Interaction of PH₃ with Acetaldehyde in Aqueous Media and Chemistry of [HO(Me)CH]₄PCl

D. V. Moiseev^{*a,b*}, B. R. James^{*a*}, and A. V. Gushchin^{*b*}

^aDepartment of Chemistry, University of British Columbia, Vancouver, British Columbia, V6T 1Z1 Canada e-mail: moisdv@hotmail.com; brj@chem.ubc.ca.

^bDepartment of Organic Chemistry, Lobachevsky State University of Nizhny Novgorod, pr. Gagarina 23, Nizhny Novgorod, 603950 Russia

Received December 20, 2011

Abstract—The known phosphonium chloride $[HO(Me)CH]_4PCI$ was prepared at ambient conditions from PH₃ and acetaldehyde in aqueous HCl, and characterized by elemental analysis and ¹H and ³¹P{¹H} NMR spectroscopy. Attempts to obtain the tertiary phosphine $[HO(Me)CH]_3P$ via reaction of $[HO(Me)CH]_4PCI$ with Na₂SO₃ or Et₃N in aqueous media under Ar revealed that $[HO(Me)CH]_3P$ is unstable and equilibrates with the secondary phosphine $[HO(Me)CH]_2PH$ and acetaldehyde. A 1:4 reaction of $[HO(Me)CH]_4PCI$ with NaHSO₃ at room temperature under Ar affords first the oxide $[HO(Me)CH]_2P(O)H$ and then the phosphinic acid $[HO(Me)CH]_2P(O)OH$. A 1:1 reaction of $[HO(Me)CH]_4PCI$ with Na₂S₂O₃ affords the sulfide $[HO(Me)CH]_3PS$. ³¹P{¹H} and ¹H NMR data for all the (α -hydroxyethyl)phosphorus species are reported for the first time.

DOI: 10.1134/S1070363213020047

(a-Hydroxymethyl)phosphines and the corresponding phosphonium salts have attracted much attention, and this is exemplified by a recent review on the diverse coordination chemistry of (HOCH₂)₃P and its industrial applications [1]. This phosphine, readily formed from the phosphonium salt (HOCH₂)₄PCl (or the corresponding sulfate) has been used commercially as a bleaching and brightness stabilizing agent of mechanical pulps [2-6], and as a component for flameand glow-resistant polymers [7-9]. There is also a patent on use of the oxide and sulfide derivatives, (HOCH₂)₃PO and (HOCH₂)₃PS, in the manufacture of fire-retardant polyurethanes [10]. The (HOCH₂)₄PCl salt can be obtained by passing PH₃ through a solution of formaldehyde in the presence of HCl, a carbonylhydrophosphination reaction [11–14], and treatment of this salt with a base such as NaOH [15, 16], Et₃N [17, 18], or Bu_3P [19], or interaction with Na_2SO_3 [8, 20], affords (HOCH₂)₃P, which is stable (even under air) in aqueous media at pH 7.0-8.0 [21].

Reports on syntheses of other tetrakis(α -hydroxyalkyl)phosphonium chlorides are few, although tetrakis-(α -hydroxyethyl)phosphonium chloride, [HO(Me)CH]₄. PCl (I), and the α -hydroxypropyl analogue [HO(Et)-CH]₄PCl were apparently prepared in 1888 via hydrophosphination reactions of PH₃ with acetaldehyde and propionaldehyde, respectively, in the presence of HCl [22]. The chloride I and the [HO(R)CH]₄PCl analogues (R = n-C₆H₁₃ and n-C₁₁H₂₃) were similarly prepared in the early 1960s, but characterized only by elemental analysis and/or melting point [13]. In 1998, [HO(R)CH]₄PCl (R = n-C₉H₁₉ and again n-C₁₁H₂₃) were synthesized by the same methodology, and their characterization now included ¹H-, ³¹P{¹H}-, and ¹³C {¹H}-NMR data [23]. Reaction of aldehydes, branched at the α -position, with PH₃/HCl affords only secondary (α -hydroxyalkyl)phosphine derivatives [13]. To the best of our knowledge, the only reported example of a tertiary tris(α -hydroxyalkyl)phosphine other than (HOCH₂)₃P is [HO(Cl₃C)CH]₃P [24].

