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ABSTRACT: A direct transformation of aryl esters to secondary
benzylic alcohols via tandem Ni-catalyzed cross-coupling reactions of
aromatic 2-pyridyl esters with alkyl zinc reagents and carbonyl group
reduction by Ni−H species is achieved. Preliminary mechanistic studies
reveal that the Ni−H species is generated in situ via β-hydride
elimination of the Negishi reagents. The reaction is catalyzed by bench-
stable nickel salts under mild conditions with wide functional group
tolerance.

Aromatic esters are easily accessed feedstock starting
materials, which are commonly employed in organic

synthesis to afford tertiary benzylic alcohols and primary
benzylic alcohols via the organometallic reagents addition
(Scheme 1a). Recently, transition-metal-catalyzed cross-cou-
pling reactions of aromatic esters have emerged as powerful
tools for expedient formation of various carbon−carbon,
carbon−heteroatom and carbon−metal bonds in either
decarbonylative or nondecarbonylative ways.1−5 Despite the
broad utility of these transformations, the practical, direct
forging secondary benzylic alcohols from aromatic esters still
remains a significant synthetic challenge. Nevertheless, the
most commonly employed strategy relies on the two-step
Weinreb amide chemistry6 or Fukuyama reaction,7 followed by
an additional reducing manipulation, which could result in the
potential chemo-unselective side reductions in complex
molecular synthesis.8a The prevalence of secondary benzylic
alcohols in biologically active compounds has driven us to
tackle this synthetic gap via the relay catalysis to achieve the
step economy and redox economy synthesis.8 The relay
catalysis via metal−organic9 or dual-metal10 combinations has
emerged as a versatile and powerful strategy in organic
synthesis and made remarkable progress over the past years,
which possesses substantial advantages in enhancing reactivity
and selectivity in more efficient ways. However, a single
transition metal catalyst in relay catalysis involving two
catalytic cycles through different oxidation state transformation
is still very rare.11

Aryl 2-pyridyl ester was seminally reported by the Chatani
group in a Suzuki−Miyaura reaction through the facile
formation of an acyl palladium intermediate through the
chelation of a nitrogen atom in the pyridine ring.12 Compared
with the well-established aromatic phenyl esters, research on
aryl 2-pyridyl esters has been less developed.13 Herein, we

propose a nickel-catalyzed cross-coupling reaction of aryl 2-
pyridyl esters with alkyl zinc reagents to achieve direct
transformation of aromatic carboxylic acid derivatives to
secondary benzylic alcohols, in which the Negishi reagents
act as both coupling partners and the reducing sources
(Scheme 1b).14,15 We speculate the following mechanism
(Scheme 1c): the low valent−nickel species undergoes
oxidative addition to 1 to form acyl nickel intermediate A,
which proceeds via transmetalation with the Negishi reagent to
form intermediate B, followed by reductive elimination to
afford the ketone intermediate 3. Meanwhile, the alkyl zinc
reagent serves as the precursor to the hydride species. The
alkyl−nickel intermediate C proceeds with the β-hydride
elimination to form the crucial Ni−H species D, which then
reduces ketone 3 to form intermediate E. Ultimately, the
alkoxyl nickel species E reacts with the Negishi reagent to
regenerate C in order to form final product 2 after a hydrolytic
workup procedure. To enable the catalytic cycle, several issues
should be addressed. First, the most common precursors of
Ni−H16 such as silanes,17 HBpin,18 and alkyl halides19 could
lead to competing reactions with either acyl metal
intermediates or Negishi reagents. Thus, the use of a Negishi
reagent as a Ni−H precursor would provide a solution for the
problem. Meanwhile, excess Negishi reagent could potentially
react with the ketone intermediate to afford the corresponding
tertiary alcohol.20 Furthermore, the intermediate B could
undergo the direct elimination to afford aldehyde intermediate
G, followed by the organometallic reagent addition sequence
(Scheme 1c, path b).
We commenced our research by investigating the reaction

