concentrated. Silica gel column chromatography (hexane:AcOEt=5:1) gave **11** (1.6 g, 61%): colorless oil; R_f =0.81 (hexane:AcOEt=3:1); [α]_D²³ +16.4 (c 1.0, CHCl₃); IR (neat) 2956, 2925, 2870, 2853, 1713, 1729, 1695, 1641, 1465, 1406, 1365, 1252, 1152, 1105, 1073, 882, 757, 665 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 9.76 (t, J=1.2 Hz, 1H), 5.39 (m, 2H), 3.95 (m, 1H), 2.45 (m, 2H), 1.80–1.65 (m, 1H), 1.44 (s, 9H), 1.61–1.21 (m, 34H), 0.93–0.83 (m, 18H). HRMS calcd for C₃₂H₇₁O₃NSn (M-C₄H₉) 628.37484, found 628.3749.

Typical procedure for the cyclization of 11

To a stirred solution of 11 (135 mg, 0.2 mmol) in CH_2Cl_2 at $-78^{\circ}C$ was added $BF_3 \cdot OEt_2$ (0.3 mL, 1.0 M in CH_2Cl_2 , 0.3 mmol). After 1.5 h, the reaction mixture was quenched with Et_3N , the cooling bath was removed, and the reaction mixture was allowed to warm to rt. The mixture was diluted with ether and washed with saturated aqueous NaHCO₃. The organic solution was vigorously stirred with

saturated aqueous KF at rt overnight. The organic layer was dried over MgSO₄, concentrated, and subjected to silica gel column chromatography (hexane:AcOEt=10:1) to give 12 and 13 (78 mg, 98%).

(2R,3S,6R)-1-(tert-Butoxycarbonyl)-5-dodecyl-3-hydroxy-2-vinylpiperidine 12

Colorless oil; R_f =0.36 (hexane:AcOEt=3:1); $[\alpha]_D^{23}$ +1.8 (c 1.0, CHCl₃); IR (neat) 3600–3150, 2924, 2870, 2854, 1674, 1456, 1394, 1366, 1253, 1174, 665 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 6.05 (ddd, J=17.5, 10.5, 7.0 Hz, 1H), 5.19 (m, 2H), 3.96 (m, 1H), 3.81 (ddd, J=7.0, 0.7, 0.7 Hz, 1H), 3.58 (m, 1H), 1.46 (s, 9H), 1.95–1.20 (m, 27H), 0.88 (t, J=7.0 Hz, 3H). HRMS calcd for C₂₄H₄₅O₃N 395.3397, found 395.3400.

(2S, 3R, 6R)-1-(tert-Butoxycarbonyl)-5-dodecyl-3-hydroxy-2-vinylpiperidine 13

Colorless oil; R_f =0.28 (hexane:AcOEt=3:1); $[\alpha]_D^{24}$ -4.5 (c 1.0, CHCl₃); IR (neat) 3600-3050, 2925, 2854, 1687, 1456, 1404, 1363, 1324, 1174, 665 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 5.81 (ddd, J=17.0, 11.0, 7.0 Hz, 1H), 5.22 (dt, J=17.0, 1.5 Hz, 1H), 5.22 (dt, J=11.0, 1.5 Hz, 1H), 4.67 (brd, 1H), 4.14 (m, 1H), 3.96 (brs, 1H), 1.45 (s, 9H), 1.73-1.10 (m, 27H), 0.88 (t, J=7.0 Hz, 3H). HRMS calcd for C₂₄H₄₅O₃N 395.3397, found 395.3392.

(2R,3R,6R)-1-(tert-Butoxycarbonyl)-5-dodecyl-3-hydroxy-2-vinylpiperidine 14

Colorless oil; R_f =0.36 (hexane:AcOEt=3:1); $[\alpha]_D^{24}$ -0.8 (c 1.0, CHCl₃); IR (neat) 3600-3180, 2925, 2855, 1694, 1674, 1467, 1392, 1366, 1175, 1055, 665 cm⁻¹; ¹H NMR (270 MHz, CDCl₃) δ 6.02 (ddd, J=17.0, 11.0, 6.0 Hz, 1H), 5.25 (m, 2H), 4.28 (m, 1H), 4.11 (m, 1H), 3.86 (m, 1H), 1.45 (s, 9H), 2.10-1.25 (m, 27H), 0.88 (t, J=7.0 Hz, 3H). HRMS calcd for C₂₄H₄₅O₃N 395.3397, found 395.3396.