Following the discovery of the pulp-bleaching activity of $(HOCH_2)_3P$, a strong reductant and nucleophile [1–6], our group has investigated interactions of tertiary or secondary phosphines with substituted benzaldehydes [25], benzyl and cinnamyl alcohols [26], quinones [27], and α,β -unsaturated aldehydes [28–32]. The general conclusion is that the bleaching activity occurs by the loss of conjugation in organic frameworks. A general problem associated with the use of $(HOCH_2)_3P$, and $(\alpha$ -hydroxyalkyl)phosphines, is

$$PH_3 \xrightarrow{RCHO} [HO(R)CH]PH_2 \xrightarrow{RCHO} [HO(R)CH]_2PH \xrightarrow{RCHO} [HO(R)CH]_3P \xrightarrow{RCHO} [HO(R)CH]_4PCI$$
(1)

the reversibility of their formation via phosphine/ aldehyde reactions as shown in Eq. (1) [21, 25, 28, 30, 31], and this led us to study the preparation, stability, and chemical properties of tris(α -hydroxyethyl) phosphine, [HO(Me)CH]₃P (**II**).

This report describes NMR data for **I** and its reactions with Et₃N and Na₂SO₃ in attempts to obtain the tertiary phosphine **II**. Interactions of **I** with NaHSO₃ and Na₂S₂O₃, sulfur-containing salts that are decomposition products of sodium dithionite (Na₂S₂O₄), are also described, the interest here being associated with the synergic effect observed for a combination of (HOCH₂)₃P and dithionite in pulp-bleaching [33, 34].

Pure chloride I was prepared by a PH₃/ acetaldehyde/HCl reaction in water, with a final recrystallization of the isolated residue from EtOH; a literature method used an aqueous/THF solvent and, for the residue, a trituration procedure with MeCN [13]. The product is highly water-soluble and its solution is stable in air, as is (HOCH₂)₄PCl [21]. The ³¹P{¹H} spectrum in D₂O revealed three singlet resonances: a smaller one at δ_P 27.6 ppm and two of equal intensity at δ_P 28.3 and 27.8 ppm, the integration ratios being 1:4:4. These ratios remain constant in all the chloride I reactions studied, implying that the three resonances are associated with the phosphonium chloride [more correctly $I-d_4$, as defined in Eq. (2)] containing four identical, chiral C-centers bonded to a tetrahedral P-atom. Theoretically, three ${}^{31}P-{}^{1}H$ resonances corresponding to three possible diastereomers should be observed in a 1:4:3 ratio: one (RRRR)/ (SSSS) isomer, four isomers of identical structures where only one group is different [(RRRS)/(RSSS) =(RRSR)/(SRSS) = (RSRR)/(SSRS) = (SRRR)/(SSSR)],and three isomers with structures where two groups are different [(RRSS)/(SSRR) = (RSRS)/(SRSR) = (RSSR)/(SRSR)(SRRS)] (see Scheme 1). The smaller 27.6 ppm signal is thus attributed to the (RRRR)/(SSSS) diastereomer. The slight deviation from the expected ratio possibly results from an equilibrium present in D_2O (Eq. 2), similar to the one established for $(HOCH_2)_4PCl (pK_d \sim$ 7.1 [21, 35, 36]); this equilibrium might favor one of three $I-d_4$ diastereomers, because of steric hindrance caused by the deuteroxyethyl groups within [DO(Me) CH]₃P (II- d_3). For the phosphonium salts [HO(n- C_9H_{19})CH]₄PCl and [HO(*n*-C₁₁H₂₃)CH]₄PCl, three δ_P resonances were detected in ratios of 2:3:5 and \sim 1:2:3, respectively, and were reported as 'nearly identical' to the statistical value [23].

