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ABSTRACT: Recently reported Pd-mediated one-pot ketone 

synthesis from an unactivated alkyl bromide and a thioester 

has been extended to a macrocyclic ketone synthesis. In-situ 

generation of alkylzinc halide via single electron transfer 

(SET), using NbCpCl4 and CrCl3, was the key for the success 

of macrocyclization. A new convergent synthesis of eribulin 

has been achieved, using: (1) catalytic asymmetric Ni/Cr-

mediated coupling to form the C19-C20 bond, (2) base-

induced cyclization to form the methylenetetrahydrofuran 

ring, and (3) Pd-mediated one-pot ketone synthesis to form 

the macrocyclic ketone.  

Halichondrins are polyether macrolides, originally isolated 

from the marine sponge Halichondria okadai by Uemura, 

Hirata, and co-workers.
1 This class of natural products dis-

plays interesting structure diversities on the oxidation state at 

C12 and C13, cf., halichondrin A-C in Scheme 1. We chose 

halichondrin B as a synthetic target and began the experi-

mental work, which led us to the first total synthesis of hali-

chondrin B in 1992. On completion of the synthesis,
2
 we 

asked (the late) Dr. Suffness at the National Cancer Institute 

(NCI) and Dr. Littlefield at Eisai Research Institute (ERI) to 

test antitumor activities of the totally synthetic halichondrins, 

along with several synthetic intermediates. The results were 

sensational: their experiments clearly demonstrated that the 

antitumor activities of halichondrin B resided in the right por-

tion of the molecule, which served as the foundation for suc-

cessful development of the antitumor drug Halaven (eribulin) 

by Eisai.
3,4,5  

Recently, we reported a unified, convergent synthesis of 

this class of marine natural products, using: (1) Ni/Cr-

mediated coupling to form the C19-C20 bond, (2) THF SN2 

cyclization between C17-Cl and C20-OH, and (3) macrolac-

tonization (Scheme 2).
2b, 6
 We were interested in extending 

this synthetic strategy to the synthesis of eribulin, in which 

the first two key synthetic transformations could be achieved 

by use of the chemistry developed for the unified synthesis of 

halichondrins. The third key synthetic transformation is the 

cyclization to form the macrolactone in the halichondrin se-

ries, whereas it is the cyclization to form the macrocyclic 

ketone in the eribulin series. Macrolactonization is a well-

precedented synthetic transformation. On the contrary, except 

for a few limited cases,7 cyclization to form a macrocyclic 

ketone, referred to as macroketocyclization in this paper, is an 

unexploited synthetic transformation.
8
 In this communication, 

we report a macroketocyclization between a non-activated 

alkylbromide with a thioester and its application to a synthesis 

of eribulin. 

Scheme 1. Structure of Halichondrins A-C and Eribulin 

Mesylate 

 

Related to this work, we recently developed a Pd-mediated 

one-pot ketone synthesis from non-activated alkyl bromides 

and thioesters, with an intention of extending it to a macro-

ketocyclization.9 In this connection, we should note that the 

efficiency of this method is excellent, even with use of a ~1:1 

molar ratio of two coupling partners. However, in order to 

translate the one-pot ketone synthesis to a macroketocycliza-

tion, we need to address one additional question, that is how 

to eliminate, or suppress, an intermolecular coupling. For the 

case of macrolactonization, a high-dilution technique is com-

monly employed to achieve this goal.  

