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Coordination-driven assembly of a supramolecular square and 

oxidation to a tetra-ligand radical species 
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The design and synthesis of a supramolecular square was achieved 

by coordination-driven assembly of redox-active nickel(II) salen 

linkers and (ethylenediamine)palladium(II) nodes. The tetrameric 

geometry of the supramolecular structure was confirmed via MS, 

NMR, and electrochemical experiments. While oxidation of the 

monomeric metalloligand Schiff-base affords a Ni(III) species, 

oxidation of the coordination-driven assembly results in ligand 

radical formation. 

Coordination-driven self-assembly has gained significant 

attention in the field of supramolecular chemistry, providing 

access to a myriad of structures such as two-dimensional 

polygons and/or three-dimensional cages, bowls and prisms. 

These assemblies have been used for applications such as 

catalysis, guest encapsulation, sensing, drug delivery, 

nanomaterials and light harvesting.1 In addition, the dynamic 

self-assembly of nodes and linkers allows for the incorporation 

of moieties of different size and charge that can play a critical 

role in structural arrangement and guest encapsulation.2 The 

introduction of redox-active components into discrete 

supramolecular assemblies3 provides access to additional 

properties such as redox-controlled guest-host interactions4.  

 Metal complexes of salen-type ligands (Salen = N2O2 

bis(Schiff-base)-bis(phenolate)) have the potential for redox 

activity at either the ligand or the metal center upon one-

electron oxidation,5 and tuning the electron-donating ability of 

salen ligands provides a mechanism to control electronic 

structure5a for reactivity6 or materials applications.7 

Incorporating a functional group capable of secondary metal 

coordination at the para-position of the phenolate, presents an 

opportunity to employ salens as linkers in coordination-driven 

self-assembly. Salen complexes have been used in this context,8 

however, their redox properties in such structures remain 

unexplored. In this work we investigate the incorporation of a 

redox-active Ni salen into a discrete self-assembled 

supramolecular structure, the associated electronic structure and 

stability upon oxidation. 

 Linear rigid bis-pyridyl nickel salen metalloligand (1) was 

synthesized following previous reports.9 Single crystals of 1 

were isolated from dichloromethane and an X-ray structure is 

shown in Figure S1, affording a linear ditopic metalloligand of 

19.4 Å in length, suitable for coordination-driven assembly. 

The synthesis of the self-assembled system 2 was achieved by 

reacting metalloligand 1 and Pd(en)(NO3)2 nodes followed by 

anion exchange with PF6
- to ensure better solubility in organic 

solvents (Scheme 1). While such an association process often 

provides a mixture of triangle and square that exist in 

equilibrium,10 the resulting ESI-FTICR mass spectrum 

unambiguously supports formation of the tetrameric self-

assembly 2 (Figure 1), with characteristic multicharged peaks at 

m/z = 955.70 and 1323.93 corresponding to [2 – 4(PF6
-)]4+ and 

[2 – 3(PF6
-)]3+, respectively.  

Scheme 1 Synthesis of 2: (1) H2O/THF, 295 K, 2h; (2) NH4PF6(aq), 295 K, 

24h, 96% yield. 
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Coordination of the pyridyl groups to Pd(II) nuclei is further 

supported by a slight downfield shift of the H protons from 

8.52 ppm in 1 to 8.60 ppm in 2.11 Additionally, 1H DOSY NMR 

for 2 (see Figure 2 and ESI) showed a single set of signals with 

a diffusion rate of DNMR = 2.45   10-10 m2 s-1, indicating that 1) 

only one discrete self-assembled structure exists in solution and 

2) of a larger size in comparison to 1 (DNMR = 1.38   10-9 m2 s-

1). A Merck molecular force field (MMFF) calculation of 2 

(Figure S2) predicts an outer and inner diameter of 37 Å and 20 

Å, respectively. In addition, scanning transmission electron 

microscopy (STEM) measurements on 2 (see Figure S3) 

provide an average size of 32  7 Å (see ESI for calculation 

details).  

 Cyclic voltammetry (CV) experiments reveal that complex 

1 undergoes an irreversible oxidation at ca. 0.75 V vs. Fc+/Fc 

(Figure 3a). This irreversibility is likely due to subsequent axial 

coordination of the pyridyl substituents of a separate Ni salen 

unit resulting in Ni(III) formation (vide infra).12 Interestingly, 

coordination of metalloligand 1 to the Pd(II) nodes in self-

assembly 2 precludes such an interaction and thus two quasi-

reversible redox processes are observed at 0.78 V and 1.23 V 

(Figure 3b), illustrating the stability of square 2 during redox 

analysis. These redox potentials are comparable to a previously 

reported Ni salen complex containing a similar electron-

withdrawing CF3 functional group as the para-substituent.13 To 

further investigate the reversibility of the first oxidation, the 

Randles-Sevcik equation was used to estimate the diffusion 

coefficient from the electrochemical experiments (see ESI). 

Scan-rate dependence measurements (Figure 3c) were 

performed and the diffusion coefficient was calculated for the 

tetrameric assembly (n = 4 electrons) to be DCV = 2.22   10-10 

m2 s-1 (Figure 3d), in excellent agreement with the above DNMR 

value (DNMR/DCV for 2 is 1.10, which agrees with the published 

approximation of DNMR = 1.04   DCV).14 

 Oxidation of 1 with an aminium radical chemical oxidant, 

[N(C6H3Br2)3]
+[SbF6]

 (E1/2 = 1.14 V vs. Fc+/Fc)15 was 

monitored via UV-Vis-NIR spectroscopy at low temperature in 

CH3NO2. The absorption spectrum of [1]+ remained featureless 

below 17,500 cm-1, with an increase in absorption at ca. 23,000 

cm-1 due to the amine oxidant by-product (Figure 4a).13 The 

absence of absorption bands in the NIR is indicative of Ni(III) 

formation upon oxidation and was confirmed by EPR analysis 

(gavg = 2.19, Figure S5).16    

Table 1. Spectroscopic properties of [2]4+, [fragment]+ a and [NiSaltBu]+ b. 