$$[DO(Me)CH]_4P^+Cl \xrightarrow{\kappa_d} [DO(Me)CH]_3P + MeCHO + DCl$$
(2)
I-d₄ II-d₃

The CH₃ protons of the chloride $I-d_4$ are seen in the ¹H spectrum as three overlapping doublets of doublets (³*J*_{HH} 7.1, ³*J*_{PH} 14.3 Hz) centered at $\delta_{\rm H}$ 1.78 ppm, and

the CH proton is seen as a multiplet at $\delta_{\rm H}$ 5.16 ppm, which is presumably three doublets of quartets with a small ${}^{2}J_{\rm PH}$ coupling constant because, in the ${}^{1}{\rm H}-\{{}^{31}{\rm P}\}$

spectrum, there is no significant change in the CH proton pattern.

An NMR investigation of a 1:1 reaction of I with Na_2SO_3 in D_2O at room temperature (r.t., ~295 K) under Ar revealed that the phosphine $II-d_3$ is formed initially in the first stage; the reaction stoichiometry is presumably that shown in Eq. 3, which has been established for $(HOCH_2)_3P$ {Eq. (3), with Me replaced by H [8, 20, 33]}; the deuteroxymethane-sulfonate salt is formed via the reaction of HSO_3^- with acetaldehyde. However, unlike (HOCH₂)₃P which is stable under such conditions, the phosphine $II-d_3$ partially decomposes to the deuterated $bis(\alpha-hydroxyethyl)$ phosphine $[DO(Me)CH]_2PD$ (III- d_3) and acetaldehyde [Eq. (4)]. In the ${}^{31}P-{}^{1}H$ spectrum recorded after 15 min, $II-d_3$ is seen as the expected two singlets (Scheme 1) at δ_P 8.4 and 7.1 ppm in a 1:3 ratio (Fig. 1a). The phosphine $III-d_3$ is seen as three triplets

at δ_P -26.8, -28.5 and -31.6 ppm (¹J_{PD} 33 Hz) in a 1:2:1 ratio (Fig. 1a), instead of the expected two 1:1 resonances for the (RR)/(SS) and (RS)/(SR) diastereomers (Scheme 1). A plausible rationalization is that in the (RS)/(SR) enantiomers, the P-atom is chiral because the hydroxyethyl groups with (R)- or (S)-chirality are different, and so this generates two (RSR) and (SRS) enantiomers that are apparently not NMR-identical. Of interest, only one δ_P 15.6 ppm resonance was given for [HO(Cl₃C)CH]₃P, and this was assigned to a preferred (RRR)/(SSS) diastereomer of just two considered possibilities: (RRR)/(SSS) and (RRS)/(RSS) [24]. In the ¹H spectrum, the CH protons of II- d_3 and III- d_3 appear as a broad multiplet at $\delta_{\rm H}$ 4.69–4.43 ppm, which overlaps with the CH resonance of DO(Me)C(H) SO₃Na, and a doublet of quartets at $\delta_{\rm H}$ 4.38 ppm (³J_{HH} 7.3 and ${}^{2}J_{PH}$ 1.9 Hz), which is assigned to one of the **II**- d_3 diastereomers.

$$[DO(Me)CH]_4P^+Cl^- + Na_2SO_3 \longrightarrow [DO(Me)CH]_3P + DO(Me)C(H)SO_3Na + NaCl (3)$$

$$[DO(Me)CH]_3P \iff [DO(Me)CH]_2PD + MeCHO (4)$$

$$II-d_2 \qquad III-d_2$$

Fig. 1. The ³¹P-{¹H} spectrum of the reaction of I (present as I- d_4) and Na₂SO₃ (1:1, Ar, D₂O, r. t.) after: (a) 15 min; (b) 1 day.

