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Cyano-Borrowing Reaction: Nickel-Catalyzed Direct Conversion of 
Cyanohydrins and Aldehydes/Ketones to -Cyano Ketone
Zhao-Feng Li, Qian Li, Li-Qing Ren, Qing-Hua Li, Yun-Gui Peng*, Tang-Lin Liu*

A direct nickel-catalyzed, high atom- and step-economical reaction of cyanohydrins with aldehydes or ketones via an 
unprecedented “cyano-borrowing reaction” has been developed. Cleavage of the C-CN bond of cyanohydrins, aldol 
condensation followed by conjugate addition of cyanide to ,-unsaturated ketones proceeded to deliver a range of racemic 
-cyano ketones with good to high yields. The practical procedure with the use of commercial and lower-toxic CN source 
bodes well for wide application of this protocol.

Introduction
The nitriles are important synthesis intermediates in 
transformation1 and are key components in various natural 
products, medicinal pharmacophores and drugs,2 and in organic 
synthesis, cyano group is equivalent to amine or carbonyl 
group. The catalytic addition of cyano group to C=C bond has 
been established as one of the most direct pathways for the 
synthesis of nitriles.3,4 Among the important nitriles, -cyano-
ketonesare commonly utilized in organic synthesis.5 One of the 
classical approaches to deliver these compounds is the 
catalyzed conjugate addition of cyanide to ,-unsaturated 
carbonyl compounds (Hydrocyanation procedure, Scheme 1a),6 
which utilizes the highly toxicity and explosive HCN gas as the 
cyano source. An alternative strategy is the transfer 
hydrocyanation which involves the commercially available, 
lower-toxicity and lower-explosive cyanohydrin to deliver 
nitriles (Scheme 1b), but with low atom economy.7 Recently, 
Morandi developed a nickel-catalyzed transfer hydrocyanation 
reaction between alkyl nitriles and alkenes or aryl chlorides, 
which utilizes none toxicity alkyl nitriles as the cyanide source.8 
Although the catalyzed hydrocyanation and transfer 
hydrocyanation reactions have been well developed,6-7 it 
remains an important challenge to bypass the usage of toxic 
HCN gas as the cyano source and overcome the issue of atom-
economy. To mitigate these concerns and inspired by the atom-
and step-economical procedure of -alkylation of secondary 
alcohols with aldehydes via borrowing hydrogen reactions9-10, 
we postulated that the cyano group could be tolerated in the 
reaction with analogous mechanism as the borrowing hydrogen 
reactions. Guided by these considerations, we envisioned that, 
as shown in Scheme 1c, under the catalysis of transition metal, 
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cleavage of the C-CN bond11,12 of the cyanohydrin and deliver 
the corresponding ketones and metal-cyano intermediate 
([M]n-CN), followed by Aldol condensation of ketones with 
aldehydes, subsequently conjugate addition of cyanide to 
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chalcones and utilizes the [M]n+1-CN as the cyano donor to 
deliver the desired products (Scheme 1c). This hypothesis is 
notable in that cyanohydrin plays a dual role both as the source 
of ketone and the cyanide donor with high atom- and step-
economy. Herein, we report the first catalytic process of the 
direct transformation of cyanohydrins with aldehydes to deliver 
-cyano ketones as the sole product via nickel catalyzed cyano-
borrowing reactions.13

Results and discussion
To test our hypothesis, we initiated the cyano-borrowing 
reaction using commercially available acetophenone 
cyanohydrin 1a which could be prepared from acetophenone 
and TMSCN and benzaldehyde 2a for the optimization of the 
reaction conditions. After screening an array of the transition 
metal catalyst, we found that nickel complex showed better 
performance. To our delight, a cocktail consisting of NiBr2, PPh3, 
and LiOH as base in dioxane at 100 oC could deliver the desired 
racemic -cyano ketone 3aa in 52% yield (table 1, entry 1). 
Notably, determined by the crude 1H NMR of the reaction 
mixture, not even trace of 1,2-addition products were 
observed.14 As shown in Table 1, we then examined an 

Table 1   Screening studies of -alkylation of cyanohydrin 1a 
with benzaldehyde 2aa

HO CN
+ CHO

O CN[Ni] (5 mol%)
L (10 mol%)

