

Contents lists available at ScienceDirect

European Journal of Medicinal Chemistry

journal homepage: http://www.elsevier.com/locate/ejmech

Original article

Parallel synthesis, molecular modelling and further structure–activity relationship studies of new acylthiocarbamates as potent non-nucleoside HIV-1 reverse transcriptase inhibitors

Andrea Spallarossa ^{a,*}, Sara Cesarini ^a, Angelo Ranise ^a, Silvia Schenone ^a, Olga Bruno ^a, Alberto Borassi ^b, Paolo La Colla ^c, Margherita Pezzullo ^c, Giuseppina Sanna ^c, Gabriella Collu ^c, Barbara Secci ^c, Roberta Loddo ^c

^a Dipartimento di Scienze Farmaceutiche, Università di Genova, Viale Benedetto XV 3, I-16132 Genova, Italy

^b Dipartimento di Chimica e Chimica Industriale, Universita' degli Studi di Genova, Via Dodecaneso 31, I-16146 Genova, Italy

^c Dipartimento di Scienze e Tecnologie Biomediche, Università di Cagliari, Cittadella Universitaria, S.S. 554, Km 4,500, I-09042 Monserrato (Cagliari), Italy

ARTICLE INFO

Article history: Received 9 July 2008 Received in revised form 22 October 2008 Accepted 30 October 2008 Available online 5 November 2008

Keywords: Acylthiocarbamates HIV-1 Non-nucleoside reverse transcriptase inhibitors Parallel synthesis

ABSTRACT

The structure–activity relationships (SARs) of acylthiocarbamates (ATCs), a new class of non-nucleoside HIV-1 reverse transcriptase inhibitors, have been expanded. Sixty-six new analogues were prepared by parallel solution-phase synthesis. In general, the potency of new ATCs was better than that of the first series and O-[2-phthalimidoethyl] 4-chlorophenyl(3-nitrobenzoyl) thiocarbamate turned out to be the most potent ATC so far synthesized (EC₅₀ = 1.5 nM). Several ATCs were active at micromolar concentrations against HIV-1 strains carrying the RT Y181C mutation and one of them was also moderately active against the K103R variant. Docking simulations were carried out to rationalize the most relevant SARs.

© 2008 Elsevier Masson SAS. All rights reserved.

1. Introduction

HIV-1 reverse transcriptase (RT) catalyses the conversion of a single-stranded RNA into a double-stranded DNA that is then integrated into the host cells' genome. Due to its essential role in the HIV-1 life-cycle, RT is a primary target for the highly active antiretroviral therapy (HAART). Non-nucleoside inhibitors (NNRTIs) [1–9] are chemically diverse and selective RT targeting agents that lock this enzyme in an inactive form [4] by binding to an allosteric hydrophobic pocket (namely, non–nucleoside inhibitor binding site, NNBS) located about 10 Å far from the polymerase active site.

O-(2-Phthalimidoethyl)-*N*-aryl-*N*-acylthiocarbamates (ATCs) have been recently identified [10] as a new class of HIV-1 NNRTIs, structurally related to *N*-phenethyl-*N*'-thiazolylthiourea (PETT) [11–19] and thiocarbamate (TC) [20–23] derivatives (Fig. 1). ATCs can be retrosynthetically fragmented into three portions (namely, **a**-**c**. Fig. 1B). Previous structure-activity relationship (SAR) studies

0223-5234/\$ - see front matter © 2008 Elsevier Masson SAS. All rights reserved. doi:10.1016/j.ejmech.2008.10.032

[10], mainly based on modifications of the **b** substructure of lead **I**, had identified the *N*-phenyl *para* substitution as a key feature to gain potent inhibitors (Fig. 1B).

With the aim at acquiring additional key elements to maximize the activity against wild-type RT and some clinically relevant RT mutations, a new series of ATCs was designed. Initially, the SAR strategy was focused on the variation of the substructure c [mono- (1-16), di-substituted (hetero)aroyl (19-47) and bicyclic (hetero)aroyl (48-50) groups] by keeping constant portion a (2-phthalimidoethyl) and the para-substitution pattern (halide, methyl) of portion b. Analogues 17 and 18 were synthesized to evaluate the effect of portion c polysubstitution on the activity of N-unsubstituted phenyl ATCs. Then, some of the most favourable *N*-phenyl(4-chlorophenyl, 4-nitrophenyl) and acyl(3-nitrobenzoyl, 4-chlorobenzoyl, 2-thenoyl, 2-chloronicotinoyl) substructures were assembled with portion a carrying modifications on the ethyl linker (51-54) and on the phthalimide phenyl ring (55-60). Finally, we evaluated the influence of the N-phenyl ring di- and tri-chlorosubstitution on the anti-HIV-1 activity by keeping constant portion a (2-phthalimidoethyl) and embedding two of the most promising acyl moieties (2-furoyl, 3-nitrobenzoyl) (61-66).

^{*} Corresponding author. Tel.: +39 010 353 8364; fax: +39 010 353 8358. *E-mail address:* andrea.spallarossa@unige.it (A. Spallarossa).

Fig. 1. A] PETT and TC [20–23] derivatives structurally related to ATCs. B] Molecular portions, chemical structure and antiretroviral activity of previously prepared ATCs I-VII [10].

2. Chemistry

The synthesis of ATCs 1-66 was carried out by the parallelization of the previously reported highly convergent three-step onepot solution-phase protocol [10]. As shown in Scheme 1, starting alcohols A_{1-8} (Fig. 2A) were transformed into the corresponding alcoholates A^- in the presence of sodium hydride in anhydrous aprotic solvents (DMF or pyridine) and condensed in situ with the proper isothiocyanate B (Fig. 2B). The sodium thiocarbamate adducts AB⁻ were subsequently coupled with acyl chlorides C (Fig. 2C) in the presence of N,N,N',N'-tetramethylethylenediamine (TMEDA) to afford the desired products. Two synthetic variants (namely, procedures P_1 and P_2 , see Section 6) were adopted to obviate the different reactivity of key intermediates A⁻ and AB⁻ vs building blocks B and C. Thus, ATCs 1-49, 52-57 and 59 were prepared in anhydrous pyridine stirring the mixtures overnight at rt (procedure P₁). For derivatives **50**, **51**, **58**, **60–66** (procedure P₂), dry DMF was used as reaction medium and different temperatures and times were employed to increase the product yields. The overall yields for ATCs **1–66** ranged from 12 to 88% (see Section 6).

The most relevant features of this parallel methodology are: i) no intermediate needs to be isolated; ii) high atom economy is realized, as only one molecule of HCl is formally lost in the whole process (this allows the incorporation into the products of all the chemical features of the commercially available or readily accessible building blocks used); iii) minimal sample handling is required during the purification protocol; iv) the modular character of the synthesis allows the independent variation of portions $\mathbf{a}-\mathbf{c}$.

3. Biological results and discussion

ATCs **1–66** were evaluated for their cytotoxicity and anti-HIV-1 activity in MT-4 cells using **Trovirdine** as the reference molecule (Tables 1–5). Selected analogues were screened in enzymatic assays against HIV-1 wt RT, using **Efavirenz** as control compound (Table 6). The most potent derivatives were also tested against the clinically

Scheme 1. General procedure for the preparation of ATCs 1–66 by parallel, convergent, one-pot solution-phase synthesis. *Reaction conditions*: (a) NaH, dry DMF or dry pyridine, 0 °C or rt; (b) Ar₁–NCS (**B**_{1–12}, 0 °C or rt; (c) TMEDA then Ar₂COCl (**C**_{1–33}), rt or heating. The structures of alcohols **A**_{1–8}, isothiocyanates **B**_{1–12} and acyl chlorides **C**_{1–33} are listed in Fig. 2.

A] ROH A ₁ -A ₈		
$X \rightarrow V$ $X \rightarrow $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} R_2 \\ H \\ H \\ H \\ H \\ CH_3 \\ H \end{array} $
B] Ar ₁ -NCS B ₁ -B ₁₂	C] Ar ₂ -CO-CI C ₁ -C ₃₃	
Ar ₁	Ar ₂ -CO	Ar ₂ -CO
B ₁ phenyl	C ₁ 2-toluoyl	C ₁₈ 2,4-dichlorobenzoyl
B ₂ 4-tolyl	C ₂ 2-nitrobenzoyl	C ₁₉ 2,6-dichlorobenzoyl
B ₃ 4-fluorophenyl	C ₃ 3-toluoyl	C ₂₀ 3,4-dichlorobenzoyl
B ₄ 4-chlorophenyl	C ₄ 3-nitrobenzoyl	C ₂₁ 3,5-dichlorobenzoyl
B ₅ 4-bromophenyl	C ₅ 4-toluoyl	C22 2,6-dimethoxybenzoyl
B ₆ 4-nitrophenyl	C ₆ 4-trifluoromethylbenzoyl	C23 2-chloro-4-nitrobenzoyl
B ₇ 2,3-dichlorophenyl	C7 4-chlorobenzoyl	C24 2-chloro-5-nitrobenzoyl
B ₈ 2,4-dichlorophenyl	C ₈ 4-bromobenzoyl	C ₂₅ 4-chloro-3-nitrobenzoyl
B ₉ 2,6-dichlorophenyl	C9 4-pentyloxybenzoyl	C ₂₆ 4-bromo-3-methylbenzoyl
B ₁₀ 3,4-dichlorophenyl	C ₁₀ 4-nitrobenzoyl	C ₂₇ 1-naphthoyl
B ₁₁ 3,5-dichlorophenyl	C ₁₁ 2,3-difluorobenzoyl	C ₂₈ 2-naphthoyl
B ₁₂ 2,4,6-trichlorophenyl	C ₁₂ 2,4-difluorobenzoyl	C ₂₉ 2-furoyl
	C ₁₃ 2,5-difluorobenzoyl	C ₃₀ 2,5-dimethyl-3-furoyl
	C ₁₄ 2,6-difluorobenzoyl	C ₃₁ 2-thenoyl
	C ₁₅ 3,4-difluorobenzoyl	C ₃₂ 2-chloronicotinoyl
	C ₁₆ 3,5-difluorobenzoyl	C33 thianaphthene-2-carbonyl
	C ₁₇ 2,3-dichlorobenzoyl	

Fig. 2. Building blocks used for the ATC parallel synthesis.

relevant K103R, Y181C (Table 7) and K103 N/Y181C resistant mutants [24,25].

With the exception of 1, ATCs bearing ortho-, meta- and paramonosubstituted (hetero)aroyl moieties (1-16, Table 1) emerged as potent NNRTIs, active in the sub-micromolar or nanomolar concentration range. In particular, 4, 5 and 7 were 2-, 13- and 4-fold more active than Trovirdine, respectively, whereas 14 and 15 were equipotent to the reference compound. Analogue 5 turned out to be the most potent ATC so far synthesized ($EC_{50} = 1.5 \text{ nM}$). The substitution pattern as well as the electronic properties of the acyl substituent significantly affected the activity. Thus, the meta- and para-substituted ATCs showed higher potency than the corresponding ortho congeners (4 and 6 vs 2; 5 and 8 vs 3; 13 and 15 vs 11; 14 and 16 vs 12). The toluoyl derivatives were more active than the nitrobenzoyl analogues among the ortho and para series (2 vs 3; 6 vs 8; 11 vs 12; 15 vs 16); this trend was reversed within the metasubstituted ATCs (4 vs 5; 13 vs 14). Furthermore, the ATCs' potency is concomitantly influenced by the acyl substitution pattern and the electronic nature of the portion **b** substituents. Thus, among the ortho- and meta-substituted aroyl ATCs, the N-4-chlorophenyl analogues were more active than the N-4-tolyl congeners (2 vs 11; 3 vs 12; 4 vs 13; 5 vs 14), whereas the para derivatives showed an opposite trend (compare 6 with 15; 8 with 16).