Pd-Mediated ketone synthesis is generally considered to in-

volve three distinct steps: (1) oxidative addition of a Pd(0)-

catalyst to a thioester to form RCO-Pd(II)X, (2) transmetalla-

tion from an alkylzinc halide to the resultant Pd(II) species, 

and (3) reductive elimination, leading to a ketone and re-

generating the Pd(0)-catalyst. Among these steps, we specu-

lated the second step (transmetallation) to be most critical to 

effectively achieve the macroketocyclization under a high-

dilution condition. Upon dilution, an intra-molecular 

transmetallation would be favored over the inter-molecular 

transmetallation, but would be disfavored over undesired side-

Page 1 of 5

ACS Paragon Plus Environment

Journal of the American Chemical Society

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

reactions due to a higher probability of wasting radical and/or 

organometallic species.10 

Experimentally, it was found that catalytic inter-molecular 

ketone synthesis proceeded well even at 25 mM. Among three 

conditions, Condition C [(Pd2dba3 (10 mol%), PCy3 (20 

mol%), CrCl2 (0.5 equiv), NbCpCl4 (10 mol%), LiI (1 equiv), 

TESCl (1.5 equiv), Zn (xs) in DMI)] gave the best conver-

sion.11
,12 

Scheme 2. Three Key Transformations employed in the 

Unified Convergent Synthesis of Halichondrins 

 

Being encouraged with this observation, we chose substrate 

4a to study the feasibility of macroketocyclization (Table 1). 

In this study, 4a was subjected to a specified condition, and a 

yield of 5a was estimated from a 
1
H-NMR analysis of crude 

product.
12
 At 50 mM concentration, which was effective for 

inter-molecular ketone synthesis (vide ante), 4a gave the 

debrominated product and dimer as major products (entry 1). 

Considering that the activity of reagents might diminish by 

dilution, we then tested the macroketocyclization in the pres-

ence of a stoichiometric amount of metals, thereby demon-

strating that the desired ketone 5a was indeed formed as a 

major product at 10 mM concentration with only a small 

amount of debrominated product, although the dimer was still 

detected in more than 10% (entry 2). Under the stoichiometric 

conditions, CrCl2 and NbCpCl4 were essential (entries 4 & 5), 

but LiI and TESCl were not (entry 3). Also, reducing the 

amount of NbCpCl4 resulted in a lower yield (entry 6). These 

observations implicate that SET activation and the early tran-

sition metals (TM) are critical for macroketocyclization. In-

terestingly, this coupling condition corresponds to Condition 

C for inter-molecular one-pot ketone synthesis. At present, we 

do not have experimental supports to suggest a specific role(s) 

of early transition metals. However, we would speculate that 

both metals play the same role(s) in both intra- and inter-

molecular couplings.13 Lastly, it was found that Cr(III)Cl3 was 

more effective than Cr(II)Cl2 to lower the concentration fur-

ther (entries 9 – 11). Under these conditions, the desired 

product was formed, accompanied with only a trace amount 

of debrominated product.
12
 

Table 1. Macroketocyclization: Optimization
a
 

 
aConditions: To Pd2dba3 (0.04 mmol) and PCy3 (0.08 mmol) in 

DMI (2 mL) were added Zn (0) (xs),  CrCl3 (0.2 mmol), and 

NbCpCl4 (0.04 mmol) at rt in a glove box.  Then, if needed, LiI 

(0.4 mmol) and TESCl (0.06 mmol) were added to the reaction 

mixture followed by S.M. in THF (2 mL). bRoughly estimated 

yield based on a ratio of 5a to side products (debrominated RH 

and dimer) in a crude 1H NMR.12 cPd2dba3 (0.1 equiv), PCy3 (0.2 

equiv) used. dRH was a major product. eReduction of Zn (20-40 

equiv) provided slightly lower yield. fTrace amount of RH. 
gLower yield mainly due to dimer. hLower yield mainly due to 

debromination, yet dimer-formation was not noticeably reduced. 

Abbreviation: DMI = 1,3-dimethyl-2-imidazolidinone; NbCpCl4 

= tetrachloro(cyclopeantadienyl)niobium; Pd2dba3 = 

tris(dibenzyli-deneacetone)dipalladium(0); PCy3 = tricyclohex-

ylphosphine. 

