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ABSTRACT: A mild migratory reductive acyl cross-coupling has been achieved through NiH-catalyzed chainwalking and 
subsequent cross-coupling from two abundant starting materials, alkyl bromides and carboxylic acids. This strategy 
allows the direct acylation of the benzylic sp3 C–H bond with high yield as a single regioisomer. As an alternative, the 
alkyl bromide could be replaced by the proposed olefin intermediate and commercially available n-PrBr to achieve a 
remote hydroacylation process.
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Reductive cross-electrophile coupling,1-3 direct 
coupling of two shelf-stable electrophiles, typically 
involving the abundant alkyl halides4, has received 
considerable attention in recent years owing to the 
benefit of circumventing the synthesis of organometallic 
reagents which have limited stability and commercial 
availability. This attractive strategy allows direct 
formation of C–C bonds at the halogen-bearing carbon 
of alkyl halides – the ipso carbon; thus, new bonds that 
can be introduced are limited to the position of the 
halogen. Hence, site-selective cross-coupling at different 
positions other than this carbon along the hydrocarbon 
chain of alkyl halides would have considerable synthetic 
potential and would be complementary to the current 
coupling strategy. The recently emerging sp3 C–H 
functionalization,5 would undoubtedly be an ideal 
alternative solution. However, to ensure good reactivity 
and regioselectivity, most of these processes need a 
polar directing group in the proximity and this limits 
their application in organic synthesis. A synergistic 
combination of metal-hydride6 catalyzed chainwalking 
and transition-metal-catalyzed cross-coupling provides 
an attractive approach to this goal.7-11

Catalytic reductive acyl cross-coupling from carboxylic 
acid derivatives is an efficient approach for ketone 
synthesis. Previously, Mukaiyama,3a Weix,3b,3h Gong,3c-3f 
and Reisman3g reported elegant work concerning nickel-
catalyzed12 reductive acylation reactions from two 
abundant feedstock chemicals, alkyl halides and 
carboxylic acid derivatives (Figure 1a, top). This 
conventional strategy requires the regio-specific starting 
material of alkyl halide. In contrast, unrefined alkyl 

halides or olefins are generally more widely available 
than the region-specific ones13 (some activated halides, 
such as benzylic halides, are not stable enough and have 
the issue of chemoselective control in reductive cross-
coupling (homo- vs cross-coupling)), strategy to produce 
the same site-specific ketone from any isomer of alkyl 
halides or olefins (or isomeric mixtures) turns out to be 
attractive in organic synthesis (Figure 1a, bottom). If 
chainwalking, enabled by NiH generated in situ through 
β-hydride elimination of an alkylnickel species derived 
from the alkyl halide starting material, could take place 
before the selective acyl cross-coupling, migratory 
acylation could happen potentially at a distal, inert sp3 
C–H position and the sensitive ketone group could be 
preserved under these mild reaction conditions (Figure 
1b). Here we describe our development of such an 
acylation reaction based on a migratory reductive cross-
electrophile coupling strategy.
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Figure 1. Design plan: Migratory reductive acyl cross-
coupling for the synthesis of ketone.