The activities of ATCs featured by di-substituted (hetero)aroyl groups (**17–47**) are shown in Table 2. The most potent derivatives shared the *N*-4-chlorophenyl substructure and showed EC₅₀ values lower than (**19**, **20**, **23**, **24**, **28**, **29**, **31**, **34**) or equal to (**21**, **22**, **33**, **35**) that of **Trovirdine**. The *N*-phenyl *para* substitution as well as the electronic properties of the substituent on portion **b** proved to play a pivotal role on anti-HIV-1 activity. Thus, the *N*-unsubstituted

Table 1

Cytotoxicity and anti-HIV-1 activity of ATCs 1-16.ª

Cpd	Х	Acyl	CC ₅₀ ^b	EC ₅₀ ^c	SI ^d
1	F	4-pentyloxybenzoyl	>100	8.5	>11.8
2	Cl	2-toluoyl	21	0.04	525
3	Cl	2-nitrobenzoyl	21	0.07	300
4	Cl	3-toluoyl	58	0.01	5800
5	Cl	3-nitrobenzoyl	18	0.0015	12,000
6	Cl	4-toluoyl	>100	0.05	>2000
7	Cl	4-trifluoromethylbenzoyl	10	0.005	2000
8	Cl	4-nitrobenzoyl	>100	0.06	1667
9	Br	4-bromobenzoyl	73	0.035	2086
10	Br	2-chloronicotinoyl	>100	0.2	>500
11	CH ₃	2-toluoyl	>100	0.20	>500
12	CH ₃	2-nitrobenzoyl	100	0.40	250
13	CH ₃	3-toluoyl	>100	0.04	>2500
14	CH ₃	3-nitrobenzoyl	100	0.02	5000
15	CH ₃	4-toluoyl	83	0.02	4150
16	CH ₃	4-nitrobenzoyl	58	0.03	1933
Troviro	line		60	0.02	3000

^a Data mean values for three separate experiments. Variation among triplicate samples was less than 10%.

 $^{\rm b}$ Compound concentration [µM] required to reduce the viability of mock-infected cells by 50%, as determined by the MTT method.

 $^{\rm c}$ Compound concentration [μ M] required to achieve 50% protection of MT-4 cell from HIV-1 induced cytopathogenicity, as determined by the MTT method.

^d Selectivity index: CC₅₀/EC₅₀ ratio.

Table 2

Cytotoxicity and anti-HIV-1 activity of ATCs 17-47.ª

Cpd	х	Acyl	CC ₅₀ ^b	EC ₅₀ ^c	SI ^d
17	Н	3,4-dichlorobenzoyl	52	0.5	104
18	Н	4-chloro-3-nitrobenzoyl	51	0.35	146
19	Cl	2,3-difluorobenzoyl	58	0.008	7250
20	Cl	2,4-difluorobenzoyl	52	0.01	5200
21	Cl	2,5-difluorobenzoyl	54	0.02	2700
22	Cl	2,6-difluorobenzoyl	39	0.02	1950
23	Cl	3,4-difluorobenzoyl	52	0.008	6500
24	Cl	3,5-difluorobenzoyl	59	0.007	8429
25	Cl	2,3-dichlorobenzoyl	54	0.1	540
26	Cl	2,4-dichlorobenzoyl	18	0.03	600
27	Cl	2,6-dichlorobenzoyl	20	5.6	3.6
28	Cl	3,4-dichlorobenzoyl	35	0.009	3889
29	Cl	3,5-dichlorobenzoyl	32	0.008	4000
30	Cl	2,6-dimethoxybenzoyl	69	0.4	172
31	Cl	2-chloro-4-nitrobenzoyl	19	0.008	2375
32	Cl	2-chloro-5-nitrobenzoyl	45	0.07	643
33	Cl	4-chloro-3-nitrobenzoyl	48	0.02	2400
34	Cl	4-bromo-3-methylbenzoyl	18	0.007	2571
35	Cl	2,5-dimethyl-3-furoyl	40	0.02	2000
36	CH ₃	2,4-difluorobenzoyl	20	0.03	667
37	CH ₃	2,5-difluorobenzoyl	62	0.04	1,550
38	CH ₃	2,6-difluorobenzoyl	65	1.0	65
39	CH ₃	3,5-difluorobenzoyl	54	0.05	1080
40	CH ₃	2,3-dichlorobenzoyl	35	0.2	175
41	CH ₃	2,4-dichlorobenzoyl	49	0.3	163
42	CH ₃	2,6-dichlorobenzoyl	22	9	2.4
43	CH ₃	3,4-dichlorobenzoyl	17	0.05	340
44	CH ₃	2,6-dimethoxybenzoyl	36	22	1.6
45	CH ₃	2-chloro-4-nitrobenzoyl	17	0.09	189
46	CH_3	4-chloro-3-nitrobenzoyl	47	0.06	783
47	CH_3	4-bromo-3-methylbenzoyl	>100	0.05	>2000
Trovir	dine		60	0.02	3000

Data mean values for three separate experiments. Variation among triplicate samples was less than 10%.

Compound concentration [µM] required to reduce the viability of mock-infected cells by 50%, as determined by the MTT method.

 $^{\rm c}$ Compound concentration [μM] required to achieve 50% protection of MT-4 cell from HIV-1 induced cytopathogenicity, as determined by the MTT method.

Selectivity index: CC50/EC50 ratio.

Table 4

Cytotoxicity and anti-HIV-1 activity of ATCs 51-60.ª

$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
Cpd	Α	п	R ₁	R ₂	Acyl	Х	CC ₅₀ ^b	EC ₅₀ ^c	SI ^d
51	N-phthalimido	0	_	Н	3-nitrobenzoyl	Cl	>100	>100	_
52 ^e	N-phthalimido	1	CH ₃	Н	3-nitrobenzoyl	Cl	77	0.05	1540
53 ^e	N-phthalimido	1	Н	CH ₃	3-nitrobenzoyl	Cl	31	0.7	44.
54	N-phthalimido	2	Н	Н	3-nitrobenzoyl	Cl	53	29	1.
55	N-(3-methyl)phthalimido	1	Н	Н	3-nitrobenzoyl	Cl	44	0.03	1467
56	N-(4-methyl)phthalimido	1	Н	Н	3-nitrobenzoyl	Cl	>100	0.05	>2000
57	N-(4-methyl)phthalimido	1	Н	Н	2-thenoyl	Cl	>100	0.02	>5000
58	N-(4-methyl)phthalimido	1	Н	Н	2-chloronicotinoyl	Cl	49	0.06	817
59	N-(4-methyl)phthalimido	1	Н	Н	4-chlorobenzoyl	NO ₂	>100	0.04	>2500
60	N-(cis-1.2.3.6-tetrahydrophthalimido)	1	Н	Н	4-chlorobenzovl	Cl	>100	83	>1.

Trovirdine

59

Data mean values for three separate experiments. Variation among triplicate samples was less than 10%

Compound concentration [µM] required to reduce the viability of mock-infected cells by 50%, as determined by the MTT method.

с Compound concentration [µM] required to achieve 50% protection of MT-4 cell from HIV-1 induced cytopathogenicity, as determined by the MTT method.

d Selectivity index: CC50/EC50 ratio.

Tested as racemic mixture.

Table 3

Cytotoxicity and anti-HIV-1 activity of ATCs 48-50.ª

Cpd	Acyl	CC ₅₀ ^b	EC ₅₀ ^c	SId
48	1-naphthoyl	6	0.03	200
49	2-naphthoyl	37	0.02	1850
50	Thianaphthene-2-carbonyl	56	0.2	280
Frovirdine		60	0.02	3000

^a Data mean values for three separate experiments. Variation among triplicate samples was less than 10%.

^b Compound concentration [µM] required to reduce the viability of mock-infected cells by 50%, as determined by the MTT method.

Compound concentration $\left[\mu M\right]$ required to achieve 50% protection of MT-4 cell from HIV-1 induced cytopathogenicity, as determined by the MTT method.

¹ Selectivity index: CC₅₀/EC₅₀ ratio.

phenyl derivatives were less active than their corresponding Npara-substituted phenyl analogues (compare 17 with 28 and 43; 18 with **33** and **46**) and the *N*-4-chlorophenyl ATCs (bearing an electron-withdrawing substituent on portion **b**) resulted from 1.6to 55-fold more active than those embedding the electrondonating methyl group (20 vs 36, 21 vs 37, 22 vs 38, 24 vs 39, 25 vs 40, 26 vs 41, 27 vs 42, 28 vs 43, 30 vs 44, 31 vs 45, 33 vs 46, 34 vs 47). The difluorobenzoyl derivatives 19-24 were highly active in a narrow concentration range (EC₅₀ range: 7–20 nM), thus suggesting that activity does not correlate with a specific position of the two aromatic fluorine atoms. The dichlorobenzoyl derivatives were less active than their difluoro isosters (25 vs 19; 26 vs 20; 27 vs 22; 28 vs 23; 29 vs 24; 41 vs 36; 42 vs 38) and showed a strong dependence of the antiretroviral activity on the acyl moiety substitution pattern. In particular, the 3,4- and 3,5-dichloro analogues were significantly more active than their 2,3-, 2,4- and 2,6-dichloro positional isomers (compare 28 and 29 with 25-27; 43 with 40-42). Noteworthy, 27, 38, 42 and 44 (sharing a 2,6-disubstituted acyl moiety) emerged as the weakest derivatives of the series indicating this pattern as particularly unfavourable for ATC antiviral activity. The chloro-nitrobenzoyl ATCs 31-33, 45, 46

60

0.02

>1.2

3000

Table 5

Cytotoxicity and anti-HIV-1 activity of ATCs 61-66.ª

Cpd	Acyl	X ₁	X ₂	X ₃	CC ₅₀ ^b	EC ₅₀ ^c	SI ^d
61	2-furoyl	2-Cl	3-Cl	Н	100	>100	_
62	2-furoyl	2-Cl	4-Cl	Н	>100	2.6	>38
63	3-nitrobenzoyl	2-Cl	6-Cl	Н	58	17	3.4
64	2-furoyl	3-Cl	4-Cl	Н	100	0.69	145
65	2-furoyl	3-Cl	5-Cl	Н	>100	>100	-
66	3-nitrobenzoyl	2-Cl	4-Cl	6-Cl	20	>20	-
Troviro	line				60	0.02	3000

^a Data mean values for three separate experiments. Variation among triplicate samples was less than 10%.

 $^{\rm b}$ Compound concentration [μM] required to reduce the viability of mock-infected cells by 50%, as determined by the MTT method.

 c Compound concentration [μM] required to achieve 50% protection of MT-4 cell from HIV-1 induced cytopathogenicity, as determined by the MTT method.

^d Selectivity index: CC₅₀/EC₅₀ ratio.

proved to be potent derivatives within both the *N*-4-chlorophenyl and the *N*-4-tolyl series.

