

Accepted Article

Title: One-step reforming of CO2 and CH4 to high-value liquid chemicals and fuels at room temperature via plasma-driven catalysis

Authors: Li Wang, Yanhui Yi, Chunfei Wu, Hongcheng Guo, and Xin Tu

This manuscript has been accepted after peer review and appears as an Accepted Article online prior to editing, proofing, and formal publication of the final Version of Record (VoR). This work is currently citable by using the Digital Object Identifier (DOI) given below. The VoR will be published online in Early View as soon as possible and may be different to this Accepted Article as a result of editing. Readers should obtain the VoR from the journal website shown below when it is published to ensure accuracy of information. The authors are responsible for the content of this Accepted Article.

To be cited as: Angew. Chem. Int. Ed. 10.1002/anie.201707131 Angew. Chem. 10.1002/ange.201707131

Link to VoR: http://dx.doi.org/10.1002/anie.201707131 http://dx.doi.org/10.1002/ange.201707131

WILEY-VCH

One-step reforming of CO₂ and CH₄ to high-value liquid chemicals and fuels at room temperature via plasma-driven catalysis

L. Wang,^[a] Y. H. Yi,^[b] C. F. Wu,^[c] H. C. Guo,^[b] and X. Tu*^[a]

Abstract: Conversion of CO_2 with CH_4 into liquid fuels and chemicals in a single-step catalytic process bypassing the production of syngas remains a challenge. In this study, one-step synthesis of liquid fuels and chemicals (e.g. acetic acid, methanol, ethanol and formaldehyde) from CO_2 and CH_4 has been achieved at room temperature (30 °C) and atmospheric pressure for the first time using a novel plasma reactor with a water electrode. The total selectivity to oxygenates was ca. 50-60%, with acetic acid the major component at 40.2% selectivity, the highest value reported for acetic acid so far. Interestingly, direct plasma synthesis of acetic acid from CH_4 and CO_2 is an ideal reaction with a 100% atom economy, but it is almost impossible via thermal catalysis due to the significant thermodynamic barrier. The combination of plasma and catalyst in this process shows great potential for manipulating the distribution of different liquid chemicals.

Chemical transformation of CO₂ into value-added chemicals and fuels has been regarded as a key element of creating a sustainable low-carbon economy in the chemical and energy industry. A particularly significant route currently being developed for CO₂ utilization is catalytic CO₂ hydrogenation. This can produce a range of fuels and chemicals including CO, formic acid, methanol, hydrocarbons and alcohols; however, high H₂ consumption (CO₂ + 3H₂ \rightarrow CH₃OH + H₂O) and high operating pressure (~30-300 bar) are major challenges facing this process.

Instead of using H₂, direct conversion of CO₂ with CH₄ (dry reforming of methane, DRM) to liquid fuels and chemicals (e.g. acetic acid) represents another promising route for both CO₂ valorisation and CH₄ activation. CH₄ is an ideal H-supplier to replace H₂ in CO₂ hydrogenation as CH₄ has a high H density and is available from a range of sources (e.g. natural gas, shale gas, biogas and flared gas). Moreover, it is a cheap carbon source which can increase the atom utilization of CO₂ hydrogenation due to the stoichiometric ratio of C and O atoms, as well as reducing the formation of water.

Recently, Ge et al. investigated the direct C-C coupling of CO_2 and CH_4 to form acetic acid on a Zn-doped ceria catalyst using density functional theory (DFT) modeling ^[1]; this is an

[a]	Dr. L. Wang, Dr. X. Tu
	Department of Electrical Engineering and Electronics
	University of Liverpool
	Liverpool, L69 3 GJ, UK.
	E-mail: xin.tu@liv.ac.uk
[b]	Dr. Y. H. Yi, Prof. H. C. Guo
	State Key Laboratory of Fine Chemicals
	School of Chemical Engineering
	Dalian University of Technology
	Dalian, 116024, P. R. China
[c]	Dr. C. F. Wu
	School of Engineering,
	University of Hull,
	Hull, HU6 7RX, UK
	Supporting information for this article is given via a link at the end of
	the document.