We then carried out the macroketocyclization of 4a under 

the condition of entry 10 in a preparative scale (0.2 mmol) 

(Scheme 3). In order to achieve the macroketocyclization 

effectively, it has become evident that two conditions must be 

met: (1) to maintain Pd-, Nb- and Cr-reagents in a stoichio-

metric amount and (2) to maintain the substrate-concentration 

above 5 mmol. From a practical point of view, it would be 

more attractive if an amount of Pd-, Nb- and Cr-reagents 

could be reduced.14 To address this issue, we tested the possi-

bility of recycling the reagents mixture in one-pot. Specifical-

ly, one-half of substrate 4a was added into one-half amount of 

the reagent mixture used for the stoichiometric conditions 

and, after 7 hours, the remaining half of 4a was added to the 

same reaction mixture. Under this setting, the cyclization 

completed to give 5a in 58% isolated yield after chromato-

graphic purification. Thus, the macroketocyclization was ef-

fective with use of one-half of the reagents mixture in the 

price of time, i.e., 7 vs. 14 hours. Similarly, the macroketocy-

clization was tested by adding 1/4- and 1/8-amounts of 4a into 

a 1/4- and 1/8-amount of the reagents mixture, respectively, 

every 7 hours, to give 5a in 55%. Overall, under these condi-

tions, the cyclization was achieved with use of ~30% and 

~15% of the reagents mixture, in the price of time, i.e., 7 

hours vs. 28 and 56 hours.15 This procedure was also found 

effective for 16-membered ketone 5b to give 57% yield from 

1

3 Key Synthetic Operations:
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      to form the C19-C20 bond

  b. THF cyclization between 
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4b. In both cases, dimers and debrominated products were 

detected, but only in insignificant amounts (<10%). 

 

Scheme 3. Preparative Macroketocyclization 

 
aConditions: To Pd2dba3 (0.1 mmol) and PCy3 (0.2 mmol) in 

DMI/THF (10 mL/5 mL) were added CrCl3 (0.5 mmol), Zn (xs),  

and NbCpCl4 (0.5 mmol) at rt in a glove box. SM (0.2 mmol) was 

added to the reagent mixture in two portions. First, one half (0.1 

mmol) of SM in THF (2.5 mL) was added to the reagent mixture 

and stirred at rt. After 7 h, the remaining half (0.1 mmol) of SM 

in THF (2.5 mL) was added and stirred overnight. bSee Support-

ing Information for details. 

Having demonstrated the feasibility of one-pot macroketo-

cyclization, we shifted our focus onto its application to a syn-

thesis of eribulin (Scheme 2). The synthesis of aldehyde 1 

was started from the known sulfone 6.
16
 Protecting group 

manipulation, hydroxylation of sulfone 7 to alcohol 8,
16
 fol-

lowed by tosylation and bromide substitution proceeded une-

ventfully (Scheme 4). However, deprotection of 4-

methoxytrityl (MMTr) ether required an optimization, be-

cause of a concomitant deprotection of the primary TBS 

group; 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP), which was 

known effective for selective deprotection of 4,4-

dimethoxytrityl (DMTr),
17
 resulted in only partial deprotec-

tion of MMTr at 40 °C. Assuming that a MMTr-cation accep-

tor might enhance the deprotection, we eventually found that 

an addition of water (HFIP/H2O = 40/1) allowed us selective-

ly to complete the required deprotection at rt. Then, the result-

ing alcohol was oxidized to aldehyde 1. On the other hand, 

thioester 2 was straightforwardly prepared from the known 

methyl ester 9 in two-steps:
6
 hydrolysis by Me3SnOH

18
 and 

coupling with EtSH by DCC.  

With both aldehyde 1 and vinyl iodide 2 in hand, we stud-

ied the C19-20 Ni/Cr-mediated coupling. Initially, the condi-

tion optimized for the synthesis of halichondrin A was applied 

for coupling of 1 and 2 with Ni-complex I,
2b
 but gave the 

desired product 10 only in a modest yield (~40%). We specu-

lated that the low yield might be attributed to a poor selectivi-

ty in activation of the C19-vinyl iodide – note the presence of 

an alkyl bromide as well as a thioester, which might potential-

ly be activated with low-valent Ni. With this speculation, we 

searched for a Ni-catalyst, which would allow us selectively 

to activate the C19-vinyl iodide and consequently improve the 

efficiency of Ni/Cr-mediated coupling of 2 with 1. Through 

this search, it was found that a combination of Ni-complex II, 

prepared from electron-rich 2,3,4,7,8,9-hexamethyl-1,10-

phenanthroline, and Cr-catalyst, prepared from unnat-i-

Pr/Me/OMe sulfonamide I, gave a satisfactorily high coupling 

yield (86% yield; dr = ~10:1 (
1
H-NMR)).19 

Scheme 4. A New Convergent Synthesis of Eribulin 

 
aReagents and Conditions: a. 1. MMTrCl, i-Pr2NEt, CH2Cl2, 

93%. 2. K2CO3, MeOH. 3. TBSCl, imidazole, 88% for 2 steps. b. 