To further probe the spatial requirements of portion **c**, the bicyclic (hetero)aroyl compounds **48–50** were tested (Table 3). The naphthoyl derivatives **48** and **49** showed an EC_{50} comparable with that of **Trovirdine**, being more active than their less hindered benzoyl analogue **II**. Surprisingly, **50** showed a reduced potency in comparison with both its naphthoyl isosters and its thenoyl analogue (compare **50** with **48**, **49** and **V**).

The EC₅₀ values of ATCs **51–60** (Table 4), embodying some of the most favourable **b** and **c** portions combined with variations of portion **a**, indicate that: i) the ethyl linker shortening or lengthening caused loss or drop in activity, respectively (**51** and **54** vs **5**); ii) the methyl branching of the ethyl linker caused a reduction of potency (compare **52** and **53** with **5**); however, when the methyl group was located on the C-atom adjacent to the phthalimide nitrogen, the activity was kept high, differently from the methylation on the carbon atom next to the thiocarbamic functionality (compare **52** with **53**); iii) the methyl substitution of the phthalimide system was well tolerated (compare **55** and **56** with **5**; **57** with **V**; **58** with **VI**). The partial saturation of the phthalimide benzene ring and the consequent planarity disruption of the bicyclic system caused a dramatic decrease in activity (compare **60** with **III**).

The *N*-dichloro- and *N*-trichloro-substituted phenyl ATCs (**61**–**66**, Table 5) were poorly active or inactive, differently from the corresponding *para* mono-chloro-substituted analogues (compare **63** and **66** with **5**; **61**, **62**, **64** and **65** with **IV**).

To determine whether the title compounds targeted HIV-1 RT, ATCs **10** and **59** were tested by enzyme assay (Table 6). Both derivatives showed good affinity for wt HIV-1 wt RT with IC₅₀ values in the sub-micromolar concentration range. The considerable difference of potency in enzyme- and cell-based assays (observed

Ta	bl	е	6
----	----	---	---

Activity of selected ATCs in enzyme assays against the wt HIV-1 wt RT.^a

Cpd	IC ₅₀ ^b
10 59 Efwironz	$\begin{array}{c} 0.7 \pm 0.08 \\ 0.3 \pm 0.05 \\ 0.012 + 0.0003 \end{array}$
LIAVITCIIZ	0.0013 ± 0.0003

^a Data mean values for three separate experiments. Variation among triplicate samples was less than 10%.

^b IC₅₀ [μ M] \pm standard deviation.

Table 7

Activity of selected	1 ATCs against Y181	C resistant mutant.a
----------------------	---------------------	----------------------

Cpd	EC ₅₀ ^b	EC ₅₀ ^b				
	wt	Y181C	Ratio ^c			
4	0.01	6.0	600			
6	0.05	8.5	170			
8	0.06	26	433			
10	0.2	2.3	11			
19	0.008	6.0	750			
20	0.01	5.4	540			
21	0.02	5.7	285			
23	0.008	56	7000			
25	0.1	4.2	42			
29	0.008	8.2	1025			
33	0.02	9.0	450			
34	0.007	10.9	1557			
35	0.02	7.5	375			
49	0.02	11	550			
50	0.2	12	60			
52	0.05	5.0	100			
55	0.03	4.2	140			
58	0.06	6.7	112			
Trovirdine	0.02	1.2	60			
Efavirenz	n.d. ^d	0.01	n.d. ^d			

^a Data mean values for three separate experiments. Variation among triplicate samples was less than 10%.

 $^{\rm b}$ Compound concentration [μ M] required to achieve 50% protection of MT-4 cell from HIV-1 induced cytopathogenicity, as determined by the MTT method.

EC₅₀ (Y181C)/EC₅₀(wt) ratio.

^d Not determined.

also for TCs [21–23] and the previously reported analogues [10]) could be ascribed to the possibility that ATCs are slow binding kinetics inhibitors [26].

A number of ATCs [sharing the *N*-4-(chloro or bromo)phenyl moiety] showed moderate activity against the Y181C strain (EC₅₀ range = 2.3–56 μ M, Table 7). The most interesting compounds (EC₅₀ range 2.3–57 μ M) bear the 2,4-, 2,5- and 3,5-difluorobenzoyl (**20**, **21** and **24**, respectively), 2,3-dichlorobenzoyl (**25**) or 2-chloronicotinoyl (**10**) moieties. Moreover, the methyl-branched **52** and 3-methyl phthalimidyl **55** (sharing the 3-nitrobenzoyl moiety) were active in the same micromolar concentration range. In addition, ATC **10** showed a modest activity also against the K103R mutation (EC₅₀: 58 μ M), differently from all ATCs so far synthesized [10]. No activity against the K103 N/Y181C mutation was detected (data not shown).

4. Modelling studies

To rationalize the most relevant SARs, docking studies (Autodock 3.05) [27] were carried out using the X-ray coordinates of the RT/PETT complex (PDB code: 1DTQ) [28] as the template structure.

The docking model built for the most potent derivative 5 suggested for the inhibitor an extended conformation superimposable with that predicted for I [10]. The RT/5 complex is mainly stabilized by two hydrogen bonds: the former involving the thiocarbonyl sulphur atom and the Lys101 amidic nitrogen (S-NH distance: 2.9 Å), the latter between one of the imidic carbonyls and the Lys103 side chain amino group (Fig. 3). The higher potency of 5, in comparison with that of the lead I, would be explained by the hydrophobic contacts of the chlorine atom with Val179, Ile180, Tyr181 and Tyr188 and by the polar interactions of the 3-nitro group with the Phe227, Leu234, His235 and Pro236 main chain atoms. According to this model, the chlorine atom would be at halogen bond distance (Cl–O distance: 3.1 Å) [29] with the carbonyl oxygen of Val179 main chain, thus rationalizing the higher potency of the N-4-chlorophenyl derivatives in comparison with that of their N-4-tolyl analogues. It should be noted that Leu234 and

Fig. 3. Stereodiagram showing the position and orientation of 5 modelled structures inside the NNBS. Amino acid residues lining the NNBS are represented by lines and labelled according to the one-letter code. The ligand is displayed in ball-and-sticks model. The hydrogen bonds are shown as dotted lines.

Pro236 (along with Trp229) are highly conserved amino acids in the NNBS and therefore recognized of strategic relevance for the design of new NNRTIs more resilient to the effect of RT mutations in this site [6]. Interestingly, X-ray studies carried out on **14** (a close analogue of **5**) as free ligand [30] showed the acylthiocarbamic group in an *E*,*E*' conformation, whereas docking calculation predicted a *Z*,*Z*' arrangement. As a consequence, the modelled and Xray structures show different torsional angles along the C(S)–N and C(O)–N bonds with an inversion of the positions of the *N*-phenyl and *N*-acyl moieties (Fig. 4).

The docking models of RT/**38**, RT/**42** and RT/**44** complexes rationalize the poor activity of this 2,6-di-substituted derivatives. Thus, the 2,6 pattern induces a conformation change responsible for the loss of one (for **38**) or both hydrogen bonds (for **42** and **44**) relative to the RT/**5** docking model.

The docking models of **49** and **50** showed the two inhibitors in an extended conformation with the naphthoyl moieties in contact with Val106, Gly190, Trp229, Leu234. In addition, the 1-naphthyl is in contact with Tyr188, Tyr318 and the 2-naphthyl interacts with Leu100 and Lys103. The 1-naphthyl and the 2-naphthyl would be rotated of about 129° and 135° relative to the 3-nitrophenyl fragment of **5**, respectively.

5. Conclusion

The parallel synthesis of sixty-six ATCs complemented our SAR strategy centred on molecular modifications of lead **I**. The new ATCs were, in general, more active than those previously described. In particular, **5** emerged as the most potent ATC so far synthesized. Besides the high potency against wild-type HIV-1, several ATCs inhibited the Y181C variant at micromolar concentrations and one of them showed a moderate activity against the K103R mutant, not

found in the first ATC series. These results encourage further efforts to improve ATC resilience to the most important drug resistant RT mutations.

6. Experimental section

6.1. Chemistry

6.1.1. General

N-(Hydroxymethyl)phthalimide, N-(2-hydroxyethyl)phthalimide, N-(3-hydroxypropyl)phthalimide, isothiocyanates, acyl chlorides and reagents (60% sodium hydride dispersion in mineral oil, TMEDA) were purchased from Chiminord and Aldrich Chemical, Milan (Italy). Alcohols A₃₋₆ and A₈ were prepared according to the previously reported protocol [20]. The synthesis of Trovirdine was accomplished according to the published procedure [31]. Solvents were of reagent grade (DMF, pyridine). DMF was dried on molecular sieves (5 Å 1/16" inch pellets). Unless otherwise stated, all commercial reagents were used without further purification. Organic solutions were dried over anhydrous sodium sulphate. Thin layer chromatography (TLC) system for routine monitoring the course of parallel reactions and confirming the purity of analytical samples employed aluminium-packed silica gel plates (Merck DC-Alufolien Kieselgel 60 F254). CHCl₃ or CHCl₃/methanol was used as a developing solvent and detection of spots was made by UV light and/or by iodine vapours. The parallel solution-phase chemistry was performed by using a 12-Carousel Reaction StationTM (Radleys Discovery Technologies, Italian distributor: StepBio, Bologna). The evaporation of solutions in parallel fashion was performed with an Evaposel[™] apparatus (Radleys Discovery Technologies, Italian distributor: StepBio, Bologna) operating at reduced pressure of about 15-20 Torr. Yields were not optimized. Melting points were

Fig. 4. Stereodiagram showing the superposition of 14 X-ray structure [30] (grey) and 5 docked conformation (black). The superposition has been obtained by overlying the N–C(S)–O atoms in the two structures.

determined on a Fisher–Johns apparatus and are uncorrected. IR spectra were recorded on a Perkin Elmer 398 spectrometer as KBr discs. ¹H NMR spectra were recorded in CDCl₃ or DMSO-*d*₆ on a Varian Gemini 200 instrument; chemical shifts were reported in δ (ppm) units relative to the internal reference tetramethylsilane, and the splitting patterns were described as follows: s (singlet), d (doublet), t (triplet) and m (multiplet). The first order values reported for coupling constants *J* were given in Hz. Elemental analyses were performed by an EA1110 Analyser, Fison Instruments (Milan).

6.1.2. General parallel synthetic procedure P_1 for the preparation of ATCs **1–49**, **52–57**, **59**

Alcohols A_{2-7} (10 mmol) and isothiocyanates B_{1-6} (10 mmol) were added to each reaction tube of a Carusel Reaction Station[™] and dissolved in anhydrous pyridine (25 mL) under stirring at rt. 60% sodium hydride dispersion in mineral oil (0.44 g, \sim 10 mmol) was poured in a single portion into each tube; as soon as the hydrogen evolution ceased, TMEDA (1.28 g, 11 mmol; for 10: 15 mmol; and for 35: 12 mmol) and the proper acyl chloride (11 mmol; for 10 and 35: 12 mmol) were added. Each reaction mixture was stirred for 12 h at rt (for 35: 60 °C for 2 h). Each reaction mixture was transferred into a set of separating funnels, diluted with water (150 mL) and extracted with dichloromethane $(30 \text{ mL} \times 2)$. The combined extracts were washed with water $(30 \text{ mL} \times 2)$, 1 N HCl $(30 \text{ mL} \times 2)$, except for **10**), dried and filtered in parallel through pads of Florisil (diameter 5×2 cm). Evaporating in vacuo gave a residue that was purified by crystallization from the suitable solvent or solvent mixture.