between pyridin-2-yl benzoate 1a and nBuZnCl as the Negishi
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reagent. The reaction proceeded smoothly when catalyzed by
10 mol % bench-stable Ni(acac)2 in DMF at 50 °C for 12 h
without additional ligand, delivering the desired product 2a in
87% isolated yield. Under these conditions, the corresponding
intermediate 3a was not observed in the crude reaction mixture
(Table 1, entry 1). It should be pointed out that the
isomerization of the 1a to corresponding N-benzoyl-2-
pyridone is not observed. The 2-hydroxypyridine was also
not obtained during the workup manipulation, which indicated
that the 2-pyridione may coordinate with the excess zinc salts.
Optimization of the leaving group revealed the importance of
the 2-pyridyl functional group in this tandem Negishi/Ni−H
reduction sequence. The employment of commercially
available phenyl benzoate 4 was unsuccessful, and no desired
product could be obtained (Table 1, entry 2). The substitution
effect on the pyridine ring was also critical for this nickel relay
catalysis. A minimal amount of 2a was obtained while using 3-
or 4- substituted pyridyl esters 5 and 6 (Table 1, entries 3 and
4), which revealed that the chelation of the 2-substituted
pyridine ring presumably promoted the tandem sequence.21

Moreover, steric effects on the pyridine were also significant;
the efficiency dropped dramatically with the introduction of a
methyl group at the 6-position (Table 1, entry 5). When 2-
pyridinemethanol was utilized as the ester group, the
corresponding benzyl ester failed to afford 2a (Table 1, entry

6). The Fukuyama type product 3a was solely observed in the
reaction mixture using 2-pyridyl thioester 9 as starting material
(Table 1, entry 7). The investigation of other commercially
available nickel catalysts, including the air/moisture sensitive
Ni(COD)2 and NiCl2(DME), led to inferior results (Table 1,
entries 8 and 9). Intriguingly, switching the nickel catalyst to
palladium catalyst Pd(OAc)2 failed to provide any desired
product (Table 1, entry 10). Additionally, attempts to improve
the efficiency by changing the solvent from DMF to THF was
also ineffective (Table 1, entry 11). The strongly coordinating
ligand SIPr·HCl was also detrimental to the reaction,
indicating the possibility of ligand effects between pyridine-2-
olate and the nickel metal center,21 which would lead to
acceleration of the Ni−H reduction step (Table 1, entry 12).22

Decreasing the amount of Negishi reagent from 3.0 to 2.0
equiv resulted in a lower yield (Table 1, entry 13).
With the optimized conditions in hand, we explored the

scope of the aryl 2-pyridyl esters with the alkyl zinc reagents
(Scheme 2). Various substituted aryl 2-pyridyl esters
containing both electron-donating and -withdrawing groups
on the aryl rings could be tolerated, affording the
corresponding benzylic alcohols in moderate to good yield
(51−94%). The reaction proceeds well with a variety of
functional groups, including substituted phenols (2d, 2j, 2k,
2l), a trifluoromethyl group (2h), fluorines (2e, 2i), a tertiary
carbamate (2m), a tertiary aniline group (2t), and a
benzoxazole group (2u). Interestingly, it was found that the
substitution at the meta- or para- position of the aryl ring had
minimal effect (2d−2o) on the reaction, while the yields
dropped with introduction of groups ortho- to the aryl 2-
pyridyl esters (2b, 2c), probably due to the disfavored steric

Scheme 1. Development of the Transformation of Aryl
Esters to Benzylic Alcohols

Table 1. Optimization of the Reaction Conditionsa

aReaction conditions: 1a (0.2 mmol), nBuZnCl (0.6 mmol),
Ni(acac)2 (0.02 mmol), DMF (1 mL), 50 °C, 12 h. bCorrected
GC yield. cIsolated yield at 1.0 mmol scale.
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repulsion during the Ni−H reduction process. To further show
the tolerance of carbonyl functionalities in the reaction, both
N,N-disubstituted amide (2n) and methyl ester (2o)
containing products could be obtained in 94% and 71%
isolated yield, respectively, which elucidated that the nickel
catalyst preferentially underwent oxidative addition with the
more reactive 2-pyridyl ester group. Some heteroaromatic 2-
pyridyl esters including furan (2p), indole (2v), and quinoline
(2w) were also suitable substrates for this cascade reductive
Negishi reaction, albeit in diminished yields (34−51%).
To further explore the robustness of the reaction, we