attractive route as direct converting of CO₂ and CH₄ to acetic acid is a reaction with 100% atom economy (R1). However, this reaction is thermodynamically unfavorable under practical conditions. The conventional indirect catalytic process often proceeds through two steps (Scheme 1): (1) DRM to produce syngas (CO and H_2) at high temperatures (> 700 °C); (2) conversion of syngas to liquid fuels and chemicals at high pressures. Such an indirect route for CO₂ valorisation and CH₄ activation is inefficient as the DRM process for syngas production is highly endothermic and requires high temperatures and energy input (R2). Catalyst deactivation due to carbon deposition is another challenge limiting the use of this reaction on a commercial scale. It is almost impossible to directly convert two stable and inert molecules (CO₂ and CH₄) into liquid fuels or chemicals in a one-step catalytic process bypassing the production of syngas. A step-wise method was proposed to convert CO_2 and CH_4 into acetic acid over Cu/Co-based catalysts ^[2], Pd/C, Pt/Al₂O₃ ^[3], Pd/SiO₂ and Rh/SiO₂ ^[4] via heterogeneous catalysis. The catalyst was first exposed to CH4, forming CH_x species on the catalyst surface. Subsequently, the feed gas was changed from CH₄ to CO₂, forming acetic acid through the reaction of CO₂ with CH_x over the catalyst. This indirect process was complicated as a periodic change of reactant and collection of products was required ^[5].

 $CO_2 + CH_4 \rightarrow CH_3COOH, \Delta G_{298 K} = 71.17 \text{ kJ/mol}$ (R1)

CH₄ + CO₂ → 2CO + 2H₂, Δ H_{298 K} = 247 kJ/mol

Non-thermal plasma (NTP) offers a unique way to enable thermodynamically unfavorable chemical reactions to occur at low temperatures due to its non-equilibrium character: the overall gas temperature in a NTP remains low, while the generated electrons are highly energetic with a typical electron temperature of 1-10 e; sufficient to activate inert molecules (e.g. CO₂ and CH₄) into reactive species, including radicals, excited atoms, molecules and ions. These energetic species are capable of initiating a variety of chemical reactions. Although much effort has been expended on the use of NTP for the destruction of gas pollutants, far less has been done in regard to their use in the synthesis of fuels and chemicals ^[6]. Previous works on DRM using NTP mainly focused on syngas production ^[7], while very limited efforts have been devoted to this challenging reaction - one-step conversion of CH₄ and CO₂ to liquid fuels and chemicals [8]-[9]. A few groups reported the formation of trace oxygenates (e.g., alcohols and acids) as byproducts in plasma DRM for syngas production ^[10]. So far, the use of NTP for the direct conversion of CO2 and CH4 into oxygenates has shown poor selectivity and yield.

(R2)

COMMUNICATION

Scheme 1. Direct and in-direct processes for the conversion of CO₂ and CH₄ to liquid fuels and chemicals

In this work, a novel dielectric barrier discharge (DBD) reactor with a ground water electrode (Schemes S1 and S2) has been developed for one-step conversion of CO₂ and CH₄ to oxygenates at room temperature (30 °C) and atmospheric pressure. This setup is unique and has not before been reported. Figure 1 shows that no reaction occurred in the 'catalyst-alone' mode at 30 °C without plasma. However, the use of a NTP enables this thermodynamically unfavorable reaction to occur at room temperature and produces liquid chemicals including acetic acid, methanol, ethanol and acetone, with acetic acid being the major product. Trace amounts of formic acid, propanol and butanol were also detected in the condensed liquid. In the plasma process without a catalyst ('plasma-alone'), a total liquid selectivity of 59.1% was achieved with 33.7%, 11.9%, 11.9% and 1.6% for acetic acid, ethanol, methanol and acetone, respectively (Figure 1a). The CO selectivity was limited at ca. 20.0% (Figure 1b), together with CH_4 and CO_2 conversions of 18.3 % and 15.4 %, respectively (Figure 1c).