6.1.2.1. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4-fluorophenyl[4-(pentyloxy)benzoyl]thiocarbamate **1**. Mp 166–167 °C (from CH₂Cl₂/Et₂O); yield: 67%. IR (KBr) cm⁻¹: 2938, 1778, 1713, 1693. ¹H NMR (DMSO) δ 0.75–1.09 (m, 3H, CH₃), 3.67–4.21 (m, 6H, 3CH₂/pentyl), 3.67–4.21 (m, 4H, CH₂N and CH₂O/pentyl), 4.36–4.73 (m, 2H, CH₂O), 6.78–8.07 (m, 12H, arom H). Calcd for C₂₉H₂₇FN₂O₅S: C, 65.15; H, 5.09; N, 5.24; S, 6.00. Found: C, 65.28; H, 5.23; N, 5.29; S, 5.77.

6.1.2.2. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4-chlorophenyl(2-methylbenzoyl)thiocarbamate **2**. Mp 114–116 °C (from CH₂Cl₂/Et₂O); yield: 60%. IR (KBr) cm⁻¹ 1776, 1708. ¹H NMR (CDCl₃) δ 2.41 (s, 3H, CH₃), 3.75 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.49 (t, *J* = 6.0 Hz, 2H, CH₂O), 6.94–7.97 (m, 12H, arom H). Calcd for C₂₅H₁₉ClN₂O₄S: C, 62.69; H, 4.00; N, 5.85; S, 6.69. Found: C, 62.43; H, 4.22; N, 5.66; S, 6.82.

6.1.2.3. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4-chlorophenyl(2-nitrobenzoyl)thiocarbamate **3.** Mp 178–179 °C (from CH₂Cl₂/EtOH); yield: 69%. IR (KBr) cm⁻¹ 1768, 1717. ¹H NMR (CDCl₃) δ 3.77 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.53 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.28– 8.38 (m, 12H, arom H). Calcd for C₂₄H₁₆ClN₃O₆S: C, 56.53; H, 3.16; N, 8.24; S, 6.29. Found: C, 56.24; H, 3.14; N, 8.21; S, 6.19.

6.1.2.4. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4-chlorophenyl(3-methylbenzoyl)thiocarbamate **4**. Mp 134–136 °C (from CH₂Cl₂/EtOH); yield: 88%. IR (KBr) cm⁻¹ 1777, 1709. ¹H NMR (CDCl₃) δ 2.36 (s, 3H, CH₃), 3.83 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.63 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.08–7.94 (m, 12H, arom H). Calcd for C₂₅H₁₉ClN₂O4S: C, 62.69; H, 4.00; N, 5.85; S, 6.69. Found: C, 62.54; H, 4.03; N, 5.76; S, 6.42.

6.1.2.5. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4-chlorophenyl(3-nitrobenzoyl)thiocarbamate **5**. Mp 167–169 °C (from CH₂Cl₂/EtOH); yield: 83%. IR (KBr) cm⁻¹ 1777, 1711. ¹H NMR (CDCl₃) δ 4.00 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.68 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.21– 8.76~(m, 12H, arom~H). Calcd for $C_{24}H_{16}ClN_3O_6S;$ C, 56.53; H, 3.16; N, 8.24; S, 6.29. Found: C, 56.42; H, 3.35; N, 8.26; S, 6.30.

6.1.2.6. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4-chlorophenyl(4-methylbenzoyl)thiocarbamate **6**. Mp 175–176 °C (from CH₂Cl₂/Et₂O); yield: 71%. IR (KBr) cm⁻¹ 1777, 1712. ¹H NMR (CDCl₃) δ 2.32 (s, 3H, CH₃), 3.86 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.63 (t, *J* = 6.0 Hz, 2H, CH₂O), 6.99–7.39 and 7.62–7.95 (m, 12H, arom H). Calcd for C₂₅H₁₉ClN₂O₄S: C, 62.69; H, 4.00; N, 5.85; S, 6.69. Found: C, 62.54; H, 4.11; N, 5.84; S, 6.58.

6.1.2.7. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4-chlorophenyl(4-trifluorometylbenzoyl)thiocarbamate **7**. Mp 166–168 °C (from CH₂Cl₂/EtOH); yield: 18%. IR (KBr) cm⁻¹ 1777, 1712. ¹H NMR (CDCl₃) δ 3.88 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.63 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.07–8.14 (m, 12H, arom H). Calcd for C₂₅H₁₆ClF₃N₂O₄S: C, 56.35; H, 3.03; N, 5.26; S, 6.02. Found: C, 56.25; H, 3.18; N, 5.19; S, 6.13.

6.1.2.8. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4-chlorophenyl(4-nitrobenzoyl)thiocarbamate **8**. Mp 190–192 °C (from CH₂Cl₂/EtOH); yield: 39%. IR (KBr) cm⁻¹ 1775, 1711. ¹H NMR (CDCl₃) δ 3.89 (t, *J* = 6.0 Hz, CH₂N), 4.65 (t, *J* = 6.0 Hz, CH₂O), 7.15– 7.38 and 7.60–8.40 (m, 12H, arom H). Calcd for C₂₄H₁₆ClN₃O₆S: C, 56.53; H, 3.16; N, 8.24; S, 6.29. Found: C, 56.82; H, 3.08; N, 7.94; S, 6.15.

6.1.2.9. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4-bromobenzoyl(4-bromophenyl)thiocarbamate **9**. Mp 185–186 °C (from CH₂Cl₂/EtOH); yield: 57%. IR (KBr) cm⁻¹ 1775, 1709. ¹H NMR (CDCl₃) δ 3.90 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.66 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.02– 7.97 (m, 12H, arom H). Calcd for C₂₄H₁₆Br₂N₂O₄S: C, 49.00; H, 2.74; N, 4.76; S, 5.45. Found: C, 48.84; H, 3.04; N, 4.53; S, 5.52.

6.1.2.10. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4-bromophenyl[(2-chloropyridin-3-yl)carbonyl]thiocarbamate **10**. Mp 165–167 °C (from MeOH); yield: 67%. IR (KBr) cm⁻¹ 1778, 1710, 1668. ¹H NMR (CDCl₃) δ 3.80 (t, J = 6.0 Hz, 2H, CH₂N), 4.59 (t, J = 6.0 Hz, 2H, CH₂O), 7.16–7.29 and 7.76–7.89 (m, 8H, arom H), 7.46–7.50 and 8.41–8.44 (m, 3H, py H). Calcd for C₂₃H₁₅BrClN₃O₄S: C, 50.71; H, 2.78; N, 7.71; S, 5.89. Found: C, 50.36; H, 2.90; N, 7.57; S, 5.69.

6.1.2.11. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2methylbenzoyl(4-methylphenyl)thiocarbamate **11**. Mp 135–137 °C (from CH₂Cl₂/EtOH); yield: 27%. IR (KBr) cm⁻¹ 1775, 1715, 1682. ¹H NMR (CDCl₃) δ 2.32 (s, 3H, CH₃), 2.42 (s, 3H, CH₃/acyl), 3.71 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.48 (t, *J* = 6.0 Hz, 2H, CH₂O), 6.98–8.02 (m, 12H, arom H). Calcd for C₂₆H₂₂N₂O₄S: C, 68.11; H, 4.84; N, 6.11; S, 6.99. Found: C, 68.36; H, 4.86; N, 6.14; S, 6.79.

6.1.2.12. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4methylphenyl(2-nitrobenzoyl)thiocarbamate **12**. Mp 179–181 °C (from CH₂Cl₂/EtOH); yield: 43%. IR (KBr) cm⁻¹ 1768, 1717. ¹H NMR (CDCl₃) δ 2.33 (s, 3H, CH₃), 3.76 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.54 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.00–8.34 (m, 12H, arom H). Calcd for C₂₅H₁₉N₃O₆S: C, 61.34; H, 3.91; N, 8.58; S, 6.55. Found: C, 61.41; H, 3.89; N, 8.62; S, 6.50.

6.1.2.13. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 3methylbenzoyl(4-methylphenyl)thiocarbamate **13**. Mp 137–139 °C (from CH₂Cl₂/EtOH); yield: 42%. IR (KBr) cm⁻¹ 1775, 1717. ¹H NMR (CDCl₃) δ 2.20–2.47 (m, 6H, 2CH₃), 3.77 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.61 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.11–8.19 (m, 12H, arom H). Calcd for C₂₆H₂₂N₂O₄S: C, 68.11; H, 4.84; N, 6.11; S, 6.99. Found: C, 68.12; H, 4.82; N, 6.10; S, 6.68. 6.1.2.14. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4methylphenyl(3-nitrobenzoyl)thiocarbamate **14**. Mp 178–179 °C (from CH₂Cl₂/EtOH); yield: 40%. IR (KBr) cm⁻¹ 1771, 1712, 1688. ¹H NMR (CDCl₃) δ 2.30 (s, 3H, CH₃), 3.87 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.67 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.07–8.77 (m, 12H, arom H). Calcd for C₂₅H₁₉N₃O₆S: C, 61.34; H, 3.91; N, 8.58; S, 6.55. Found: C, 61.31; H, 3.91; N, 8.52; S, 6.55.

6.1.2.15. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4methylbenzoyl(4-methylphenyl)thiocarbamate **15**. Mp 142–144 °C (from CH₂Cl₂/EtOH); yield: 48%. IR (KBr) cm⁻¹ 1773, 1710. ¹H NMR (CDCl₃) δ 2.29 (s, 6H, 2CH₃), 3.86 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.64 (t, *J* = 6.0 Hz, 2H, CH₂O), 6.97–7.97 (m, 12H, arom H). Calcd for C₂₆H₂₂N₂O₄S: C, 68.11; H, 4.84; N, 6.11; S, 6.99. Found: C, 68.18; H, 4.91; N, 6.16; S, 6.77.

6.1.2.16. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4methylphenyl(4-nitrobenzoyl)thiocarbamate **16**. Mp 170–172 °C (from CH₂Cl₂/EtOH); yield: 25%. IR (KBr) cm⁻¹ 1776, 1709. ¹H NMR (CDCl₃) δ 2.30 (s, 3H, CH₃), 3.90 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.70 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.08–8.39 (m, 12H, arom H). Calcd for C₂₅H₁₉N₃O₆S: C, 61.34; H, 3.91; N, 8.58; S, 6.55. Found: C, 61.34; H, 3.91; N, 8.56; S, 6.47.

6.1.2.17. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 3,4dichlorobenzoyl(phenyl)thiocarbamate **17**. Mp 127–129 °C (from CH₂Cl₂/Et₂O); yield: 57%. IR (KBr) cm⁻¹ 3088, 3071, 1777, 1715. ¹H NMR (DMSO) δ 3.85 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.61 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.20–8.10 (m, 12H, arom H). Calcd for C₂₄H₁₆Cl₂N₂O₄S: C, 57.73; H, 3.23; N, 5.61; S, 6.42. Found: C, 57.64; H, 3.10; N, 5.32; S, 6.12.