The Me resonances of both phosphines form a broad multiplet at $\delta_{\rm H}$ 1.60–1.40 ppm. The CH and Me protons of the deuteroxymethane-sulfonate anion, DO(Me)C(H)SO₃⁻, are seen as a quartet at $\delta_{\rm H}$ 4.60 and a doublet at 1.51 ppm (³*J*_{HH} 6.6 Hz), respectively. Acetaldehyde ($\delta_{\rm H}$ 9.70 quartet, 2.27 doublet, ³*J*_{HH} 3.0 Hz) and its diol, present as MeCH(OD)₂ ($\delta_{\rm H}$ 5.27 quartet, 1.35 doublet, ³*J*_{HH} 5.2 Hz), are also observed.

After 1 day, the ³¹P–{¹H} spectrum (Fig. 1b) revealed a quintet at δ_P –110.2 ppm (¹J_{PD} 32 Hz) assignable to deuterated mono(α -deuteroxyethyl)phosphine [DO(Me)CH]PD₂ (**IV**-*d*₃), the disproportionation product of **III**-*d*₃ [Eq. (5)]. Use of a 2-fold excess of Na₂SO₃ (D₂O, r.t., Ar) completely consumed the **I**-*d*₄ in 20 min, when **II**-*d*₃ and **III**-*d*₃ were present in a ratio of 4:5; the acetaldehyde was detected only as the diol.

$$[DO(Me)CH]_2PD \iff [DO(Me)CH]_3P + DO(Me)CHPD_2$$
(5)
III-d₃ II-d₃ IV-d₃ (5)

Neutralization of the chloride I with Et₃N (1:1 or 1:2, r.t., Ar, D₂O) also leads to a mixture of II- d_3 and III- d_3 , but now in a 2:1 ratio because the equilibrium of Eq. (4) is shifted to the II- d_3 side in the absence of the SO₃²⁻ that scavenges the acetaldehyde under these conditions [see Eq. (3)].

The instability of **II**, the first reported homolog of the widely used $(HOCH_2)_3P$, in aqueous media (and almost certainly in organic media) is consistent with reported data that steric hindrance prohibits formation of tris- and tetrakis(α -hydroxyalkyl)phosphorus derivatives [13]. The instability is also consistent with our findings that electron-donor groups facilitate decomposition of (α -hydroxyalkyl)phosphines [30, 31]. Consistent with this, the use of the electron-accepting CCl₃ group generates the stable, but water-insoluble, tris(α -hydroxyalkyl)phosphine [HO(Cl₃C)CH]₃P [24].

A 1:1 mixture of I and NaHSO₃ (D₂O, Ar, r.t.) shows no immediate reaction, as reported for the corresponding (HOCH₂)₄PCl system [33]. After 30 min in a 1:4 chloride I and NaHSO₃ reaction, the ${}^{31}P - {}^{1}H$ spectrum revealed two equal intensity triplets at δ_P 50.1 and 48.3 ppm with ${}^{1}J_{PD}$ 72 Hz (Fig. 2a); these are assigned to the two diastereomers of the deuterated bis- $(\alpha$ -hydroxyethyl)phosphine oxide $[DO(Me)CH]_2P(O)D$ $(V-d_3)$, the ¹J_{PD} value being essentially the same as that found for [DOCH₂]₂P(O)D [33]. The triplets were slowly replaced over a day by two 1:1 singlets seen first at δ_P 44.8 and 43.8 ppm (Fig. 2a), but over 2 days these shift downfield by ~ 2 ppm (Figs. 2b, 2c); at this stage, only these two singlets could be seen along with the small δ_P 64.4 and 62.9 ppm signals that are assigned to the sulfide [DO(Me)CH]₃PS (see below). The new singlets, because of the absence of ${}^{1}J_{PD}$ coupling, are assigned to the phosphinic acid derivative $[DO(Me)CH]_2P(O)OD$ (VI- d_3), the oxidation product of V- d_3 , and the 1:1 intensities are consistent with the presence of just the two chiral Ccenters. The ¹H data (see below) are also consistent with the loss of two aldehyde equivalents from the chloride I- d_4 in that the final DO(Me)C(H)SO₃Na: VI d_3 ratio is 2:1.