Coupling the plasma process with a catalyst shows great potential to manipulate the production of different oxygenates at ambient conditions. Clearly, packing the Cu/y-Al₂O₃ catalyst in the DBD enhanced the selectivity of acetic acid to 40.2%, compared to the 'plasma-alone' mode and the plasma reaction using y-Al₂O₃ only (20.2%). Acetic acid was the major product regardless of the catalyst used, followed by methanol and ethanol (Figure 1a). Note HCHO was formed only when using the supported noble metal catalysts in the plasma reaction and the Pt/y-Al₂O₃ catalyst showed the highest selectivity to HCHO. Compared to the 'plasma-alone' mode, placing the catalysts in the DBD showed similar gaseous products, with H₂, CO and C_2H_6 being the major gas products (Figure 1b). However, coupling the NTP with the catalysts enhanced the H₂ selectivity by 10-20% (except for Cu/ γ -Al₂O₃), and slightly increased C₂H₆ production, but had a weak effect on CO selectivity (except Cu/y-Al₂O₃ which decreased CO selectivity to 13.5%) and other C_xH_y (i.e., C_2H_2 , C_2H_4 , C_2H_6 , C_3H_8 and $n-C_4H_{10}$). In addition, compared to the 'plasma-alone' mode, the conversion of CO2 and CH₄ slightly decreased with packing catalysts. This phenomenon can be attributed to the change in discharge behavior induced by the catalyst, which had a negative effect on the reaction (Figure S1). Interestingly, acetic acid, hydroxyl-, ethyl ester was found on the reactor inner wall in the plasmacatalyst coupling mode. (Figure S2). These findings demonstrate the feasibility of using NTP for the direct conversion of CH₄ and CO₂ into higher value liquid fuels and chemicals in a single step process at ambient conditions, bypassing the formation of syngas.

g).

COMMUNICATION

To understand the formation pathways of acetic acid, ethanol and methanol, optical emission spectroscopy (OES) diagnostics was used to investigate the species produced in the CH_4/CO_2 DBD (Figure 2). Reactive species, including CH, H_a , O radical, C_2 , CO_2^+ , CO_2 , and CO Angstrom band, were identified, with CO, CH and H being the major species (Table S2).

CO is mainly derived from reaction S1-S3 (table S3) in the DBD. Our simulation showed electron impact CO₂ reactions produced ~95% vibrational excited CO2 (CO2(V)) compared to electronically excited CO2 (CO2(E)), as shown in Figure S3 and table S4. O radicals generated from CO₂ dissociation can attack CO_{2(V)} molecules to produce CO (S1-S2)^[11]. Different from CH, CH₃-derived from CH₄ dissociation cannot be detected using OES, but recent simulation revealed that electron impact dissociation of CH₄ leads to 79% CH₃ formation, whereas only 15% and 5% CH₂ and CH formation, respectively ^[12]. Therefore, CH₃ is the dominant specie in the CH₄/CO₂ DBD. In addition to electrons (S4 in table S3), reactive species such as OH, O and H can also react with CH₄ to produce CH₃ radicals (S5-S7) in the CH₄/CO₂ DBD. Additionally, OH is an important specie, especially for alcohol formation. In the CH₄/CO₂ DBD, OH could be produced indirectly via reaction S8-S13, with S8 and S9 the major channels based on the reaction rate coefficient and E_a^[13]. Special attention was given to S10, although a very low reaction rate coefficient of 1.4E-29 and a high E_a of 111 kJ/mol were observed for ground state CO2 reacting with H radical to produce OH radical, this reaction (S10) can be accelerated by CO_{2(V)} instead of ground state CO_2 ^[14] and the vibrational energy of the reagents is the most effective in overcoming the activation barrier of the endothermic reaction [14-15]. Thus, the reaction $CO_{2(V)}$ + H \rightarrow CO + OH could be one of the major routes for OH formation in this study, as CO2 mainly existed in vibrationally exited states (Figure S3).

Figure 2. Optical emission spectra of CH₄, CO₂ and CH₄/CO₂ plasmas (total flow rate 40 ml/min, CH₄/CO₂ ratio 1:1, discharge power 10 W, 2 s exposure time).

Based on the analysis of gas and condensed liquid products combined with the OES, CO, CH_3 and OH radicals were the key species in the CH_4/CO_2 plasma reaction. Therefore, the possible reaction pathways for the formation of acetic acid, methanol and ethanol in this study are proposed in Scheme 2.

Acetic acid formation: Two possible reaction pathways could contribute to the formation of acetic acid. CO can react with a CH₃ radical to form an acetyl radical (CH₃CO) via reaction S14 in table S3 with a low energy barrier of 28.77 kJ/mol ^[16], followed by the recombination with OH to produce acetic acid via reaction S15 with no energy barrier ^[10g], which was further confirmed by Figures 3 and S4. Clearly, the selectivity of acetic acid increased initially, then decreased with the CH₄/CO₂ ratio, with the optimal acetic acid formation at a CH₄/CO₂ ratio of 1:1. Correspondingly, the relative intensity of the CO band and O atomic line increased with decreasing CH₄/CO₂ ratio from 3:1 to 1:2, while that of CH band had a reverse evolution character (Figure S4). This suggests that decreasing the CH₄/CO₂ mole ratio decreased the generation of CH₃ radicals, but increased OH formation. A similar mechanism of acetic acid formation was proposed using DFT modeling ^[10g] and by Eliasson et al. ^[10i]. In addition, direct coupling of CH₃ and carboxyl radicals (COOH) could also form acetic acid via reaction S16, while COOH radicals may be formed from reaction S17 and S18 in table S3 [10g].