6.1.2.18. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4chloro-3-nitrobenzoyl(phenyl)thiocarbamate **18**. Mp 120–121 °C (from CH₂Cl₂/Et₂O); yield: 12%. IR (KBr) cm⁻¹ 1775, 1717. ¹H NMR (DMSO) δ 3.82 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.61 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.08–8.48 (m, 12H, arom H). Calcd for C₂₄H₁₆ClN₃O₆S: C, 56.53; H, 3.16; N, 8.24; S, 6.29. Found: C, 56.39; H, 3.00; N, 8.28; S, 6.10.

6.1.2.19. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4chlorophenyl(2,3-difluorobenzoyl)thiocarbamate **19**. Mp 149–150 °C (from CH₂Cl₂/EtOH); yield: 82%. IR (KBr) cm⁻¹ 1776, 1708. ¹H NMR (CDCl₃) δ 3.86 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.65 (t, *J* = 6.0 Hz, 2H, CH₂O), 6.81–8.02 (m, 11H, arom H). Calcd for C₂₄H₁₅ClF₂N₂O₄S: C, 57.55; H, 3.02; N, 5.59; S, 6.40. Found: C, 57.35; H, 2.98; N, 5.54; S, 6.62.

6.1.2.20. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4chlorophenyl(2,4-difluorobenzoyl)thiocarbamate **20**. Mp 121–123 °C (from Et₂O/EtOH); yield: 70%. IR (KBr) cm⁻¹ 1777, 1713. ¹H NMR (CDCl₃) δ 3.87 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.58 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.13–8.01 (m, 11H, arom H). Calcd for C₂₄H₁₅ClF₂N₂O₄S: C, 57.55; H, 3.02; N, 5.59; S, 6.40. Found: C, 57.72; H, 3.27; N, 5.45; S, 6.29.

6.1.2.21. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4chlorophenyl(2,5-difluorobenzoyl)thiocarbamate **21**. Mp 148–149 °C (from CH₂Cl₂/EtOH); yield: 56%. IR (KBr) cm⁻¹ 1778, 1711, 1683. ¹H NMR (CDCl₃) δ 3.84 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.65 (t, *J* = 6.0 Hz, 2H, CH₂O), 6.89–8.10 (m, 11H, arom H). Calcd for C₂₄H₁₅ClF₂N₂O₄S: C, 57.55; H, 3.02; N, 5.59; S, 6.40. Found: C, 57.18; H, 3.07; N, 5.52; S, 6.37.

6.1.2.22. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4chlorophenyl(2,6-difluorobenzoyl)thiocarbamate **22**. Mp 135–137 °C (from CH₂Cl₂/EtOH); yield: 48%. IR (KBr) cm⁻¹ 1775, 1709, 1692. ¹H NMR (CDCl₃) δ 3.87 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.63 (t, *J* = 6.0 Hz, 2H, CH₂O), 6.61–8.02 (m, 11H, arom H). Calcd for C₂₄H₁₅ClF₂N₂O₄S: C, 57.55; H, 3.02; N, 5.59; S, 6.40. Found: C, 57.20; H, 3.13; N, 5.55; S, 6.18.

6.1.2.23. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4chlorophenyl(3,4-difluorobenzoyl)thiocarbamate **23.** Mp 188– 190 °C (from CH₂Cl₂/EtOH); yield: 45%. IR (KBr) cm⁻¹ 1777, 1710. ¹H NMR (CDCl₃) δ 3.78–4.08 (m, 2H, CH₂N), 4.50–4.81 (m, 2H, CH₂O), 7.05–8.06 (m, 11H, arom H). Calcd for C₂₄H₁₅ClF₂N₂O₄S: C, 57.55; H, 3.02; N, 5.59; S, 6.40. Found: C, 57.84; H, 2.90; N, 5.57; S, 6.38.

6.1.2.24. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4chlorophenyl(3,5-difluorobenzoyl)thiocarbamate **24**. Mp 148–149 °C (from CH₂Cl₂/EtOH); yield: 65%. IR (KBr) cm⁻¹ 1776, 1715, 1695. ¹H NMR (CDCl₃) δ 3.85 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.65 (t, *J* = 6.0 Hz, 2H, CH₂O), 6.91–8.01 (m, 11H, arom H). Calcd for C₂₄H₁₅ClF₂N₂O₄S: C, 57.55; H, 3.02; N, 5.59; S, 6.40. Found: C, 57.50; H, 3.19; N, 5.51; S, 6.32.

6.1.2.25. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4chlorophenyl(2,3-dichlorobenzoyl)thiocarbamate **25**. Mp 189–191 °C (from CH₂Cl₂/EtOH); yield: 37%. IR (KBr) cm⁻¹ 1773, 1706. ¹H NMR (CDCl₃) δ 3.80 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.57 (t, *J* = 6.0 Hz, 2H, CH₂O), 6.78–8.05 (m, 11H, arom H). Calcd for C₂₄H₁₅Cl₃N₂O₄S: C, 54.00; H, 2.83; N, 5.25; S, 6.01. Found: C, 53.93; H, 2.84; N, 5.18; S, 6.21.

6.1.2.26. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4chlorophenyl(2,4-dichlorobenzoyl)thiocarbamate **26**. Mp 123– 125 °C (from CH₂Cl₂/EtOH); yield: 37%. IR (KBr) cm⁻¹ 1769, 1713, 1698. ¹H NMR (CDCl₃) δ 3.81 (t, J = 6.0 Hz, 2H, CH₂N), 4.60 (t, J = 6.0 Hz, 2H, CH₂O), 7.00–8.10 (m, 11H, arom H). Calcd for C₂₄H₁₅Cl₃N₂O₄S: C, 54.00; H, 2.83; N, 5.25; S, 6.01. Found: C, 53.78; H, 3.00; N, 5.11; S, 5.88.

6.1.2.27. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4chlorophenyl(2,6-dichlorobenzoyl)thiocarbamate **27**. Mp 154–156 °C (from CH₂Cl₂/EtOH); yield: 43%. IR (KBr) cm⁻¹ 1767, 1706. ¹H NMR (CDCl₃) δ 3.84 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.68 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.00–8.20 (m, 11H, arom H). Calcd for C₂₄H₁₅Cl₃N₂O₄S: C, 54.00; H, 2.83; N, 5.25; S, 6.01. Found: C, 53.78; H, 2.92; N, 5.18; S, 5.82.

6.1.2.28. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4chlorophenyl(3,4-dichlorobenzoyl)thiocarbamate **28**. Mp 162–164 °C (from CH₂Cl₂/EtOH); yield: 70%. IR (KBr) cm⁻¹ 1777, 1710. ¹H NMR (CDCl₃) δ 3.97 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.65 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.01–8.21 (m, 11H, arom H). Calcd for C₂₄H₁₅Cl₃N₂O₄S: C, 54.00; H, 2.83; N, 5.25; S, 6.01. Found: C, 54.14; H, 2.65; N, 5.13; S, 6.06.

6.1.2.29. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4chlorophenyl(3,5-dichlorobenzoyl)thiocarbamate **29**. Mp 145–147 °C (from CH₂Cl₂/EtOH); yield: 73%. IR (KBr) cm⁻¹ 1778, 1715. ¹H NMR (CDCl₃) δ 3.94 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.61 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.18–8.08 (m, 11H, arom H). Calcd for C₂₄H₁₅Cl₃N₂O₄S: C, 54.00; H, 2.83; N, 5.25; S, 6.01. Found: C, 54.28; H, 2.96; N, 5.02; S, 6.18.

6.1.2.30. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4chlorophenyl(2,6-dimethoxybenzoyl)thiocarbamate **30**. Mp 158– 159 °C (from CH₂Cl₂/Et₂O); yield: 45%. IR (KBr) cm⁻¹ 1777, 1716, 1597. ¹H NMR (CDCl₃) δ 3.50 (m, 8H, CH₂N and 2CH₃O), 4.51 (t, J = 6.0 Hz, 2H, CH₂O), 6.31–6.68 and 7.01–7.98 (m, 11H, arom H). Calcd for C₂₆H₂₁ClN₂O₆S: C, 59.49; H, 4.03; N, 5.34; S, 6.11. Found: C, 59.48; H, 4.23; N, 5.52; S, 5.96.

6.1.2.31. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2chloro-4-nitrobenzoyl(4-chlorophenyl)thiocarbamate **31**. Mp 168– 170 °C (from CH₂Cl₂/EtOH); yield: 50%. IR (KBr) cm⁻¹ 1772, 1715, 1695. ¹H NMR (CDCl₃) δ 3.62 (t, J = 6.0 Hz, 2H, CH₂N), 4.60 (t, J = 6.0 Hz, 2H, CH₂O), 7.10–8.32 (m, 11H, arom H). Calcd for C₂₄H₁₅Cl₂N₃O₆S: C, 52.95; H, 2.78; N, 7.72; S, 5.89. Found: C, 52.61; H, 2.83; N, 7.65; S, 5.74.

6.1.2.32. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2chloro-5-nitrobenzoyl(4-chlorophenyl)thiocarbamate **32**. Mp 109– 110 °C (from CH₂Cl₂/EtOH); yield: 30%. IR (KBr) cm⁻¹ 1776, 1710. ¹H NMR (CDCl₃) δ 3.68–4.00 (m, 2H, CH₂N), 4.41–4.79 (m, 2H, CH₂O), 7.21–8.48 (m, 11H, arom H). Calcd for C₂4H₁₅Cl₂N₃O₆S: C, 52.95; H, 2.78; N, 7.72; S, 5.89. Found: C, 53.16; H, 2.88; N, 7.50; S, 5.84.

6.1.2.33. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4chloro-3-nitrobenzoyl(4-chlorophenyl)thiocarbamate **33**. Mp 119– 121 °C (from CH₂Cl₂/EtOH); yield: 41%. IR (KBr) cm⁻¹ 1777, 1712. ¹H NMR (CDCl₃) δ 3.96 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.71 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.01–8.50 (m, 11H, arom H). Calcd for C₂₄H₁₅Cl₂N₃O₆S: C, 52.95; H, 2.78; N, 7.72; S, 5.89. Found: C, 52.77; H, 3.08; N, 7.54; S, 5.72.

6.1.2.34. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4bromo-3-methylbenzoyl(4-chlorophenyl) thiocarbamate **34**. Mp 138–140 °C (from CH₂Cl₂/Et₂O); yield: 44%. IR (KBr) cm⁻¹ 1776, 1710. ¹H NMR (CDCl₃) δ 2.41 (s, 3H, CH₃), 3.88 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.67 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.20–7.94 (m, 11H, arom H). Calcd for C₂₅H₁₈BrClN₂O₄S: C, 53.83; H, 3.25; N, 5.02; S, 5.75. Found: C, 53.64; H, 3.23; N, 4.98; S, 5.85.

6.1.2.35. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4chlorophenyl(2,5-dimethyl-3-furoyl)thiocarbamate **35**. Mp 118– 119 °C (from Et₂O); yield: 39%. IR (KBr) cm⁻¹ 1775, 1714. ¹H NMR (CDCl₃) δ 1.99 (s, 3H, CH₃), 2.37 (s, 3H, CH₃), 3.90 (t, *J* = 5.6 Hz, CH₂N), 4.63 (t, *J* = 5.6 Hz, CH₂O), 5.94 (s, 1H, CH fur.), 7.09–7.24 (m, 4H, arom H), 7.66–7.79 (m, 4 H, phtha. arom H). Calcd for C₂₄H₁₉ClN₂O₅S: C, 59.69; H, 3.97; N, 5.80; S, 6.64. Found: C, 59.35; H, 4.21; N, 5.86; S, 6.60.