In the ¹H spectrum of V- d_3 , instead of the anticipated two sets of resonances due to two diastereomers, three types of DO(Me)CH moieties were detected. Multiplets of the CH and Me protons, centered at δ_H 4.50 and 1.60 ppm, respectively (Fig. 3), were simulated as three overlapping AM₃X spin systems using: (a) (a) J_{AM} 7.3, J_{AX} 4.2, J_{MX} 16.0 Hz; (b) J_{AM} 7.3, J_{AX} 4.6, J_{MX} 16.0 Hz; and (c) J_{AM} 7.3, J_{AX} 1.9, J_{MX} 15.5 Hz (in all cases X is the P-atom). This ¹H pattern implies that the HO(Me)CH groups of one diastereomer are anisochronous ($\Delta \sim 4$ Hz). The Me protons of two diastereomers of VI- d_3 are seen at δ_H 1.45 and 1.43 ppm (Fig. 4) as two doublets of doublets (${}^{3}J_{HH}$ 7.1, ${}^{3}J_{PH}$ 14.8 Hz and ${}^{3}J_{HH}$ 7.3, ${}^{3}J_{PH}$ 14.3 Hz, respectively), while the CH protons are seen as two overlapping quartets at δ_H 4.22 and 4.19 ppm (implying no measurable ${}^{2}J_{PH}$ coupling). After 30 min, both DO(Me)C(H)SO₃Na and acetaldehyde diol were detected, whereas only the sodium salt was observed after 1 day. It should be noted that after 2 h of reaction, an off-white suspension of elemental sulfur appeared; the S₈ could be identified by its characteristic fragmentation pattern in a low-resolution EI mass spectrum [37]. The increasing presence of the suspension could well give rise to the minor shifts in the NMR spectra. The observed changes (carried out under Ar) are outlined in Scheme 2, although the source of the [O] required for the oxidation is unclear; trace O_2 is considered unlikely, and the well established OH⁻ oxidation of phosphines with cogeneration of H₂ [15, 21, 38] seems more plausible.

Fig. 2. The ³¹P–{¹H} spectrum of the reaction of I (present as I- d_4) and NaHSO₃ (1:4, Ar, D₂O, r. t.) after: (a) 30 min; (b) 1 day; and (c) 2 days.

The earlier reported [33], corresponding slow oxidations under Ar of $(HOCH_2)_4PCl$ to give the oxide and phosphinic acid derivative are similarly poorly understood. It should also be noted that, in the reaction of PH₃ with benzaldehyde in basic conditions, a transfer of the carbon-oxygen to the phosphorus with the formation of a phosphine oxide or phosphinic acid can take place [39, 40] but, in the presence of NaHSO₃, any acetaldehyde present would form

 $DO(Me)C(H)SO_3^-$ and prevent any such oxidation process.

In a reaction of **I** with Na₂S₂O₃ in D₂O (1:1, Ar, r.t.), the ³¹P{¹H} resonances of **I**- d_4 are replaced within 15 min by two lower field singlets at δ_P 64.4 and 62.9 ppm in a diastereomeric ratio of 1:3.5 (see also Fig. 2). These singlets are assigned to the sulfide [DO(Me)CH]₃PS (**VII**- d_3), formed according to Eq. (6), by analogy with

Fig. 3. The experimental (top) and simulated (bottom) $AM_3X^{-1}H$ NMR patterns (X = P) for the CH and Me protons of V- d_3 .