Complex max [cm-1] 

( [M-1 cm-1]) 

max [cm-1] 

( [M-1 cm-1]) 

[2]4+ 8,500 (48,100) 4,450 (94,700) 

[fragment]+a 9,650 (f = 0.1247) 5,240 (f = 0.2318) 

[NiSaltBu]+b  9,200 (5,700) 4,700 (21,500) 

a
Molecular structure of the fragment (model compound) corresponds to 

metalloligand (1) coordinated to two Pd(II) nodes (see ESI for structure and 

calculation details); f – oscillator strength.  
b
Ref

17
 (see Figure S4 for structure). 

Page 2 of 5ChemComm

C
he

m
C

om
m

A
cc

ep
te

d
M

an
us

cr
ip

t

Pu
bl

is
he

d 
on

 2
9 

A
pr

il 
20

19
. D

ow
nl

oa
de

d 
on

 5
/1

/2
01

9 
2:

19
:2

9 
A

M
. 

View Article Online
DOI: 10.1039/C9CC02320H

https://doi.org/10.1039/c9cc02320h


Journal Name  COMMUNICATION 

This journal is © The Royal Society of Chemistry 20xx J. Name., 2013, 00, 1-3 | 3 

Please do not adjust margins 

Please do not adjust margins 

Oxidation of square 2 with [N(C6H3Br2)3]
+[SbF6]

 under the 

same conditions as the monomer (1 equiv. of oxidant per Ni 

center), afforded sharp and intense bands in the NIR region, at 

8,500 cm-1 ( = 48,100 M-1 cm-1) and 4,450 cm-1 ( = 94,700 M-

1 cm-1) (see Figure 4b). The extinction coefficient for the lowest 

energy band was estimated due to the overlap of solvent 

transitions in the region 4300-4600 cm-1 (see Figure S6 for the 

Gaussian fit of 4,450 cm-1 band). The energy and intensity of 

the low energy band agrees closely with the previously 

characterized ligand radical intervalence charge transfer (IVCT) 

band for [NiSaltBu]+ (ca. ¼ of intensity), which further supports 

ligand-based oxidation of the four metalloligands in [2]4+ 

(Table 1, Figure S4).13,17 EPR analysis of [2]4+ in solution at 

253 K is consistent with ligand radical formation, affording a 

broad isotropic signal at gavg = 2.047 (Figure S7a). Interestingly, 

EPR analysis of [2]4+ at 100 K affords a Ni(III) signal (rhombic 

signal, gavg = 2.172), consistent with a shift in the locus of 

oxidation from ligand to metal upon freezing (Figure S7b).16 

Complete disassembly of [2]4+ upon freezing is unlikely since 

the observed EPR spectra for [1]+ and [2]4+ at 100 K differ. We 

suggest that this result is due to axial ligation of a donor species 

to the Ni centers of the macrocycle, forming octahedral Ni(III) 

species at low temperature.13 Similar temperature-dependent 

shifts in EPR signals have been observed for a number of 

monomeric Ni salen ligand radical systems upon 

freezing.5d,13,17-18 

 Due to the large size of square 2, structural optimization and 

time-dependent density functional theory (TD-DFT) 

calculations were performed on a [fragment]+, featuring 

complex 1 coordinated to two Pd(II) nodes (see Figure S8). As 

expected, the oxidized fragment is predicted to be a delocalized 

Ni salen ligand radical species with negligible spin density on 

the Pd nodes. In addition, the energies and relative intensities of 

the two low energy bands predicted by TD-DFT calculations 

(Table 1 and Figure S9) for the oxidized fragment are in close 

agreement with the experimental data for [2]4+. The donor 

(HOMO) and acceptor (LUMO) orbitals attributed to the 

predicted low energy NIR transition are delocalized over the 

salen ligand, consistent with assignment as a ligand radical 

IVCT transition.17,19 The combination of the experimental data 

and calculations thus support ligand-based oxidation of each of 

the Ni salen units of 2 to form [2]4+. 

 Finally, the stability of [2]4+ and the reversibility of the 

oxidation was investigated in situ at 253 K, by monitoring the 

absorption band at 8,500 cm-1. After 15 hours, only ca. 30% of 

the oxidized species had decayed (Figure S10). In addition, 

[2]4+ could be reduced to 2 with four equivalents of 

decamethylferrocene (FeCp*2), and then re-oxidized to [2]4+ 

with an additional four equivalents of oxidant, resulting in 

minimal decomposition of the macrocycle (Figure S11). 

 In conclusion, we report a route to coordination-driven assembly 

of a square macrocycle 2, incorporating four redox-active salen 

ligands. While oxidation of Ni salen complex 1 affords a Ni(III) 

species, controlled oxidation of square 2 results in ligand radical 

formation of each of the four Ni salen units, thus highlighting the 

change in oxidation locus upon coordination-driven assembly. The 

application of supramolecular assemblies containing salen 

ligand radical units for redox-controlled guest-host interactions 

is now being explored. 
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