6.1.2.36. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2,4difluorobenzoyl(4-methylphenyl)thiocarbamate **36**. Mp 135–137 °C (from Et₂O/EtOH); yield: 27%. IR (KBr) cm⁻¹ 1773, 1715, 1691. ¹H NMR (CDCl₃) δ 2.32 (s, 3H, CH₃), 3.84 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.68 (t, *J* = 6.0 Hz, 2H, CH₂O), 6.61–7.26 and 7.75–7.96 (m, 11H, arom H). Calcd for C₂₅H₁₈F₂N₂O₄S: C, 62.49; H, 3.78; N, 5.83; S, 6.67. Found: C, 62.21; H, 3.77; N, 5.55; S, 6.50.

6.1.2.37. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2,5difluorobenzoyl(4-methylphenyl)thiocarbamate **37**. Mp 144–146 °C (from CH₂Cl₂/EtOH); yield: 40%. IR (KBr) cm⁻¹ 1772, 1715, 1681. ¹H NMR (CDCl₃) δ 2.29 (s, 3H, CH₃), 3.82 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.66 (t, *J* = 6.0 Hz, 2H, CH₂O), 6.85–8.00 (m, 11H, arom H). Calcd for C₂₅H₁₈F₂N₂O₄S: C, 62.49; H, 3.78; N, 5.83; S, 6.67. Found: C, 62.35; H, 3.74; N, 5.82; S, 6.55.

6.1.2.38. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2,6difluorobenzoyl(4-methylphenyl)thiocarbamate **38**. Mp 146–148 °C (from CH₂Cl₂/Et₂O); yield: 32%. IR (KBr) cm⁻¹ 1766, 1711. ¹H NMR (CDCl₃) δ 2.29 (s, 3H, CH₃), 3.84 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.63 (t, *J* = 6.0 Hz, 2H, CH₂O), 6.65–8.01 (m, 11H, arom H). Calcd for C₂₅H₁₈F₂N₂O₄S: C, 62.49; H, 3.78; N, 5.83; S, 6.67. Found: C, 62.21; H, 3.63; N, 5.74; S, 6.94.

6.1.2.39. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 3,5difluorobenzoyl(4-methylphenyl)thiocarbamate **39**. Mp 132–134 °C (from CH₂Cl₂/EtOH); yield: 45%. IR (KBr) cm⁻¹ 1779, 1713. ¹H NMR (CDCl₃) δ 2.31 (s, 3H, CH₃), 3.90 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.69 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.03–7.92 (m, 12H, arom H). Calcd for $C_{25}H_{18}F_2N_2O_4S;\,C,\,62.49;\,H,\,3.78;\,N,\,5.83;\,S,\,6.67.$ Found: C, 62.22; H, 3.80; N, 5.70; S, 6.50.

6.1.2.40. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2,3dichlorobenzoyl(4-methylphenyl)thiocarbamate **40**. Mp 114–116 °C (from CH₂Cl₂/EtOH); yield: 32%. IR (KBr) cm⁻¹ 1773, 1715, 1685. ¹H NMR (CDCl₃) δ 2.31 (s, 3H, CH₃), 3.78 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.54 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.09–8.01 (m, 11H, arom H). Calcd for C₂₅H₁₈Cl₂N₂O₄S: C, 58.49; H, 3.53; N, 5.46; S, 6.24. Found: C, 58.69; H, 3.62; N, 5.38; S, 6.26.

6.1.2.41. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2,4dichlorobenzoyl(4-methylphenyl)thiocarbamate **41**. Mp 112–114 °C (from CH₂Cl₂/EtOH); yield: 47%. IR (KBr) cm⁻¹ 1777, 1711. ¹H NMR (CDCl₃) δ 2.31 (s, 3H, CH₃), 3.81 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.59 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.07–7.96 (m, 11H, arom H). Calcd for C₂₅H₁₈Cl₂N₂O₄S: C, 58.49; H, 3.53; N, 5.46; S, 6.24. Found: C, 58.39; H, 3.64; N, 5.38; S, 6.15.

6.1.2.42. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2,6dichlorobenzoyl(4-methylphenyl)thiocarbamate **42**. Mp 162–164 °C (from CH₂Cl₂/EtOH); yield: 20%. IR (KBr) cm⁻¹ 1771, 1713. ¹H NMR (CDCl₃) δ 2.36 (s, 3H, CH₃), 3.82 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.68 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.01–8.04 (m, 11H, arom H). Calcd for C₂₅H₁₈Cl₂N₂O₄S: C, 58.49; H, 3.53; N, 5.46; S, 6.24. Found: C, 58.34; H, 3.55; N, 5.40; S, 6.01.

6.1.2.43. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 3,4dichlorobenzoyl(4-methylphenyl)thiocarbamate **43**. Mp 126–128 °C (from CH₂Cl₂/EtOH); yield: 58%. IR (KBr) cm⁻¹ 1774, 1709. ¹H NMR (CDCl₃) δ 2.30 (s, 3H, CH₃), 3.91 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.70 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.09–8.08 (m, 11H, arom H). Calcd for C₂₅H₁₈Cl₂N₂O₄S: C, 58.49; H, 3.53; N, 5.46; S, 6.24. Found: C, 58.17; H, 3.72; N, 5.17; S, 6.21.

6.1.2.44. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2,6dimethoxybenzoyl(4-methylphenyl)thiocarbamate **44**. Mp 115– 117 °C (from CH₂Cl₂/EtOH); yield: 18%. IR (KBr) cm⁻¹ 1770, 1709. ¹H NMR (CDCl₃) δ 2.30 (s, 3H, CH₃), 3.54–3.91 (m, 8H, CH₂N and 2CH₃O), 4.50 (t, *J* = 6.0 Hz, 2H, CH₂O), 6.36–6.63 and 7.01–7.97 (m, 11H, arom H). Calcd for C₂₇H₂₄N₂O₆S: C, 64.24; H, 4.79; N, 5.55; S, 6.35. Found: C, 64.12; H, 4.87; N, 5.58; S, 6.15.

6.1.2.45. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2chloro-4-nitrobenzoyl(4-methylphenyl)thiocarbamate **45**. Mp 141– 143 °C (from CH₂Cl₂/EtOH); yield: 39%. IR (KBr) cm⁻¹ 1772, 1715, 1691. ¹H NMR (CDCl₃) δ 2.31 (s, 3H, CH₃), 3.87 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.66 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.11–7.29 and 7.72–8.31 (m, 11H, arom H). Calcd for C₂₅H₁₈ClN₃O₆S: C, 57.31; H, 3.46; N, 8.02; S, 6.12. Found: C, 57.32; H, 3.26; N, 7.90; S, 6.23.

6.1.2.46. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4chloro-3-nitrobenzoyl(4-methylphenyl)thiocarbamate **46**. Mp 135– 137 °C (from CH₂Cl₂/EtOH); yield: 26%. IR (KBr) cm⁻¹ 1772, 1717. ¹H NMR (CDCl₃) δ 2.30 (s, 3H, CH₃), 3.98 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.76 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.08–7.28 and 7.68–8.52 (m, 11H, arom H). Calcd for C₂₅H₁₈ClN₃O₆S: C, 57.31; H, 3.46; N, 8.02; S, 6.12. Found: C, 57.34; H, 3.39; N, 7.82; S, 6.15.

6.1.2.47. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4bromo-3-methylbenzoyl(4-methylphenyl)thiocarbamate **47**. Mp 174–176 °C (from CH₂Cl₂/EtOH); yield: 40%. IR (KBr) cm⁻¹ 1772, 1710. ¹H NMR (CDCl₃) δ 2.30 (s, 3H, CH₃), 2.40 (s, 3H, CH₃/acyl), 3.87 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.68 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.05–7.97 (m, 12H, arom H). Calcd for C₂₆H₂₁BrN₂O₄S: C, 58.11; H, 3.94; N, 5.21; S, 5.97. Found: C, 58.38; H, 4.05; N, 5.19; S, 6.07. 6.1.2.48. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4chlorophenyl(1-naphthoyl)thiocarbamate **48**. Mp 139–140 °C (from CH₂Cl₂/EtOH); yield: 41%. IR (KBr) cm⁻¹ 1776, 1710. ¹H NMR (CDCl₃) δ 3.60 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.36 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.27– 8.42 (m, 15H, arom H). Calcd for C₂₈H₁₉ClN₂O₄S: C, 65.30; H, 3.72; N, 5.44; S, 6.23. Found: C, 63.05; H, 3.75; N, 5.40; S, 6.34.

6.1.2.49. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4chlorophenyl(2-naphthoyl)thiocarbamate **49**. Mp 163–165 °C (from CH₂Cl₂/EtOH); yield: 48%. IR (KBr) cm⁻¹ 1777, 1709. ¹H NMR (CDCl₃) δ 3.84 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.66 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.28– 8.16 (m, 15H, arom H). Calcd for C₂₈H₁₉ClN₂O4S: C, 65.30; H, 3.72; N, 5.44; S, 6.23. Found: C, 65.05; H, 3.93; N, 5.40; S, 6.37.

6.1.2.50. (\pm) O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)propyl] 4-chlorophenyl(3-nitrobenzoyl)thiocarbamate **52**. Mp 173–175 °C (from CH₂Cl₂/EtOH); yield: 39%. IR (KBr) cm⁻¹ 1777, 1708. ¹H NMR (CDCl₃) δ 1.37 (d, J = 6.0 Hz, 3H, CH₃), 4.56–5.01 (m, 3H, CH and CH₂O), 7.06–7.90 (m, 12H, arom H). Calcd for C₂₅H₁₈ClN₃O₆S: C, 57.31; H, 3.46; N, 8.02; S, 6.12. Found: C, 57.64; H, 3.59; N, 7.93; S, 6.04.

6.1.2.51. (±)O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)-1-methylethyl] 4-chlorophenyl(3-nitrobenzoyl)thiocarbamate **53**. Mp 159–161 °C (from CH₂Cl₂/Et₂O); yield: 13%. IR (KBr) cm⁻¹ 1780, 1713. ¹H NMR (CDCl₃) δ 1.05 (d, *J* = 6.0 Hz, 3H, CH₃), 3.65–4.00 (m, 3H, CH and CH₂N), 7.20–8.74 (m, 12H, arom H). Calcd for C₂₅H₁₈ClN₃O₆S: C, 57.31; H, 3.46; N, 8.02; S, 6.12. Found: C, 57.02; H, 3.78; N, 7.93; S, 6.32.

6.1.2.52. O-[3-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)propyl] 4chlorophenyl(3-nitrobenzoyl)thiocarbamate **54**. Mp 144–146 °C (from CH₂Cl₂/Et₂O); yield: 16%. IR (KBr) cm⁻¹ 1772, 1718, 1699. ¹H NMR (CDCl₃) δ 1.53–2.17 (m, 2H, C–CH₂–C), 3.25–3.73 (m, 2H, CH₂N), 4.12–4.54 (m, 2H, CH₂O), 7.07–8.75 (m, 12H, arom H). Calcd for C₂₅H₁₈ClN₃O₆S: C, 57.31; H, 3.46; N, 8.02; S, 6.12. Found: C, 57.68; H, 3.56; N, 8.08; S, 6.25.