Fig. 4. The experimental (top) and simulated (bottom) $AM_3X^{-1}H$ NMR patterns (X = P) for the CH and Me protons of **VI**-*d*₃.

the corresponding reaction of $(HOCH_2)_4PC1$ with $Na_2S_2O_3$ under the same conditions [33]. The ratio of the (RRR)/(SSS) and [(RRS)/(RSS), (RSS)/(SRR), (RSR)/(SRS)] diastereomers is close to the expected 1:3 for three identical chiral centers (see Scheme 1). However, the ¹H spectrum (Fig. 5, top) is surprisingly complex, but can be simulated (Fig. 5, bottom) as four equal intensity AM₃X spin systems for the CH and Me protons of four deuteroxyethyl groups (where X is a P-

atom, J_{AM} 6.9, J_{AX} 2.0, J_{MX} 15.2 Hz), and an AM₃ spin system (J_{AM} 6.5 Hz) for DO(Me)C(H)SO₃Na. This implies that the P-atom of the (*RRS*)/(*RSS*), (*RSS*)/ (*SRR*), and (*RSR*)/(*SRS*) enantiomers possesses one DO(Me)CH group of opposite chirality, and is thus prochiral, whereas the DO(Me)CH groups with the same chirality become NMR nonequivalent (anisochronous) and give rise to different ¹H resonances.

$$[DO(Me)CH]_4PCl + Na_2S_2O_3 \xrightarrow{D_2O} [DO(Me)CH]_3PS + DO(Me)C(H)SO_3Na + NaCl$$
(6)
VII-d₃

EXPERIMENTAL

Before use, distilled water and D_2O were stirred for 4 h under Ar. CD_3OD (Cambridge Isotope Laboratories) and EtOH were used as received, as were the Aldrich chemicals PH₃ (electronic grade) and acetaldehyde, and the Fisher Scientific products Na₂S₂O₃, Na₂SO₃, NaHSO₃, and 37% aq. HCl. NMR spectra were recorded on a Bruker AV300 spectrometer at 300 K (300 MHz for ¹H; 121 MHz for ³¹P {¹H}) with a residual deuterated solvent proton (relative to external SiMe₄) and 85% aq. H_3PO_4 being used as references. Elemental analyses were performed by M. Lakha on a Carlo Erba 1108 analyzer in the UBC department.

Preparation of [HO(Me)CH]₄PCI (I). PH₃ was bubbled for 1.5 h through an acetaldehyde (23 g) solution in air-free water (100 ml) with dropwise addition of HCl (37% aq., 52 ml). After removal of water, the white residue was recrystallized from a saturated solution in EtOH to give the chloride I in

Fig. 5. The experimental (top) and simulated (bottom) $AM_3X^{-1}H$ NMR patterns (X = P) for the CH and Me protons of VII- d_3 ; the spectra also include the AM₃ resonances for the CH protons (quartet at δ_H 4.60 ppm) and Me protons (doublet at δ_H 1.51 ppm) of DO(Me)C(H)SO₃²⁻.

RUSSIAN JOURNAL OF GENERAL CHEMISTRY Vol. 83 No. 2 2013

~80% yield. Found, %: C 39.3, H 7.8. $C_8H_{20}CIO_4P$. Calculated, %: C 38.95, H 8.17. The ¹H and ³¹P-{¹H} NMR data are discussed in the text.

NMR investigation of a 1:1 reaction of the chloride I with Na₂SO₃. In a glove-box, I (30 mg, 0.12 mmol) was dissolved in a stirred, air-free D₂O solution (~1.5 ml) containing Na₂SO₃ (15.4 mg, 0.12 mmol). A sample of the solution (~0.7 ml) was then placed in a J-Young NMR tube and the spectra were recorded periodically at r.t. The same procedure was used for studying 1:1 reactions of I with Et₃N (12.3 mg, 0.12 mmol), Na₂S₂O₃ (19.2 mg, 0.12 mmol), and NaHSO₃ (12.7 mg, 0.12 mmol); reactions using stoichiometries other than 1:1 were studied similarly.