Base (3.0 equiv.)
Solvent, 4A MS

100 oC1a 2a 3aa

entry [Ni] L base Solvent Yield (%)b

1 NiBr2 PPh3 LiOH Dioxane 52

2 NiCl2 PPh3 LiOH Dioxane 76

3 Ni(OAc)2 PPh3 LiOH Dioxane 66

4 Ni(OTf)2 PPh3 LiOH Dioxane 62

5 Ni(acac)2 PPh3 LiOH Dioxane 71

6 NiCl2 PCy3 LiOH Dioxane 76

7 NiCl2 dppe LiOH Dioxane 72

8 NiCl2 dppp LiOH Dioxane 78

9 NiCl2 dppb LiOH Dioxane 37

10 NiCl2 BINAP LiOH Dioxane 44

11 NiCl2
n-BuPAd2 LiOH Dioxane 82

12 NiCl2 n-BuPAd2 NaOH Dioxane 28

13 NiCl2 n-BuPAd2 KOt-Bu Dioxane trace

14 NiCl2 n-BuPAd2 Cs2CO3 Dioxane 0

15 NiCl2 n-BuPAd2 DMAP Dioxane 0

16 NiCl2 n-BuPAd2 DBU Dioxane 0

17 NiCl2 n-BuPAd2 LiOH Toluene 22

18 NiCl2 n-BuPAd2 LiOH TBME 23

19 NiCl2 n-BuPAd2 LiOH THF 72

20c NiCl2 n-BuPAd2 LiOH Dioxane 59

21 -- -- LiOH Dioxane <10

22 NiCl2 n-BuPAd2 -- Dioxane 0
aThe reaction was carried out with 0.4 mmol of 1a, 0.4 mmol of 2a, 5 mol% [Ni], 
10 mol% ligand (L) and 300 mol% base in 0.5 mL of solvent at 100 oC for 18 h. 
bIsolated yield. cThe reaction was carried out at 80 oC. dppm = 
Bis(diphenylphosphino)methane; dppe = Bis(diphenylphosphino)ethane; dppp = 
Bis(diphenylphosphino)-propane; dppb = Bis(diphenylphosphino)butane; n-

BuPAd2 = Di(1-adamantyl)-n-butylphosphine; TBME = Methyl tert-butyl ether.

extensive array of parameters. By varying the anion of the nickel 
salt (i.e., NiCl2, Ni(OAc)2, Ni(OTf)2 and Ni(acac)2) as precatalysts, 
NiCl2 exhibited the best yield (Table 1, entries 3-5 vs 2). The 
screening of different phosphines revealed that this 
transformation requires a bulky, electron rich ligand, and t-

BuPAd2 showed the highest reactivity with 82% yield (table 1, 
entry 11 vs 2 and 6-10). Stronger base such as NaOH and KOt-Bu 
shows low reactivity. Meanwhile, Cs2CO3 and organic base (i.e., 
DMAP and DBU), failed to provide the target products (table 1, 
entries 14-16). Optimization of the solvent led to no 
improvement (table 1, entries 17-19). Lowering the 
temperature to 80 oC gives a lower yield (table 1, entry 20). 
Control experiments verified that the presence of Ni-complex 
was necessary to achieve high yield in cyano-borrowing reaction 
(table 1, entry 21). No reaction occurred in the absence of LiOH 
(table 1, entry 22). After the screening of the reaction 
parameters, we found that NiCl2 and n-BuPAd2 as the precatalyst 
and LiOH as the base in dioxane at 100 °C for 20 h (82% yield) 
was the optimal conditions.