Scheme 2. Possible reaction pathways for the formation of CH_3COOH , CH_3OH and C_2H_5OH in direct reforming of CH_4 and CO_2 using DBD.

Figure 3. Effect of CH_4/CO_2 mole ratio on the selectivity of oxygenates without a catalyst (total flow rate 40 ml/min, discharge power 10 W).

Alcohol formation: Decreasing the CH₄/CO₂ ratio decreased the generation of CH₃ radicals, but increased OH formation (Figure S4). Simultaneously, the formation of CH₃OH increased initially with decreasing CH₄/CO₂ ratio and reached a peak at a CH₄/CO₂ ratio of 1:1. By contrast, the formation of C₂H₅OH decreased continuously as the CH₄/CO₂ ratio decreased (Figure

COMMUNICATION

3). These findings suggest that the production of CH₃OH mainly depends on the generation of both CH₃ and OH radicals, while the formation of C₂H₅OH was more sensitive to the presence of CH₃ radicals in the plasma reaction as C₂H₅OH formation requires twice the amount of CH₃ radicals in comparison to the formation of CH₃OH. As shown in Scheme 2, CH₃OH can be directly formed from the coupling of CH₃ and OH radicals with a high rate coefficient (S19 in table S3) ^[17], while C₂H₅OH formation required several elementary reactions (S20-S24). The recombination of CH₃ radical with itself forms C₂H₆ (S20) ^[18], followed by dehydrogenation to form C₂H₅ radical via reaction S21-S23, with S21 as the primary reaction according to reaction rates ^[13d, 19]. C₂H₅ radical was eventually attached by OH to form C₂H₅OH at a high rate coefficient of 9.34E-11 cm³ molecule⁻¹ s⁻¹ (S24) ^[20].

Clearly, placing the catalysts in the plasma reaction can tune the distribution of oxygenates, especially for the formation of HCHO after packing the Pt and Au catalysts, revealing the occurrence of surface reactions in addition to the plasma gas phase reactions ^[21]. In traditional catalysis, CO hydrogenation, CH₃OH oxidation and methylene (CH₂) oxidation could form HCHO over noble-metal catalysts ^[22]. In this plasma process, packing noble-metal catalysts in the plasma had almost no influence on the CO selectivity, but decreased the selectivity of CH₃OH, C₂H₅OH and CH₃COOH and increased the selectivity of HCHO and C_2H_6 (Figure 1a). Considering the major species that existed in the CH_4/CO_2 DBD, CH_x (x = 4, 3, and 2) could be the primary source for HCHO formation via oxidation reactions. Namely, CH_x in the gas phase could be adsorbed onto the surface of the catalyst to form HCHO via the oxidation of CH_{2, ad} $(CH_{x, ad} + O, H, OH \rightarrow CH_{2, ad})$, and to produce C_2H_6 via selfrecombination of CH3 radical instead of converting CH3 to CH₃OH, C₂H₅OH and CH₃COOH. This could explain why the presence of the Au and Pt catalysts in the plasma decreased the formation of CH₃OH, C₂H₅OH and CH₃COOH, but enhanced the production of C₂H₆ and HCHO (Figures 1a and 1b). The possible pathways for the formation of major oxygenates on the catalyst surface were proposed in Scheme S3. In addition, a range of catalyst characterization (Figures S5-S8) suggest that metal particle size and interaction of metal and support are not the determining factors for the different reaction performances (Figure 1), whereas the bonding strength of adsorbed intermediates to the catalyst surface, i.e. oxygen adsorption energy (ΔE_0), could be a good activity descriptor towards the formation of different products in CO₂ hydrogenation^[23].

In conclusion, one-step room temperature synthesis of liquid fuels and chemicals from the direct reforming of CO₂ with CH₄ has been achieved using a novel atmospheric pressure DBD reactor. The total selectivity of liquid chemicals was ca. 50-60%, with acetic acid the major product. The CH₄/CO₂ mole ratio and type of catalyst can be used to manipulate the production of different oxygenates. These results clearly show that nonthermal plasma can overcome the thermodynamic barrier to enable the direct transformation of CH₄ and CO₂ into a range of strategically important platform chemicals, especially the production of acetic acid with a 100% atom economy. Additionally, the coupling of the DBD with noble-metal catalysts produced formaldehyde which cannot be generated in the same plasma reaction without a catalyst. This finding suggests that new research should be directed at designing a catalyst with high selectivity towards a desirable product.