CONCLUSIONS

Tetrakis(α -hydroxyethyl)phosphonium chloride. [HO(Me)CH]₄PCl, is characterized for the first time by ¹H and ³¹P{¹H} NMR spectroscopy, which reveals that the compound consists of three diastereomers in a 4:4:1 ratio. Reaction of [HO(Me)CH]₄PCl with Na₂SO₃ or Et₃N in attempts to isolate [HO(Me)CH]₃P leads to an equilibrium between this tertiary phosphine and the secondary phosphine [HO(Me)CH]₂PH. Except for $(HOCH_2)_3P$, tris(α -hydroxyalkyl)phosphines are generally unstable in aqueous media. Established also is that the water-soluble phosphinic acid [HO(Me)CH]₂P(O)OH can be easily obtained by a 1:4 reaction of [HO(Me)CH]₄PCl with NaHSO₃ (r.t., Ar), the secondary phosphine oxide [HO(Me)CH]₂. P(O)H being an intermediate in this process. Interaction of [HO(Me)CH]₄PCl with Na₂S₂O₃ affords the sulfide [HO(Me)CH]₃PS. Plausible rationales are presented for differences between the observed and theoretical/statistical diastereometic ratios in the (α hydroxyethyl)-containing phosphorus compounds.

ACKNOWLEDGMENTS

We thank the Natural Sciences and Engineering Research Council of Canada for funding via a Discovery Grant.

REFERENCES

- 1. James, B.R. and Lorenzini, F., Coord. Chem. Rev., 2010, vol. 254, nos. 5–6, p. 420.
- Hu, T.Q., James, B.R., Yawalata, D., and Ezhova, M.B., J. Pulp Paper Sci., 2004, vol. 30, no. 8, p. 233.
- 3. Hu, T.Q., James, B.R., Yawalata, D., and Ezhova, M.B., World Patent (PCT WO 2004 070110 A1), 2004.