investigated the scope of the Negishi reagents (Scheme 3). It
was shown that the easily accessible linear primary alkylated
zinc reagents worked well with phenyl 2-pyridyl ester 1a,
affording the corresponding alcohols 2x−2aa in high yields
(74−89%). The Negishi nucleophiles with functionality such
as OTBS (2ab), OPiv (2ac), COOtBu (2ad), acetal (2ae),
tertiary amide (2af), fluoride (2ag), and alkene (2ah) were
also tolerated. Additionally, the introduction of an ethyl group
at the β-substituent on the alkyl chain of the nucleophile has a
subtle impact on the overall efficiency, affording 2ai in 71%
isolated yield. Notably, the cyclic alkyl Negishi reagents

containing five-membered to seven-membered rings could also
serve dual roles as nucleophile and precursor of the reducing
reagent (2aj−2al).
Additionally, biologically active roflumilast intermediate

(2am), estrone (2an), probenecid (2ao), and adapalene
(2ap) derivatives all worked well under the standard
conditions, illustrating the potential utility in complex
molecule synthesis (Scheme 4). Moreover, the ketone

functional group of 2an was not only tolerated by Negishi
reagents but also tolerated under Ni−H reduction conditions,
suggesting that the Ni−H species selectively reduced the more
reactive benzyl ketone intermediate in the presence of cyclic
ketone functionality.
Several experiments were performed to elucidate the

mechanism of this relay process (Scheme 5). The kinetic

Scheme 2. Scope of 2-Pyridyl Esters for Nickel-Catalyzed
(Hetero)Aryl 2-Pyridyl Ester with Alkyl Zinc Reagenta

aAll reactions were performed with 1 (1.0 equiv), RZnX (3.0 equiv),
and Ni(acac)2 (10 mol %) in DMF at 50 °C; isolated yields were
reported.

Scheme 3. Scope of Negishi Reagents for Nickel-Catalyzed
(Hetero)Aryl 2-Pyridyl Ester with Alkyl Zinc Reagenta

aAll reactions were performed with 1 (1.0 equiv), RZnx (3.0 equiv),
Ni(acac)2 (10 mol %) in DMF at 50 °C; isolated yields were reported.

Scheme 4. Application to Biologically Active Compounds
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experiment revealed that phenyl 2-pyridyl ester 1a was
consumed extremely fast to generate 3a, which was converted
to 2a upon extension of the reaction time as observed by GC.23

The observation of ketone 3a eliminates the possibility of
formation of an aldehyde intermediate (Scheme 1c, path b).
Several control experiments were carried on to determine the
reduction step: 3a was smoothly converted to the desired
product 2a using 2.0 equiv of nBuZnCl in the standard Ni-
catalyzed process, while no product was obtained with the
omission of either Ni(acac)2 or

nBuZnCl, which excluded the
possibility of formation of a six center transition state between
the ketone and Negishi reagent.24 This suggests the
importance of the nickel catalyst in the reduction step and
indicates that the hydride species likely arise from the Negishi
reagents (Scheme 5a). To gain further insight into the identity
and formation of the Ni−H intermediate, benzyl zinc bromide
was used as the nucleophile (Scheme 5b). Under these
conditions, benzyl ketone 3ar was formed as the single
product, while the desired product 2ar was not formed. The
lack of a β-hydride in the benzyl nucleophile precludes β-
hydride elimination, which is necessary for formation of the
Ni−H species. We then performed a competition experiment
(Scheme 5c), in which esters 1h and 1j were subjected to the
standard reaction conditions with 3.0 equiv of nC7H15ZnBr as a
nucleophile. Whereas benzylic alcohol product 2h was formed,
benzylic alcohol 2j was not observed; instead, ketone
intermediate 3j was the main product resulting from ester 1j.
This product distribution suggested that Ni−H as a
nucleophile in the reduction step was more facile with the
electron-deficient aryl ketone intermediate.
In conclusion, this report details a nickel relay catalysis

strategy that enables the tandem Negishi cross-coupling of aryl
2-pyridyl esters, followed by Ni−H (generated in situ)
reduction of the corresponding ketone intermediates, achieving
the direct transformation from aromatic esters to secondary
benzylic alcohols in a single synthetic step. In addition, a broad
substrate scope is possible due to the mild reaction conditions
using functionalized alkyl zinc reagents. The 2-pyridyl group is

essential for the reduction sequence, and the detailed reasons
for this are currently under investigation in our group.
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