WILEY-VCH

Acknowledgements

The support of this work by the EPSRC SUPERGEN Hydrogen & Fuel Cell (H2FC) Programme (EP/J016454/1) ECR Project (Ref. EACPR_PS5768) is gratefully acknowledged.

Keywords: CO₂ conversion • CH₄ activation • non-thermal plasma • dry reforming • liquid fuels and chemicals

- [1] Y. Zhao, C. Cui, J. Han, H. Wang, X. Zhu, Q. Ge, J Am Chem Soc 2016, 138, 10191-10198.
- [2] W. Huang, K. C. Xie, J. P. Wang, Z. H. Gao, L. H. Yin, Q. M. Zhu, *Journal of Catalysis* **2001**, 201, 100-104.
- [3] E. M. Wilcox, G. W. Roberts, J. J. Spivey, *Catalysis Today* 2003, 88, 83-90.
- [4] Y.-H. Ding, W. Huang, Y.-G. Wang, *Fuel Processing Technology* 2007, 88, 319-324.
- [5] a) A. A. Olajire, Journal of CO2 Utilization 2013, 3-4, 74-92; b) A. Otto, T. Grube, S. Schiebahn, D. Stolten, Energy & environmental science 2015, 8, 3283-3297; c) I. Dimitriou, P. García-Gutiérrez, R. H. Elder, R. M. Cuéllar-Franca, A. Azapagic, R. W. Allen, Energy & Environmental Science 2015, 8, 1775-1789; d) M.-S. Fan, A. Z. Abdullah, S. Bhatia, ChemCatChem 2009, 1, 192-208; e) D. Pakhare, J. Spivey, Chem Soc Rev 2014, 43, 7813-7837; f) V. Havran, M. P. Dudukovic, C. S. Lo, Industrial & Engineering Chemistry Research 2011, 50, 7089-7100.
- [6] C. E. Stere, J. A. Anderson, S. Chansai, J. J. Delgado, A. Goguet, W. G. Graham, C. Hardacre, S. Taylor, X. Tu, Z. Wang, *Angewandte Chemie* 2017, *129*, 5671-5675.
- [7] a) W.-C. Chung, M.-B. Chang, *Renewable and Sustainable Energy Reviews* 2016, 62, 13-31; b) A. Lebouvier, S. A. Iwarere, P. d'Argenlieu D. Ramjugernath, L. Fulcheri, *Energy & Fuels* 2013, 27, 2712-2722; c) X. Tao, M. Bai, X. Li, H. Long, S. Shang, Y. Yin, X. Dai, *Progress in Energy and Combustion Science* 2011, 37, 113-124; d) X. Tu, J. C. Whitehead, *International Journal of Hydrogen Energy* 2014, 39, 9658-9669.
- [8] J.-J. Zou, Y.-p. Zhang, C.-J. Liu, Y. Li, B. Eliasson, *Plasma Chemistry and Plasma Processing* 2003, 23, 69-82.
- [9] M. Scapinello, L. M. Martini, P. Tosi, *Plasma Processes and Polymers* 2014, 11, 624-628.
- a) K. Kozlov, P. Michel, H.-E. Wagner, *Plasmas and polymers* 2000, 5, 129-150; b) G. R. Dey, T. N. Das, *Plasma Chemistry and Plasma Processing* 2006, 26, 495-505; c) A. Gómez-Ramírez, V. J. Rico, J. Cotrino, A. R. González-Elipe, R. M. Lambert, *ACS Catalysis* 2014, 4, 402-408; d) V. Goujard, J.-M. Tatibouët, C. Batiot-Dupeyrat, *Applied Catalysis A: General* 2009, 353, 228-235; e) J. Sentek, K. Krawczyk, M. Młotek, M. Kalczewska, T. Kroker, T. Kolb, A. Schenk, K.-H. Gericke, K. Schmidt-Szałowski, *Applied Catalysis B: Environmental* 2010, 94, 19-26; f) K. Krawczyk, M. Młotek, B. Ulejczyk, K. Schmidt-Szałowski, *Fuel* 2014, *117*, 608-617; g) L. M. Martini, G. Dilecce, G. Guella, A. Maranzana, G. Tonachini, P. Tosi, *Chemical Physics Letters* 2014, 593, 55-60; h) C. Liu, J. Wang, Y. Wang, B. Eliasson, *Fuel Chem. Div. Prepr* 2003, *48*, 268; i) J. G. Wang, C. J. Liu, B. Eliassion, *Energy & fuels* 2004, *18*, 148-153.
- [11] A. Fridman, *Plasma chemistry*, Cambridge university press, **2008**.
- [12] C. De Bie, B. Verheyde, T. Martens, J. van Dijk, S. Paulussen, A. Bogaerts, *Plasma Processes and Polymers* **2011**, *8*, 1033-1058.
- a) J. Murrell, J. Rodriguez, *Journal of Molecular Structure: THEOCHEM* **1986**, *139*, 267-276; b) D. C. Robie, S. Arepalli, N. Presser, T. Kitsopoulos, R. J. Gordon, *The Journal of Chemical Physics* **1990**, *92*, 7382-7393; c) W. Tsang, R. Hampson, *Journal of Physical and Chemical Reference Data* **1986**, *15*, 1087-1279; d) D. Baulch, C. Cobos, R. Cox, C. Esser, P. Frank, T. Just, J. Kerr, M. Pilling, J. Troe, R. Walker, *Journal of Physical and Chemical Reference Data* **1992**, *21*, 411-734; e) S. P. Karkach, V. I. Osherov, *Journal of Chemical Physics* **1999**, *110*, 11918-11927.
- [14] V. Rusanov, A. Fridman, G. Sholin, Physics-Uspekhi 1981, 24, 447-474.
- [15] J. C. Polanyi, *Science* **1987**, 236, 680-690.