6.1.2.53. O-[2-(4-Methyl-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4-chlorophenyl(3-nitrobenzoyl)thiocarbamate **55**. Mp 140–142 °C (from CH₂Cl₂/EtOH); yield: 36%. IR (KBr) cm⁻¹ 1766, 1707, 1691. ¹H NMR (CDCl₃) δ 2.70 (s, 3H, CH₃), 3.88 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.69 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.02–8.68 (m, 11H, arom H). Calcd for C₂₅H₁₈ClN₃O₆S: C, 57.31; H, 3.46; N, 8.02; S, 6.12. Found: C, 57.18; H, 3.69; N, 7.89; S, 6.30.

6.1.2.54. O-[2-(5-Methyl-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4-chlorophenyl(3-nitrobenzoyl)thiocarbamate **56**. Mp 169–170 °C (from CH₂Cl₂/EtOH); yield: 47%. IR (KBr) cm⁻¹ 1773, 1712. ¹H NMR (CDCl₃) δ 2.66 (s, 3H, CH₃), 3.88 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.62 (t, *J* = 6.0 Hz, 2H, CH₂O), 7.10–7.80 (m, 11H, arom H). Calcd for C₂₅H₁₈ClN₃O₆S: C, 57.31; H, 3.46; N, 8.02; S, 6.12. Found: C, 57.13; H, 3.52; N, 8.00; S, 6.25.

6.1.2.55. O-[2-(5-Methyl-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4-chlorophenyl(thien-2-ylcarbonyl)thiocarbamate **57**. Mp 142–143 °C (from CH₂Cl₂/EtOH); yield: 46%. IR (KBr) cm⁻¹ 1775, 1716. ¹H NMR (DMSO) δ 2.51 (s, 3H, CH₃), 3.89 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.79 (t, *J* = 6.0 Hz, 2H, CH₂O), 6.98–8.09 (m, 10H, 7 arom H and 3H thioph). Calcd for C₂₃H₁₇ClN₂O₄S₂: C, 56.96; H, 3.53; N, 5.78; S, 13.22. Found: C, 57.10; H, 3.31; N, 5.75; S, 13.00.

6.1.2.56. O-[2-(5-Methyl-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4-chlorobenzoyl(4-nitrophenyl)thiocarbamate **59**. Mp 194–197 °C (from CH₂Cl₂/EtOH); yield: 34%. IR (KBr) cm⁻¹ 1770, 1714. ¹H NMR (CDCl₃) δ 2.56 (s, 3H, CH₃), 3.88 (t, *J* = 6.0 Hz, 2H, CH₂N), 4.66 (t, J = 6.0 Hz, 2H, CH₂O), 7.16–8.41 (m, 11H, arom H). Calcd for $C_{25}H_{18}CIN_3O_6S$: C, 57.31; H, 3.46; N, 8.02; S, 6.12. Found: C, 57.00; H, 3.24; N, 7.99; S, 5.96.

6.1.3. General parallel synthetic procedure P_2 for the preparation of ATCs **50**, **51**, **58**, **60–66**

60% sodium hydride dispersion in mineral oil (0.44 g. \sim 10 mmol) was poured in a single portion into each of the 12-Carousel Reaction Station[™] tubes containing a stirred, dry DMF (25 mL), ice-cooled solution of starting alcohols A1, A2, A4, A8 (10 mmol) and isothiocyanates **B**₄, **B**₇₋₁₂ (10 mmol). Each reaction mixture was allowed to react for 1 h under stirring and then TMEDA (1.28 g, 11 mmol) and the proper acyl chloride (11 mmol) were added. The resulting mixtures were stirred at rt for 12 h [for 58: 6 h. In the case of **60–62**, **64** and **65** the reaction mixtures were heated at 65–70 °C for 1.5 h and then kept under stirring at room temperature for 12 h. For 50 an extra aliquot of acyl chloride (11 mmol) and TMEDA (11 mmol) was added and then the mixture was heated at 75 °C for 15 min]. Each reaction mixture was transferred into a set of separating funnels, diluted with water (150 mL) and extracted with dichloromethane (30 mL \times 2). The combined extracts were washed with water $(20 \text{ mL} \times 4)$ and 1 M HCl $(20 \text{ mL} \times 2)$ (except for **50** and **58**), dried, filtered through a plug of Florisil (diameter 5×2 cm) and evaporated under reduced pressure to give a residue that was purified by crystallization from the suitable solvent or solvent mixture.

6.1.3.1. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 1-benzothien-2-ylcarbonyl(4-chlorophenyl)thiocarbamate **50**. Mp 145– 147 °C (from Et₂O); yield: 61%. IR (KBr) cm⁻¹ 1777, 1713. ¹H NMR (CDCl₃) δ 3.80 (t, *J* = 4.8 Hz, 2H, CH₂N), 4.77 (t, *J* = 4.8 Hz, 2H, CH₂O), 7.20–7.50 and 7.60–8.08 (m, 13H, arom H). Calcd for C₂₆H₁₇ClN₂O₄S₂: C, 59.94; H, 3.29; N, 5.38; S, 12.31. Found: C, 60.32; H, 3.28; N, 5.26; S, 12.05.

6.1.3.2. O-[(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)methyl] 4-chlorophenyl(3-nitrobenzoyl)thiocarbamate **51**. Mp 135–137 °C (from CH₂Cl₂/EtOH); yield: 18%. IR (KBr) cm⁻¹ 1782, 1722. ¹H NMR (CDCl₃) δ 5.82 (s, 2H, CH₂), 7.17–8.47 (m, 12H, arom H). Calcd for C₂₃H₁₄ClN₃O₆S: C, 55.71; H, 2.85; N, 8.47; S, 6.47. Found: C, 55.91; H, 3.03; N, 8.40; S, 6.44.

6.1.3.3. O-[2-(5-Methyl-1,3-dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 4-chlorophenyl[(2-chloropyridin-3-yl)carbonyl]thiocarbamate **58**. Mp 156–158 °C (from CH₂Cl₂/EtOH); yield: 68%. IR (KBr) cm⁻¹ 1773, 1710. ¹H NMR (CDCl₃) δ 2.56 (s, 3H, CH₃), 3.79 (t, *J* = 5.2 Hz, 2H, CH₂N), 4.58 (t, *J* = 5.2 Hz, 2H, CH₂O), 7.22–7.35 (m, 5H, arom H), 7.56–7.87 (m, 4H, arom H), 8.44 (m, 1H, arom H). Calcd for C₂₄H₁₇Cl₂N₃O₄S: C, 54.99; H, 3.41; N, 8.36; S, 6.38. Found: C, 54.90; H, 3.39; N, 7.99; S, 6.16.

6.1.3.4. O-{2-[(3aR,7aS)-1,3-Dioxo-1S,3,3a,4,7,7a-hexahydro-2H-isoindol-2-yl]ethyl} 4-chlorobenzoyl(4-chlorophenyl)thiocarbamate **60**. Mp 155–157 °C (from CH₂Cl₂/EtOH); yield: 48%. IR (KBr) cm⁻¹ 2950, 1787, 1695. ¹H NMR (CDCl₃) δ 1.94–2.58 (m, 4H, 2CH₂), 2.88– 3.17 (m, 2H, 2CH), 3.68 (t, *J* = 6 Hz, 2H, CH₂N), 4.54 (t, *J* = 6 Hz, 2H, CH₂O), 5.80–6.01 (m, 2H, 2CH = C), 7.08–8.29 (m, 8H, arom H). Calcd for C₂₄H₂₀Cl₂N₂O₄S: C, 57.25; H, 4.00; N, 5.56; S, 6.37. Found: C, 56.98; H, 3.90; N, 5.34; S, 6.05.

6.1.3.5. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2,3dichlorophenyl(2-furoyl)thiocarbamate **61**. Mp 163–165 °C (from CH₂Cl₂/EtOH); yield: 49%. IR (KBr) cm⁻¹ 3128, 3068, 1776, 1716, 1684. ¹H NMR (CDCl₃) δ 3.92 (t, *J* = 6 Hz, 2H, CH₂N), 4.78 (t, *J* = 6 Hz, 2H, CH₂O), 6.30–6.45 (m, 1H, H-4, fur), 7.02–8.09 (m, 9H, 7 arom H and H-3 and H-5 fur). Calcd for C₂₂H₁₄Cl₂N₂O₅S: C, 54.00; H, 2.88; N, 5.72; S, 6.55. Found: C, 54.15; H, 2.87; N, 5.71; S, 6.25. 6.1.3.6. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 24dichlorophenyl(2-furoyl)thiocarbamate 62. Mp 130–132 °C (from CH₂Cl₂/EtOH); yield: 74%. IR (KBr) cm⁻¹ 1771, 1716, 1688. ¹H NMR $(CDCl_3) \delta 3.95$ (t, J = 6 Hz, 2H, CH₂N), 4.70 (t, J = 6 Hz, 2H, CH₂O), 6.31-6.48 (m, 1H, H-4, fur), 7.05-7.98 (m, 9H, 7 arom H and H-3 and H-5 fur). Calcd for C₂₂H₁₄Cl₂N₂O₅S: C, 54.00; H, 2.88; N, 5.72; S, 6.55. Found: C, 53.88; H, 2.77; N, 5.70; S, 6.20.

6.1.3.7. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 2,6dichlorophenyl(3-nitrobenzoyl)thiocarbamate 63. Mp 185-187 °C (from CH₂Cl₂/EtOH); yield: 45%. IR (KBr) cm⁻¹1774, 1713, 1690. ¹H NMR $(CDCl_3) \delta 3.77 (t, I = 6.0 \text{ Hz}, 2\text{H}, CH_2\text{N}), 4.63 (t, I = 6.0 \text{ Hz}, 2\text{H}, CH_2\text{O}),$ 7.25-8.92 (m, 11H, arom H). Calcd for C₂₅H₁₅Cl₂N₃O₆S: C, 52.95; H, 2.78; N, 7.72; S, 5.89. Found: C, 52.72; H, 2.79; N, 7.62; S, 5.72.

6.1.3.8. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 3.4dichlorophenyl(2-furoyl)thiocarbamate 64. Mp 150-152 °C (from CH₂Cl₂/EtOH); yield: 61%. IR (KBr) cm⁻¹ 3091, 1772, 1712. ¹H NMR $(CDCl_3) \delta 3.97 (t, J = 6 Hz, 2H, CH_2N), 4.75 (t, J = 6 Hz, 2H, CH_2O),$ 6.37-6.60 (m, 1H, H-4, fur), 7.03-7.94 (m, 9H, 7 arom H and H-3 and H-5 fur). Calcd for C₂₂H₁₄Cl₂N₂O₅S: C, 54.00; H, 2.88; N, 5.72; S, 6.55. Found: C, 53.93; H, 2.78; N, 5.68; S, 6.35.