Based on Gong’s reductive ipso-acylation conditions,3f 
we began our investigation by studying the coupling of 
1-bromo-4-phenylbutane (1a) with 3-phenylpropanoic 
acid (2a) (Table 1). After extensive examination of a 
range of nickel sources, ligands, reductants, additives, 
solvents, and a range of other parameters (for detailed 
optimization studies, see the Supporting Information, SI), 
we found that a combination of NiBr2·3H2O/C6-methyl 
substituted bipyridine as the metal/ligand choice, Zn 
dust as the reductant, MgCl2/NaI as the additive, and 
Boc2O as the acid activation reagent (an acid anhydride 
is formed in situ) in DMA at 30 °C provides the desired 
migratory acylation product (3a) in 70% isolated yield as 
essentially a single regioisomer (entry 1). Use of other 
Ni(II) precatalysts, such as NiBr2 or NiI2 leads to 
diminished yields (entries 2, 3). It is particularly 
interesting that no migratory but only the ipso-coupling 
product (3A) is observed when Ni(cod)2 is used (entry 4). 
Replacement of L114 by the parent bipyridine ligand also 
results in only the ipso-acylation product (entry 5),3 
demonstrating the critical role of C6-alkyl substituents in 
the ligand backbone. Changing the reductant to a 
manganese compound results in a lower yield (entry 6); 
and THF is not a suitable solvent (entry 7). The addition 
of sodium iodide dramatically improves the reactivity 
(entry 1 versus entry 8). In the absence of NaI, the alkyl 
bromide (1a) provides the desired product (3a) in lower 
yield while the corresponding alkyl iodide improves the 
reaction efficiency, indicating that the role of NaI is to 
generate the more reactive alkyl iodide in situ from the 
alkyl bromide (entries 8, 9). Notably, the alkyl chloride 
was unreactive under current reaction conditions 
regardless of the presence of NaI (entry 10). Control 
experiments show that the additive MgCl2 and the 
activation reagent Boc2O are essential for the reaction to 
occur (entries 11, 12).15

Table 1. Variation of Reaction Parameters.

aYields determined by GC using n-dodecane as the 
internal standard, the yield in parentheses is the isolated 
yield and is an average of two runs (0.20 mmol scale). 
bRegioselectivities (rr) were determined by GC and GCMS 
analysis. cThe major product was 3A. dWithout NaI. eWith or 
without NaI.

With the optimal conditions in hand, we proceeded to 
evaluate the substrate scope of both carboxylic acids and 
alkyl bromides. As shown in Table 2, the regioselectivity 
in general, is excellent and only one regioisomer (the 
benzylic isomer) is observed in all cases. For the 
carboxylic acid substrate (Table 2a), a myriad of primary 
(2a–2j) and secondary (2k–2p) aliphatic carboxylic acids 
all deliver the corresponding benzylic acylation products 
in good to excellent yields. Under these mild conditions, 
a wide range of functional groups, including an aryl 
fluoride (2b), ethers (2c, 2o), an alkyl chloride (2g), and 
esters (2h, 2i) are well tolerated. Gratifyingly, carboxylic 
acids bearing heterocyclic motifs, such as a furan (2d), a 
thiophene (2e), and an indole (2f) are also competent 
coupling partners. Moreover, a carboxylic acid with an α-
stereocenter could participate in this reaction with full 
preservation of this adjacent stereocenter (2l). For the 
alkyl bromide substrate, both primary (Table 2a) and 
secondary (Table 2b) alkyl bromides underwent this 
transformation smoothly. Notably, when an isomeric 
mixture of alkyl bromides (e.g. equimolar amounts of 1a 
and 1y) was used, only one single regioconvergent 
benzylic acylation product (3a) was observed. Moreover, 
the efficacy of chainwalking was not hindered by the 
beginning position of the C−Br bond (1a versus 1q). 
Substrates containing both electron-withdrawing (1r–1u) 
and electron-donating (1v) substituents on the remote 
aryl ring are suitable for this transformation. Additionally, 
heterocycle substrates, such as those containing a furan 
(1w) or a thiophene (1x) in place of the aryl group, are 
likewise suitable for this reaction.

Table 2. Migratory Acyl Coupling: Scope of the Alkyl Bromide and Carboxylic Acid.a
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aUnder each product is the percentage of isolated yield and regioselectivity (rr) (0.20 mmol scale, average of two runs); 
regioselectivities were determined by GC and GCMS analysis.