Having identified the optimized reaction conditions, we further 
explored the substrate scope of this reaction. Various 
commercially available ketones cyanohydrins were examined 
with benzaldehyde (2a) and the results are summarized in 
Scheme 2. The electron-deficient substrate with varying 
substituent patterns at p-position did not dramatically influence 
yields (3ba-3da). Substituting the cyanohydrin with p-methyl 
also shows high reactivity and 72% of desire product was 
obtained (Scheme 2, 3ea). However, substituting the para 
position with a more electron-rich functionality (i.e., p-MeO) led 
to diminished yields, but the desired product could be delivered 
with 86% yield while increasing the reaction temperature to 120 
oC (Scheme 2, 3fa). Reactions of cyanohydrin with ortho- and 
meta-substituted on aryl groups gave excellent yields (Scheme 
2, 3ga-3ja). The reaction proceeds smoothly in the case of the
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Scheme 2   Reaction Scope of ketone cyanohydrins.
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cyanohydrin bearing a thienyl group, affording the 
corresponding product 3la in 82% isolated yield. In terms of 
thealkyl substituents, cyanohydrin derived from butanone 
proceeded smoothly to afford the desired product with 40% 
yield (Scheme 2, 3ma). Substrate bearing a cyclopropyl group 
was well tolerated, leading to the cyclopropyl substituted 
product with 57% yield (Scheme 2, 3na). Importantly, the 
cyclopropyl group remains untouched, which indicates that this 
nickel-catalyzed protocol does not go thought radical pathway.
Next, various aldehydes were investigated with acetophenone 
cyanohydrin (1a) using the optimized reaction conditions, and 
representative results are summarized in Scheme 3. 
Benzaldehydes bearing various electron-deficient (3ab-3ad and 
3ag-3ah), electron-neutral (3al and 3am) and electron-rich 
(3ae-3af and 3ai-3ak) substituent reacted with 1a to deliver the 
desired products in moderate to excellent yields (58-90%). 
Furthermore, the reaction is also compatible with heteroaryl 
rings, such as 2-furanyl (3an), 2-thiophenyl (3ao) and 
unprotected 3-indolyl (3ap), providing diverse -cyano ketones 
in 51-77% yield. Remarkably, compared with the aryl aldehydes, 
the alkyl substituted aldehydes (e.g., 2-phenylacetaldehyde and 
cyclohexanecarbaldehyde) reacted with 1a to afford the 
corresponding products 3aq and 3ar in 64% and 80% yields, 
respectively. The aldehyde containing a sulfur atom is also 
tolerated under the nickel-catalyzed protocol and deliver the 
desired product 3as with a slightly lower yield. To demonstrate 
the practicality and scalability of our protocol, we proceeded to 
carry out a gram-scale reaction with 5.0 mmol 2i reacted with 
10.0 mmol 1a catalyzed by 5 mmol% of NiCl2, affording 1.12 g 
3ai in 85% yield, suggesting that this procedure is quite reliable 
and have practically applicable.
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aThe reaction was carried out with 0.4 mmol of 1a, 0.4 mmol of 2, 5 mol% NiCl2, 
10 mol% n-BuPAd2 and 300 mol% LiOH in 0.5 mL of dioxane at 100 oC for 18 h. The 
yields are isolated yield. bThe reaction was carried out at 120 oC.

Scheme 3. Reaction Scope of Aldehydes.

Inspired by the success with nickel-catalyzed cyano-borrowing 
reaction of cyanohydrins derived from ketones 1 with 
aldehydes, we further demonstrate the cyano-borrowing 
protocol to the more challenging substrates such as aldehyde 
cyanohydrin 5. To our delight, benzaldehyde cyanohydrin 5a 
reacted with acetophenone 4a smoothly under standard 
condition, yielded the corresponding product 3aa with full 
conversion and 83% isolated yield. To indicate the generality of 
this protocol, we then examined the scope of benzaldehyde 
cyanohydrins and ketones. In addition to the phenyl group, it 
was found that substrates bearing electron-rich or electron–
deficient on the benzene ring were well tolerated to give the -
cyano ketones in moderate to good yields (3ba, 3ea, 3ad and 
3af in Scheme 4). Moreover, heteroaryl and alkyl substitutes 
also participated in this protocol very well (Scheme 4, 3la, 3ma, 
3ao and 3ar).
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aThe reaction was carried out with 0.4 mmol of 1a, 0.4 mmol of 2, 5 mol% NiCl2, 
10 mol% n-BuPAd2 and 300 mol% LiOH in 0.5 mL of dioxane at 100 oC for 18 h. The 
yields are isolated yield. bThe reaction was carried out at 120 oC.

Scheme 4   Examples of aldehyde cyanohydrin with ketone.a

To illustrate the scope and limitations of the new 
transformation, challenging substrates beyond methyl ketones 
were further examined, shown in Scheme 5. The 
propiophenone cyanohydrin 6 was selected to react with 
benzaldehyde 2a under the standard reaction conditions, the 
desired product 8 was obtained in 31% isolated yield and high 
diasteroselectivity (d.r > 10:1) (Scheme 5a, left). Furthermore, 
we also examined benzaldehyde cyanohydrin 5a and 
propiophenone 7, with nickel catalyst, the corresponding 
product 8 was obtained in 25% yield. (Scheme 5a, right). 
Notably, the bioactive ketone, epiandrosterone was tested in 
this reaction with the partner of benzaldehyde cyanohydrin 5a, 
and the corresponding product 10 was deliver in 57% yields with 
5:1 dr (Scheme 5b), which shown the potential of this nickel-
catalyzed cyano borrowing process for the selective 
modification of bioactive ketones.