(2R,3S,6R)-3-Acetoxy-1-(tert-butoxycarbonyl)-5-dodecyl-2-vinylpiperidine 15

Colorless oil; ¹H NMR (400 MHz, CDCl₃) δ 5.87 (ddd, J=17.2, 10.8, 4.8 Hz, 1H), 5.18 (m, 2H), 5.09 (m, 1H), 4.52 (brs, 1H), 3.68 (m, 1H), 2.04 (s, 3H), 1.98–1.50 (m, 4H), 1.46 (s, 9H), 1.53 (brs, 22H), 0.88 (t, J=6.8 Hz, 3H).

(1R,6S,8R)-7-(tert-Butoxycarbonyl)-3,3-dimethyl-2,4-dioxa-8-dodecyl-7-azabicyclo[4,4,0]decane 16 Colorless oil; R_f=0.69 (toluene:EtOH=5:1); ¹H NMR (400 MHz, CDCl₃) δ 4.35–4.27 (m, 1H), 5.25 (m, 2H), 4.03–3.92 (m, 2H), 3.75–3.63 (m, 2H), 1.98–1.88 (m, 1H), 1.79–1.60 (m, 2H), 1.56–1.50 (m, 2H), 1.46 (s, 9H), 1.36 (s, 3H), 1.35 (s, 3H), 1.26 (brs, 20H), 0.88 (t, J=6.8 Hz, 3H). HRMS calcd for C₂₄H₄₅O₃N 395.3397, found 395.3396.

(IR,6R,8R)-7-(tert-*Butoxycarbonyl*)-3,3-dimethyl-2,4-dioxa-8-dodecyl-7-azabicyclo[4,4,0]decane 17 Colorless oil; *R_j*=0.69 (hexane:AcOEt=3:1); ¹H NMR (400 MHz, CDCl₃) δ 4.49 (dd, J=11.0, 4.5 Hz, 1H), 4.17 (dt, J=11.0, 6.2 Hz, 1H), 3.94 (dq, J=7.5, 2.5 Hz, 1H), 3.63 (d, J=10.5 Hz, 1H), 3.33 (dt, J=10.5, 4.5 Hz, 1H), 2.03 (m, 1H), 1.92 (m, 1H), 1.70 (m, 1H), 1.48 (s, 3H), 1.46 (s, 9H), 1.41 (s, 3H), 1.26 (brs, 22H), 0.88 (t, J=6.9 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 14.12, 22.79, 22.70, 24.17 (sec), 24.25, 27.12, 28.48, 29.16, 29.36, 29.58, 29. 61, 29.65, 29.68, 31.93, 38.59, 51.96, 65.07, 67.44, 77.22, 80.05, 99.01, 156.08.

(+)-Desoxoprosopinine 1

To a solution of 12 (100 mg, 0.25 mmol) in MeOH (13 mL) at -78° C was bubbled ozone until a blue color persisted. Excess ozone was removed by bubbling oxygen through the solution until it became colorless. To this solution at -78° C was added NaBH₄ (230 mg, 6.1 mmol), and the solution was allowed to warm to rt. The mixture was concentrated, and the residue was extracted with AcOEt (×3). The combined extract was washed with brine, and dried over MgSO₄. Concentration and silica gel column chromatography (hexane:AcOEt=2:1) gave N-Boc desoxoprosopinine (81 mg, 80%).

A mixture of *N*-Boc desoxoprosopinine (34 mg, 0.085 mmol) and 6 N HCl (2.3 mL) in 1,4dioxane (2.3 mL) was refluxed overnight. To the reaction mixture was added 2 N NaOH (46 mL), and the resulting mixture was extracted with CH₂Cl₂. The organic layer was dried over MgSO₄ and concentrated. The crude residue was purified by recrystallization (hexane:CH₂Cl₂) to give 1 (17 mg, 66%): colorless needles; mp 90.0–90.5°C; $[\alpha]_D^{20}$ +14.6 (c 0.30, CHCl₃); ¹H NMR (270 MHz, CDCl₃) δ 3.64 (dd, J=10.5, 7.7 Hz, 1H), 3.59 (dd, J=10.5, 5.7 Hz, 1H), 3.53 (dt, J=5.3, 4.6 Hz, 1H), 2.88 (m, 1H), 2.74 (m, 1H), 1.76–1.47 (m, 4H), 1.24 (brs, 22H), 0.86 (t, J=6.4 Hz, 3H). HRMS calcd for C₁₈H₃₇O₂N 299.2822, found 299.2809.