The current migratory acyl coupling strategy could also 
be extended to readily accessible alkene substrates 
through the addition of a stoichiometric quantity of n-
PrBr (n-PrBr is more cheap and stable compared with 
hydrosilane),11h which is used as an extra hydride source 
to generate, via β-H elimination, the NiH species 
required for the chainwalking process. Notably, 
migratory acylation of n-PrBr is not observed in this case. 
As depicted in Table 3, a wide range of alkenes are 
suitable substrates, providing the corresponding remote 
hydroacylation products in good to excellent yield as 
single regioisomers. Both terminal olefins (4a−4g) and 
unactivated internal olefins (4h−4m) are generally 
suitable, and a diverse range of electron deficient (4c, 
4i−4j) and electron-rich (4h) remote arenes are 

tolerated. Notably, heteroaromatic substrates, such as 
those containing a furan (4d), a thiophene (4e), a pyrole 
(4f), or a pyridine-linked aryl ring (4g) in place of the aryl 
group, are compatible with the reaction. As expected, 
E/Z mixtures of unactivated internal olefins (4h−4m) are 
also suitable partners, regardless of the starting position 
of the C=C bond. Moreover, olefins with a branched alkyl 
chain, including an internally branched alkene (4n), a 1,1-
disubstituted alkene (4o), or a trisubstituted internal 
alkene (4p), could also afford the desired migratory 
products in moderate yields revealing that steric 
constraints can be overcome. Finally, an estrone-derived 
styrene (4r) is also a suitable partner to undergo 
hydroacylation under these conditions.16

Table 3. Remote Hydroacylation: Scope of the Alkene and Carboxylic Acid.a
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aYield and rr are as defined in Table 2, regioselectivities (rr) reported as >95:5 were determined by 1HNMR analysis of the 
crude reaction mixture.

This transformation is highly regioconvergent, and 
could be used for the conversion of isomeric mixtures of 
olefins, generally more widely available than the pure 
isomers, into value-added specialty chemicals. As shown 
in Scheme 1a, starting from equimolar amounts of three 
olefins - an isomeric mixture - on a 10 mmol scale, the 
benzylic acylation product 5b can be obtained as a 
single regioisomer.

To shed light on the migratory acylation process, some 
preliminary experiments were carried out. Consistent 
with our previous reports,11h a significant amount of 
olefin isomers could be observed in the usual reaction 
conditions both in the presence and absence of the 
carboxylic acid, indicating chainwalking process is 
unrelated to acyl coupling (see SI for details). 
Furthermore, when deuterated nPrBr-d7 is used (Scheme 
1b), as its proposed role, transformation of deuterium 
from alkyl bromide (nPrBr-d7) to olefin 4a and 
incorporation of deuterium at all positions along the 
hydrocarbon chain of the remote hydroacylation 
products (5a-D) were observed. Moreover, when a 
mixture of equimolar amounts of alkyl bromide 1a and 
alkene 4k were subjected to the coupling conditions, 
formation of both coupling products 3a and 5k was 
observed (Scheme 1c), providing additional evidence of 
fast dissociation and reassociation of the NiH/NiD 
species17 from olefins during chainwalking process. 
Finally, to compare the reactivity of acylation with 

arylation,11h a competition experiment was carried out in 
the presence of both a carboxylic acid and an aryl 
bromide (Scheme 1d), and migratory acylation product 
(3a, 24% yield) was favorable relative to arylation 
product (7, 5% yield). This indicates that the cross-
coupling rate of carboxylic acid (acylation) is faster than 
that of aryl bromide (arylation).

Scheme 1. Regioconvergent, Isotopic, Crossover, and 
Competition Experiments.
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In summary, using a ubiquitous alkyl carboxylic acid 
directly as the acylation reagent, we have developed a 
mild nickel-catalyzed migratory acylation reaction from 
alkyl bromide or olefin substrates. This strategy provides 
an attractive approach to remote sp3 C–H acylation 
under mild conditions with broad substrate scope and 
excellent regioselectivity. The asymmetric version of the 
current transformation is currently in progress and will 
be reported in due course.
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