To shed light on the mechanism for the nickel-catalyzed cyano-

Page 3 of 5 Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
M

ay
 2

01
9.

 D
ow

nl
oa

de
d 

on
 5

/7
/2

01
9 

1:
02

:4
2 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/C9SC00640K

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c9sc00640k


ARTICLE Journal Name

4 | J. Name., 2012, 00, 1-3 This journal is © The Royal Society of Chemistry 20xx

Please do not adjust margins

Please do not adjust margins

Ph

O CN

Ph
Me+

Ph O

Ph

HO CN

Me
+

PhHO

CN

O

PhStandard
conditions

Standard
conditions Me6

2a

7

5a

31% Yield
d.r > 10:1

25% Yield
d.r > 10:18

HO

O

H

H

H

1a (2 equiv.)

Standard
conditions HO

O

H

H

H

CN

10
57% Yield, 5:1 dr.

a) Phenyl Ethyl Ketone.

b) The Bioactive Ketone.

9
epiandrosterone

Scheme 5. Cyano-borrowing beyond methyl ketones.

borrowing protocol, a series of control experiments were 
conducted. As shown in Scheme 6, acetophenone cyanohydrin 
1a reacted smoothly with chalcone 11 and give the 
corresponding product 3aa in excellent yields, which indicated 
that cyanohydrin are the source of cyano group in the transfer 
hydrocyanation under standard reaction condition. 
Benzaldehyde cyanohydrin 5a could also reacting with chalcone 
11 efficiently, deliver 3aa with 89% yield, and the hydrogen-
borrowing product 12 was not observed, showing that cleavage 
the C-CN bond is more easy than the C-H bond in cyanohydrins. 
Meanwhile, in the crossover reaction of 1a, 2e and 11 under 
standard condition, we got the corresponding products 3aa and 
3ae with the ratio of 1.05:1, which shows that the cyano group 
from the cleavage of C-CN bond of cyanohydrin was a free anion 
in this nickel-catalyzed protocol and has the same opportunity 
to conjugate to each chalcone. Together, these experimental 
results support our hypothesis on nickel-catalyzed step- and 
atom-economical cyano-borrowing reaction of cyanohydrin 
with aldehydes or ketones (Scheme 1c) (for more details of the 
mechanism studies, please see supporting information).
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Scheme 6   Mechanism studies.

Experimental
General Procedure: Method A: To a vial equipped with a dried stir 
bar was added aldehydes (0.2 mmol) ketone cyanohydrins (0.4 

mmol) NiCl2 (5 mol%), n-BuPAd2 (5 mol%), LiOH (0.6 mmol), 100 mg 
4Å MS and anhydrous dioxane (1 mL) in the glovebox. The reaction 
mixture was taken outside the glovebox and allowed to stir at room 
temperature for 30 min. After then, the reaction mixture was 
allowed to stir at 100 oC for 18 hours. The crude reaction mixture was 
concentrated under reduced pressure and directly purified by silica 
gel chromatography to give pure products.

Method B: To a vial equipped with a dried stir bar was added ketones 
(0.2 mmol) aldehyde cyanohydrins (0.4 mmol) NiCl2 (5 mol%), n-

BuPAd2 (5 mol%), LiOH (0.6 mmol), 100 mg 4Å MS and anhydrous 
dioxane (1 mL) in the glovebox. The same procedure as Method A. 

Conclusions
In conclusion, we have developed an unprecedented nickel-
catalyzed protocol for the direct conversion of cyanohydrins 
and aldehydes or ketones into racemic -cyano ketones via 
nickel-catalyzed cyano-borrowing reaction. A range of 
cyanohydrins derived from aldehyde or ketone could be 
tolerated and delivered products with high regioselectivity and 
good to excellent yields. To the best of our knowledge, catalytic 
conversion of cyanohydrins into -cyano ketones by reaction 
with aldehydes/ketones has not been reported. Further studies 
of catalytic cyano-borrowing reaction of cyanohydrins is in 
progress in our reasearch lab and will be reported in due course.
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