6.1.3.9. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 3.5dichlorophenyl(2-furoyl)thiocarbamate 65. Mp 144-146 °C (from CH₂Cl₂/EtOH); yield: 71%. IR (KBr) cm⁻¹ 3093, 1778, 1710. ¹H NMR $(CDCl_3) \delta 3.96$ (t, I = 6 Hz, 2H, CH₂N), 4.74 (t, I = 6 Hz, 2H, CH₂O), 6.47-6.51 (m, 1H, H-4, fur), 7.20-7.96 (m, 9H, 7 arom H and H-3 and H-5 fur). Calcd for C₂₂H₁₄Cl₂N₂O₅S: C, 54.00; H, 2.88; N, 5.72; S, 6.55. Found: C, 54.06; H, 2.83; N, 5.74; S, 6.35.

6.1.3.10. O-[2-(1,3-Dioxo-1,3-dihydro-2H-isoindol-2-yl)ethyl] 3nitrobenzoyl(2,4,6-trichlorophenyl)thiocarbamate **66**. Mp 185 -187 °C (from CH₂Cl₂/EtOH); yield: 45%. IR (KBr) cm⁻¹ 1774, 1718, 1694. ¹H NMR (CDCl₃) δ 3.76 (t, J = 6.0 Hz, 2H, CH₂N), 4.61 (t, J = 6.0 Hz, 2H, CH₂O), 7.29–8.77 (m, 10H, arom H). Calcd for C₂₄H₁₄Cl₃N₃O₆S: C, 49.80; H, 2.44; N, 7.26; S, 5.54. Found: C, 49.93; H, 2.47; N, 7.24; S, 5.33.

6.2. Virology

6.2.1. Cell-based assays

The biological evaluation of the ATCs 1-66 was performed according to the previously reported procedures [10].

6.2.2. Enzyme assays

RT assays were carried out using a non-radioactive method. Purified HIV-RT was purchased from Ambion and assayed for its RNA-dependent polymerase-associated activity in a 20 µL volume containing 60 mM Tris-HCl (pH = 8.1), 60 mM KCl, 8 mM MgCl₂, 13 mM DTT, 2.5 ng μ L⁻¹ template: primer [poly(A)-oligo(dT)₁₆] and 100 µM dTTP. After incubation for 30 min at 37 °C, reactions were stopped by addiction of 2 µL of 200 mM EDTA. 138 µL of PicoGreen Quantitation Reagent (Molecular Probes), diluted 1/345 in TE, was added to each sample and incubated at room temperature, protected from ambient light, for 5 min. Sample fluorescence from each well of a 96-well microtiter plate was measured using a microplate VICTOR³ Multilabel Plate Reader (PerkinElmer). Percent residual activity was plotted vs increasing concentration of compounds. The curve was fit with Kaleidagraph (Synergy Software) to obtain IC₅₀ values.

6.3. Molecular modelling

The docking models of analogues 5, 38, 42, 44, 49 and 50 were calculated using Autodock 3.0.5 [27]. The crystal structure of RT/PETT complex solved by Ren et al. [28] (PDB code: 1DTO) was used as starting structure. The ligands were built by Insight II (Builder module) and parameterized according to the CVFF force field [32]. The docking calculations were carried out as previously reported [21-23]. The RT-ATC complexes were energy-minimized by CNS [33], performing a cycle of simulated annealing (starting temperature 1000 K) followed by 120 cycles of Powell minimization. All the calculations were performed on Silicon Graphic Indigo2 and Origin 200 workstations. Model analyses were carried out using CCP4 (Collaborative Computational Project Number 4) program suite [34]. The programs Molscript [35] and Raster3D [36] were used for drawing the figures.

Acknowledgements

This work was supported by MURST (Cofinanziamento Nazionale 2004). Fondazione Banca Carige is gratefully acknowledged for financially supporting SC. The authors thank Mr. O. Gagliardo for the microanalyses, Mr. F. Tuberoni, Dr. C. Rossi and Dr. R. Raggio for the IR and NMR spectra.

References

- [1] M. Artico, Farmaco 51 (1996) 305-331.
- [2] M. Artico, Drugs Future 27 (2002) 159-175.
- [3] J. Balzarini, Curr. Top. Med. Chem. 4 (2004) 921-944.
- E. De Clercq, Chem. Biodivers. 1 (2004) 44-64. Ì4Ì
- [5] E. De Clercq, J. Med. Chem. 46 (2005) 1297-1313.
- [6] R. Pauwels, Curr. Opin. Pharmacol. 4 (2004) 437-446.
- [7] O.S. Pedersen, E.B. Pedersen, Antivir. Chem. Chemother. 10 (1999) 285-314.
- [8] O.S. Pedersen, E.B. Pedersen, Synthesis 4 (2000) 479-495.
- [9] T.J. Tucker, W.C. Lumma, J.C. Culberson, Methods Enzymol. 275 (1996) 440-472.
- [10] A. Ranise, A. Spallarossa, S. Schenone, O. Bruno, F. Bondavalli, L. Vargiu, T. Marceddu, M. Mura, P. La Colla, A. Pani, J. Med. Chem. 46 (2003) 768-781.
- [11] A. Ahgren, K. Backro, F.W. Bell, A.S. Cantrell, M. Clemens, J.M. Colacino, J.B. Deeter, P. Engelhardt, M. Hogberg, S.R. Jaskunas, N.G. Johansson, C.L. Jordan, J.S. Kasher, M.D. Kinnick, P. Lind, C. Lopez, J.M. Morin Jr., M.A. Muesing, R. Noreen, B. Oberg, C.J. Paget, J.A. Palkowitz, C.A. Parrish, P. Pranc, M.K. Rippy, C. Rydergard, C. Sahlberg, S. Swanson, R.J. Ternansky, T. Unge, R.T. Vasileff, L. Vrang, S.J. West, H. Zhang, X.-X. Zhou, Antimicrob. Agents Chemother. 39 (1995) 1329–1335.
- [12] A.S. Cantrell, P. Engelhardt, M. Hogberg, S.R. Jaskunas, N.G. Johansson, C.L. Jordan, J. Kangasmetsa, M.D. Kinnick, P. Lind, J.M. Morin Jr., M.A. Muesing, R. Noreen, B. Oberg, P. Pranc, C. Sahlberg, R.J. Ternansky, R.T. Vasileff, L. Vrang, S.J. West, H. Zhang, J. Med. Chem. 39 (1996) 4261–4274. [13] O.J. D'Cruz, F.M. Uckun, J. Antimicrob. Chemother. 57 (2006) 411–423 and
- references therein.
- [14] Y. Dong, T.K. Venkatachalam, R.K. Narla, V.N. Trieu, E.A. Sudbeck, F.M. Uckun, Bioorg. Med. Chem. Lett. 10 (2000) 87–90 and references therein.
- [15] M. Högberg, C. Sahlberg, P. Engelhardt, R. Noréen, J. Kangasmetsä, N.G. Johansson, B. Öberg, L. Vrang, H. Zhang, B.-L. Sahlberg, T. Unge, S. Lövgren, K. Fridborg, K. Bäckbro, J. Med. Chem. 42 (1999) 4150-4160.
- V. Ravichandran, R.K. Agrawal, Bioorg. Med. Chem. Lett. 17 (2007) 2197-2202. [16] [17] F.M. Uckun, D. Erbeck, H. Tibbles, S. Qazi, T.K. Venkatachalam, Arznei-
- mittelforschung 57 (2007) 164-170. [18] T.K. Venkatachalam, E.A. Sudbeck, C. Mao, F.M. Uckun, Bioorg. Med. Chem. Lett.
- 10 (2000) 2071-2074.
- [19] T.K. Venkatachalam, C. Mao, F.M. Uckun, Bioorg. Med. Chem. 12 (2004) 4275-4284. [20] A. Ranise, A. Spallarossa, S. Cesarini, F. Bondavalli, S. Schenone, O. Bruno,
- G. Menozzi, P. Fossa, L. Mosti, M. La Colla, G. Sanna, M. Murreddu, G. Collu, B. Busonera, M.E. Matongiu, A. Pani, P. La Colla, R. Loddo, J. Med. Chem. 48 (2005) 3858-3873
- [21] S. Cesarini, A. Spallarossa, A. Ranise, P. Fossa, P. La Colla, G. Sanna, G. Collu, R. Loddo, Bioorg. Med. Chem. 16 (2008) 4160-4172.
- [22] S. Cesarini, A. Spallarossa, A. Ranise, O. Bruno, P. La Colla, B. Secci, G. Collu, R. Loddo, Bioorg. Med. Chem. 16 (2008) 4173-4185.
- [23] A. Spallarossa, S. Cesarini, A. Ranise, O. Bruno, S. Schenone, P. La Colla, G. Collu, G. Sanna, B. Secci, R. Loddo, Eur. J. Med. Chem. (2008). doi:10.1016/ j.ejmech.2008.09.024.
- [24] C. Tantillo, J. Ding, A. Jacobo-Molina, R.G. Nanni, P.L. Boyer, S.H. Hughes, R. Pauwels, K. Andries, P.A. Janssen, E. Arnold, J. Mol. Biol. 243 (1994) 369-387.
- [25] G. Maass, U. Immendoerfer, B. Koenig, U. Leser, B. Mueller, R. Goody, E. Pfaff, Antimicrob. Agents Chemother. 37 (1993) 2612-2617.
- [26] D. Motakis, M.A. Parniak, Antimicrob. Agents Chemother. 46 (2002) 1851–1856.
- [27] G.M. Morris, D.S. Goodsell, R.S. Halliday, R. Huey, W.E. Hart, R.K. Belew, A.J. Olson, J. Comput. Chem. 19 (1998) 1639-1662.
- [28] J. Ren, J. Diprose, J. Warren, R.M. Esnouf, L.E. Bird, S. Ikemizu, M. Slater, J. Milton, J. Balzarini, D.I. Stuart, D.K. Stammers, J. Biol. Chem. 275 (2000) 5633.

- [29] P. Auffinger, F.A. Hays, E. Westhof, P.S. Ho, Proc. Natl. Acad. Sci. U S A 101 (2004) 16789–16794.
- [30] A. Mugnoli, A. Borassi, A. Spallarossa, S. Cesarini, Acta Crystallogr. C62 (2006) 315–317.
- [31] F.W. Bell, A.S. Cantrell, M. Hogberg, S.R. Jaskunas, N.G. Johansson, C.L. Jordan, M.D. Kinnick, P. Lind, J.M. Morin Jr., R. Noreen, B. Oberg, J.A. Palkowitz, C.A. Parrish, P. Pranc, C. Sahlberg, R.J. Ternansky, R.T. Vasileff, L. Vrang, S.J. West, H. Zhang, X.-X. Zhou, J. Med. Chem. 38 (1995) 4929–4936.
- [32] P. Dauber-Osguthorpe, V.A. Roberts, D.J. Osguthorpe, J. Wolff, M. Genest, A.T. Hagler, Proteins 4 (1988) 31–47.
- [33] A.T. Brunger, P.D. Adams, G.M. Clore, W.L. Delano, P. Gros, R.W. Grosse-Kunstleve, S. Jiangj, J. Kuszewski, N. Nilges, N.S. Pannu, R.J. Read, L.M. Rice, T. Simonson, G.L. Warren, Acta Crystallogr. D54 (1998) 905–921.
- [34] Collaborative Computational Project, Number 4, Acta Crystallogr. D50 (1994) 760–763.
- [35] P.J. Kraulis, J. Appl. Crystallogr. 24 (1991) 946–950.
- [36] R.M. Esnouf, J. Mol. Graph. Model. 15 (1997) 132-134.