(-)-Desoxoprosophylline 2

Experimental procedure was followed as described for compound 1: colorless needles; mp 91.0–91.5°C; $[\alpha]_D^{21}$ –11.0 (c 0.24, CHCl₃); ¹H NMR (270 MHz, CDCl₃) δ 3.86 (dd, J=10.1, 5.0 Hz, 1H), 3.70 (dd, J=10.8, 5.3 Hz, 1H), 3.44 (dt, J=9.2, 5.0 Hz, 1H), 2.49–2.59 (m, 2H), 2.00–2.04 (m, 1H), 1.86 (m, 2H), 1.69–1.73 (m, 1H), 1.23 (brs, 22H), 0.86 (t, J=6.0 Hz, 3H). HRMS calcd for C₁₈H₃₇O₂N 299.2822, found 299.2851.

Acknowledgements

This work was financially supported by the Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture.

References

- (a) Yamamoto, Y.; Yamada, J.; Kadota, I. Tetrahedron Lett. 1991, 32, 7069-7072. (b) Gevorgyan, V.; Kadota, I.; Yamamoto, Y. Tetrahedron Lett. 1993, 34, 1313-1316. (c) Kadota, I.; Matsukawa, Y.; Yamamoto, Y. J. Chem. Soc., Chem. Commun. 1993, 1638-1641. (d) Yamamoto, Y.; Kadota, I. Main Group Met. Chem. 1994, 17, 269-289. (e) Yamamoto, Y.; Kadota, I. Bull. Soc. Chim. Belg. 1994, 103, 619-629. (f) Kadota, I.; Park, J.-Y.; Koumura, N.; Pollaud, G.; Matsukawa, Y.; Yamamoto, Y. Tetrahedron Lett. 1995, 36, 5777-5780. (g) Kadota, I., Yamamoto, Y. Main Group Met. Chem. 1996, 19, 361-366.
- 2. Kadota, I.; Kawada, M.; Saya, S. Tetrahedron Lett. 1996, 37, 2109-2112.
- 3. Khuong-Huu, Q.; Ratle, G.; Monseur, X.; Goutarel, R. Bull. Soc. Chim. Belg. 1972, 81, 425-441.
- Previous syntheses of 1 and 2: (a) Saitoh, Y.; Moriyama, Y.; Takahashi, T.; Khuong-Huu, Q. *Tetrahedron Lett.* 1980, 75-78. (b) Saitoh, Y.; Moriyama, Y.; Horita, H.; Takahashi, T.; Khuong-Huu, Q. Bull. Chem. Soc. Jpn 1981, 54, 488-492. (c) Holmes, A. B.; Thompson, J.; Baxter, A. J. G.; Dixon, J. J. Chem. Soc., Chem. Commun. 1985, 37-39. (d) Ciufolini, M. A.; Hermann, C. W.; Whitmire, K. H.; Byrne, N. E. J. Am. Chem. Soc. 1989, 111, 3473-3475. (e) Takao, K.; Nigawara, Y.; Nishino, E.; Takagi, I.; Maeda, K.; Tadano, K.; Ogawa, S. Tetrahedron 1994, 50, 5681-5704. (f) Terakado, M.; Murai, K.; Miyazawa, M.; Yamamoto, K. Tetrahedron 1994, 50, 5705-5718. (g) Yuasa, Y.; Ando, J.; Shibuya, S. Tetrahedron: Asymmetry 1995, 6, 1525-1526. (h) Yuasa, Y.; Ando, J.; Shibuya, S. J. Chem. Soc., Perkin Trans 1 1996, 793-802. (i) Luker, T.; Hiemstra, H.; Speckamp, W. N. J. Org. Chem. 1997, 62, 3592-3596.
- 5. For the preliminary report of this work, see: I. Kadota, M. Kawada, Y. Muramatsu, and Y. Yamamoto, *Tetrahedron Lett.* **1997**, *38*, 7469–7470.
- 6. Kotsuki, H.; Kusumi, T.; Inoue, M.; Ushio, Y., Ochi, M. Tetrahedron Lett. 1991, 32, 4159-4162.
- 7. Lipshutz, B. H.; Pollart, D.; Monforte, J.; Kotsuki, H. Tetrahedron Lett. 1985, 26, 705-708.
- 8. The acetonides 16 and 17 were prepared from 13 and 14, respectively, by the following procedures: (i) O₃, MeOH, -78°C, then NaBH₄, -78°C to rt; (ii) 2,2-dimethoxypropane, p-TsOH, CH₂Cl₂, rt.

(Received 23 September 1997; accepted 3 November 1997)