n-BuLi, THF, -78 °C;  HBSia2, -10 °C to rt, >12 h; H2O2, 3M 

NaOH, 0 °C, 81%. c. 1. TsCl, DMAP (cat.), Et3N, CH2Cl2, 88%. 

2. NaBr, Bu4NBr (cat.), acetone, reflux, 90%. 3. 

(CF3)2CHOH/H2O = 40/1, 3 h, 90%. 4. Dess-Martin Ox., 90%.  

d. 1. Me3SnOH, 80 ~ 85 °C, DCE; 0.1 N HCl. 2. EtSH, DCC, 

DMAP, 94%. e. CrCl2 (20 mol%), Cr-Ligand I (24 mol%), pro-

ton sponge (24 mol%), Ni-complex II (5 mol%), LiCl, Mn, 

ZrCp2Cl2, CH3CN/EtOAc= 3/1 (0.15 M), 86%. f. SrCO3 (xs), t-

BuOH/H2O = 20/1 (4 mM), 95°C, open to air, 87%. g. Pd2dba3 (1 

equiv), PCyp3 (2 equiv),
20 CrCl3 (5 equiv), NbCpCl4 (1 equiv), 

Zn (0) (xs), DMI/THF (1/1,  27 mM), 64%. h. see reference 24. 

Abbreviation: DCC = dicyclohexylcarbodiimide; PCyp3 = tricy-

clopentylphosphine. 

The next task was to cyclize 10 to 11, which had been done 

with AgOTf/Ag2O in the synthesis of halichondrin A. Appar-

enly, this condition was not suitable to the substrate 10, be-

cause of the presence of thioester- and bromide-groups. Thus, 

we tested the cyclization conditions reported by Britton (100 

°C in water),21 which gave the desired product 11, although 

accompanied with a large amount of unidentified 

decomposition products. We speculated that the liberated HCl 

might have caused the decomposition, and began an extensive 
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search for a suitable base, leading us to a satisfactory 

condition: SrCO3(s) at 95 °C.
22 Under the optimized condi-

tions, 11 was isolated in 87% yield and fully characterized.   

Finally, 11 was subjected to macroketocyclization under the 

stoichiometric conditions. It is worthwhile noting that, 

contrary to model compounds 4a,b, the major side-reaction in 

this series was the reductive quentching of -CH2Br to CH3 

rather than the dimerization, thereby suggesting the possibility 

of using a higher concentration. We assume that the 

difference in behavior might be attributed to the difference in 

conformational property of 11, compared to 4; namely, 11 

might have adopted a favorable conformation required for the 

macroketocyclization. Consistent with this assumption, the 

macroketocyclization was achieved, without noticeable di-

merization, even at 27 mM concentration, to furnish ketone 3 

in 64% yield (52 mg scale).23 Spectroscopic comparisons (
1
H- 

and 
13
C-NMR, HR-MS) firmly established that 3 thus ob-

tained was identical with the authentic sample.
3,5
 Lastly, mac-

rocyclic ketone 3 was converted into eribulin in three steps.24  

In summary, a method has been developed for macroketo-

cyclization between an alkyl bromide and a thioester under 

mild conditions. NbCpCl4 and CrCl3 are key components not 

only for in-situ activation of alkyl bromide to alkylzinc halide 

via a SET process but also for acceleration of Pd-mediated 

coupling. Notably, this unique macroketocyclization does not 

require any special template or functional group to be re-

moved after cyclization. Overall, the newly-developed 

macroketocyclization has allowed us to synthesize eribulin 

with the same synthetic strategy as the one used in the hali-

chondrins.  
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