COMMUNICATION

- [16] D. Baulch, C. Cobos, R. Cox, P. Frank, G. Hayman, T. Just, J. Kerr, T. Murrells, M. Pilling, J. Troe, *Journal of Physical and Chemical Reference Data* **1994**, 23, 847-848.
- [17] A. W. Jasper, S. J. Klippenstein, L. B. Harding, B. Ruscic, *The Journal of Physical Chemistry A* 2007, 111, 3932-3950.
- [18] R. Gomer, G. Kistiakowsky, The Journal of Chemical Physics 1951, 19, 85-91.
- [19] R. Atkinson, D. Baulch, R. Cox, R. Hampson Jr, J. Kerr, M. Rossi, J. Troe, *Journal of Physical and Chemical Reference Data* **1997**, *26*, 521-1011.
- [20] R. Sivaramakrishnan, M.-C. Su, J. Michael, S. Klippenstein, L. Harding, B. Ruscic, *The Journal of Physical Chemistry A* **2010**, *114*, 9425-9439.
- [21] L. Wang, Y. Zhao, C. Liu, W. Gong, H. Guo, *Chemical Communications* 2013, 49, 3787-3789.
- [22] a) Z.-Z. Lin, X. Chen, Materials & Design 2016; b) S. Yin, Z. Wang, E. R. Bernstein, Physical Chemistry Chemical Physics 2013, 15, 4699-4706;
 c) I. Sobczak, M. Kozlowska, M. Ziolek, Journal of Molecular Catalysis A: Chemical 2014, 390, 114-124; d) K. Czelej, K. Cwieka, J. C. Colmenares, K. J. Kurzydlowski, Langmuir 2016, 32, 7493-7502; e) J. Niu, J. Ran, R. Wang, X. Du, Computational and Theoretical Chemistry 2015, 1067, 40-47.
- [23] a) S. Kattel, B. Yan, Y. Yang, J. G. Chen, P. Liu, *Journal of the American Chemical Society* 2016, *138*, 12440-12450; b) M. Behrens, F. Studt, I. Kasatkin, S. Kühl, M. Hävecker, F. Abild-Pedersen, S. Zander, F. Girgsdies, P. Kurr, B.-L. Kniep, *Science* 2012, *336*, 893-897; c) F. Studt, I. Sharafutdinov, F. Abild-Pedersen, C. F. Elkjær, J. S. Hummelshøj, S. Dahl, I. Chorkendorff, J. K. Nørskov, *Nature chemistry* 2014, *6*, 320-324.

10.1002/anie.201707131

Entry for the Table of Contents

Layout 1:

COMMUNICATION

Single-step synthesis of liquid fuels and chemicals from CO_2 and CH_4 at ambient conditions was achieved using plasma-driven catalysis.

