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Abstract: Both diastereomers of 13-aminoester can be obtained diastereoselectively in the reaction of 
optically active N-sulfinimine possessing 2-methyl-l,3-dioxolanyl group with ester enolate simply by 
changing the enolate metal species, additives, and solvents. The 13-aminoester can be converted into the 
corresponding 3-unsubstituted ~-Iactam. Copyright © 1996 Elsevier Science Ltd 

13-Lactams are four-membered cyclic amides derived from 3-amino-propanoic acids. The first member 

of this class of compounds was synthesized by Staudinger. 1 The importance of ~-lactam antibiotics, however, 

was not recognized until the discovery of penicillin by Fleming in 1929. 2 3-Unsubstituted 13-1actams are useful 

precursors which are able to be converted into antibiotics such as clavulanic acid, and other necessary 

substituents can be introduced into 3-position. 3 In our recent works, we reported the synthesis of both 

enantiomers of 13-1actams using an optically active imine or ester enolates possessing a chiral auxiliary at the 

alkoxy part.4, 5 The use of sulfoxides as chiral synthons in asymmetric synthesis is now a well-established and 

reliable strategy, and has been the subject of several excellent reviews. 6 N-Sulfinimines are easily available by 

the reaction of the corresponding aldehydes with lithium hexamethyldisilazide (LHMDS), (S)-(-)menthyl 

sulfinate, 7 and CsF. 8 Generally the diastereomers possessing an optically active sulfinyl group are separable, 

and S-N bond is to be easily cleaved. 9 A careful examination of the current literatures has revealed that the 

reaction of N-sulfinimine with ester enolate is scarce and of limited scope, 10 and there has been no precedent 

for the selective synthesis of each diastereomers from a single chiral N-sulfinimine. In this paper we wish to 

report the diastereoselective addition of ester enolate to optically active N-sulfinimine 1, in which 3- 

unsubstituted 13-1actam derivative could be obtained in both enantiomeric forms in good chemical and excellent 

optical yields after removal of the chiral sulfinyl group, hydrolysis of the ester part, and cyclization. The 

changeover of  the diastereofacial selectivity was observed simply by changing the enolate metal species, 

additives and solvents. 11 
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The starting material of the optically active N-sulfinimine 1 was prepared by the reaction of the 

corresponding aldehyde 8 with LHMDS, (S)-(-)menthyl-p-toluene sulfinate, and CsF in 5 steps. 12 The 
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asymmetric addition was carried out in the following manner: deprotonation of t-butyl acetate with LDA was 

followed by addition of N-sul f in imine  "1 at -78°C. In the cases of transmetatlation, additives such as 

CITi(Oipr)3, C1A1Et2 were added to the lithium enolate, and the resulting enolate was stirred for 30 min 

followed by addition of N-sulfinimine "1. The resuhing mixture was stirred for several hrs at -78"C to 0°C and 

quenched by a phosphate buffer solution. The crude addition product was purified on preparative silica gel TLC 

which was pretreated with phosphate buffer. 

Table 1. Yields and Selectivities in As~ymmetric Addition. a) 

Metal Additive (eq) Solvent Time/h Yield/% b) 3R : 3S c) 

15 

Ti(Oipr) 3 

A1Et2 

A1EtCI 

K 

Tt tF  11 65 14 : 86 

HMPA (3.0) THF 8 68 2 : 98 

HMPA (4.5) THF 7 71 4 : 96 

Et20 7 75 82 : 18 

THF 5 89 96 : 4 

THF 19 39 84 : 16 

THF 5 79 77 : 23 

18-Crown-6 (3.0) THF 12 51 6 : 9 4  
a) The reaction was carried out with the reactant ratio of enolate : imine = 3.0 : 1.0 at -78 °C. b) Isolated 
yield, c) Determined by HPLC analysis (Hibar Column), and for the determination of the absolute 
configuration, see text. 

As shown in Table 1, addition products 213 were obtained ira good yield and with excellent selectivity. 

The case of aluminum enolate where the addition products were obtained in only 39% yield was mainly due to 

the recovery of the starting chiral imine. The diastereomeric ratio of the [3-amino ester was determined by HPLC 

analysis using a pre-packed column (Merck Hibar). The best result was obtained with the lithium enolate in the 

presence of 3 eq of HMPA in THF (68% yield, 3R : 3S -- 2 : 98). S witcbover of diastereofacial selectivity was 

accomplished by changing the enolate metal, and it was also effected by changing the solvent in the case of the 

Li enolate. The titanium enolate prepared by transmetallation with ClTi(Oipr)3 afforded the best result (89% 

yield, 3R : 3S = 96 : 4). In order to gain an insight into the transition state, the reaction was carried out with 

the potassium enolate prepared by deprotonation with potassium hexametbyldisilazide (KHMDS) in the presence 

of 18-crown-6-ether. The reaction proceeded most probably through a non-chelation pathway to afford the 

addition product which had the same stereochemistry as in the case of the lithium enolate in the presence of 3 eq 

of HMPA in THF. The diastereomers (3R)- and (3S)-2 could also be separated on silica gel TLC. 

Determination of the absolute configurations of the amino esters 2 and synthesis of 3-unsubstituted [3- 

lactam were carried out in the following manner: removal of the chiral sulfinyl group 9 and concomitant  

hydrolysis of the t-butyl ester of 2 were effected with TFA to give amino acid :3 in 70% yield. Cyclization of [3- 

amino acid 3 using PPh3-(PyS)214 in acetonitrile gave 3-unsubstimted 13-1actam 415 in 58% yield. The !3- 

lactam 5 already reported 4c was converted into the same [3-1actam 4 by removal of the chiral auxiliary and 

ketalization to the dioxolane ring, 16a followed by deprotection on nitrogen atom. 16b Comparison of the spectral 

data and the optical rotation of 4 established the absolute stereochemistry. 

Possible transition states of the present asymmetric addition of ester enolate with N-sulfinimine are 

shown in Fig. 1. The sense of diastereoselectivity is predictable by non-chelation and chelation-control models. 
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In conclusion, we demonstrated the aldol type condensation of the ester enolate with optically active N- 

sulfinimine, and succeeded in the switchover of the diastereofacial selectivity by changing the enolate metal, 

additive, and solvent. The [3-amino acid derivatives were obtained in both enantiomeric forms in good yield and 

with excellent enantiomeric purity. These 13-amino acid derivatives are useful chiral synthons for 3- 

unsubstituted ~-lactams and other natural compounds. 17 
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