- Hu, T.Q., James, B.R., Yawalata, D., Ezhova, M.B., and Chandra, R., *J. Pulp Paper Sci.*, 2005, vol. 31, no. 2, p. 69.
- Hu, T.Q., James, B.R., Yawalata, D., and Ezhova, M.B., J. Pulp Paper Sci., 2006, vol. 32, no. 3, p. 131.
- Chandra, R., Hu, T.Q., James, B.R., Ezhova, M.B., and Moiseev, D.V., *J. Pulp Paper Sci.*, 2007, vol. 33, no. 1, p. 15.
- Reeves, W.A. and Guthrie, J.D., *Ind. Eng. Chem.*, 1956, vol. 48, no. 1, p. 64.
- Frank, A.W., Daigle, D.J., and Vail, S.L., *Textile Res.* J., 1982, vol. 52, no. 11, p. 678.
- Frank, A.W., Daigle, D.J., and Vail, S.L., *Textile Res.* J., 1982, vol. 52, no. 11, p. 738.
- 10. Hoye, P.A.T. and Coates, H., GB Patent 974033, 1964.
- 11. Hoffman, A., J. Am. Chem. Soc., 1921, vol. 43, no. 7, p. 1684.
- 12. Reeves, W.A., Flynn, F. F., and Guthrie, J. D., *J. Am. Chem. Soc.*, 1955, vol. 77, no. 14, p. 3923.
- 13. Buckler, S.A. and Wystrach, V.P., *J. Am. Chem. Soc.*, 1961, vol. 83, no. 1, p. 168.
- 14. Horak, J. and Ettel, V., Coll. Czech. Chem. Commun., 1961, vol. 26, p. 2401.
- Grayson, M., J. Am. Chem. Soc., 1963, vol. 85, no. 1, p. 79.
- 16. Kisanga, P. and Verkade, J., *Heteroatom Chem.*, 2001, vol. 12, no. 2, p. 114.
- Ellis, J.W., Harrison, K.N., Hoye, P.A.T., Orpen, A.G., Pringle, P.G., and Smith, M.B., *Inorg. Chem.*, 1992, vol. 31, no. 14, p. 3026.
- Petrov, K.A., Parshina, V.A., and Luzanova, M.B., *Zh. Obshch. Khim.*, 1962, vol. 32, no. 2, p. 553.
- 19. Frank, A.W. and Drake, G.L., J. Org. Chem., 1971, vol. 36, no. 4, p. 549.
- 20. Gordon, I. and Wagner, G.M., US Patent 3257460, 1966.
- 21. Moiseev, D.V. and James, B.R., *Inorg. Chim. Acta*, 2011, vol. 379, no. 1, p. 23.
- 22. Messinger, J. and Engels, C., *Ber.*, 1888, vol. 21, no. 2, p. 326.
- Albouy, D., Brun, A., Munoz, A., and Etemad-Moghadam, G., J. Org. Chem., 1998, vol. 63, no. 21, p. 7223.
- 24. Kozlov, E.S., Solov'ev, A.V., and Markovskii, L.N., *Zh. Obshch. Khim.*, 1978, vol. 48, no. 11, p. 2437.
- 25. Moiseev, D.V., James, B.R., and Hu, T.Q., *Inorg. Chem.*, 2006, vol. 45, no. 25, p. 10338.
- 26. Moiseev, D.V., Patrick, B.O., and James, B.R., *Inorg. Chem.*, 2009, vol. 48, no. 1, p. 239.
- Moiseev, D.V., James, B.R., Patrick, B.O., and Hu, T.Q., *Inorg. Chim. Acta*, 2010, vol. 363, no. 13, p. 3569.

- 28. Moiseev, D.V., James, B.R., and Hu, T.Q., *Inorg. Chem.*, 2007, vol. 46, no. 11, p. 4704.
- 29. Moiseev, D.V., James, B.R., Patrick, B.O., and Hu, T.Q., *Inorg. Chem.*, 2007, vol. 46, no. 22, p. 9389.
- Moiseev, D.V. and James, B.R., Can. J. Chem., 2009, vol. 87, no. 4, p. 582.
- Moiseev, D.V., Patrick, B.O., and James, B.R., *Inorg. Chem.*, 2007, vol. 46, no. 26, p. 11467.
- 32. Moiseev, D.V., James, B.R., and Gushchin, A.V., *Russ. J. Gen. Chem.*, 2012, vol. 82, no. 5, pp 840–847.
- Moiseev, D.V., James, B.R., and Hu, T.Q., *Phosphorus, Sulfur Silicon Relat. Elem.*, 2012, vol. 187, no. 4, p. 433.
- 34. Hu, T.Q., Williams, T., Schmidt, J.A., James, B.R., Cavasin, R., and Lewing, D., *Pulp Pap-Canada*, 2009,

vol. 110, no. 7, p. 37.

- 35. Fodor, L.M., *Doctoral (Chem.) Dissertation*, Cornell University, Ithaca, New York, 1963.
- 36. Vullo, W.J., J. Org. Chem., 1968, vol. 33, no. 9, p. 3665.
- 37. Dudek, G. and Dudek, E.P., *J. Chem. Educ.*, 1989, vol. 66, no. 9, p. 304.
- Bloom, S.M., Buckler, S.A., Lambert, R.F., and Merry, E.V., J. Chem. Soc. D, Chem. Commun., 1970, no. 14, p. 870.
- Buckler, S.A., J. Am. Chem. Soc., 1960, vol. 82, no. 16, p. 4215.
- 40. Albouy, D., Etemad-Moghadam, G., and Koenig, M., *Eur. J. Org. Chem.*, 1999, no. 4, p. 861.