CYCLIZATION OF DIALKYL(3-PHENYLPROPEN-2-YL)-(3-PHENYLPROPYN-2-YL)AMMONIUM BROMIDES BY THE ACTION OF AN AQUEOUS ALKALI SOLUTION. AQUEOUS-ALKALINE CLEAVAGE OF THE CYCLIZATION PRODUCTS – *N*,*N*-DIALKYL-4(9)-PHENYL-3a,4-DIHYDRO-BENZO[*f*]ISOINDOLINIUM BROMIDES

E. O. Chukhajian¹, L. V. Ayrapetyan¹, El. O. Chukhajian¹, and H. A. Panosyan^{1*}

When heated in an alkaline aqueous medium, dialkyl(3-phenylpropen-2-yl)(3-phenylpropyn-2-yl)ammonium bromides undergo intramolecular cyclization, forming N,N-dialkyl-4(9)-phenyl-3a,4-dihydrobenzo[f] isoindolinium bromides. The cyclization products undergo aqueous-alkaline cleavage at the C(1)–N(2) or N(2)–C(3) bond, which leads to a mixture of 2-(dialkylaminomethyl)-3-methyl- and 3-(dialkylaminomethyl)-2-methyl-1-phenylnaphthalenes. However, only the C(1)–N(2) bond cleavage product is formed in the case of 2,2-pentamethylene-9-phenyl-3a,4-dihydrobenzo-[f] isoindolinium bromide.

Keywords: (dialkylaminomethyl)naphthalenes, dialkyl(3-phenylpropen-2-yl)(3-phenylpropyn-2-yl)ammonium bromides, isoindolinium salts, aqueous-alkaline cleavage, intramolecular cyclization.

Earlier in papers by A. T. Babayan and co-workers it was established that under conditions of base catalysis at room temperature ammonium salts with the general formula $Alk_2(HC\equiv CCH_2)(ArC\equiv CCH_2)N^+X^-$ (X = Hal; Ar = Ph, 4-MeC₆H₄, 4-ClC₆H₄) undergo intramolecular cyclization with spontaneous heating [1-4]. The cyclization of similar salts with an allyl fragment in place of the propargyl fragment under conditions of base catalysis occurs on heating (2-3 h, 90-92°C) [2, 3, 5, 6].

After the publication of investigations into the cyclization of (allyl)(3-phenylpropargyl)-substituted ammonium salts [5], papers with similar content were also published by British scientists [7, 8]. Japanese researchers obtained 2-methylbenzo[*f*]isoindoline in 22% yield from dimethyl(propargyl)(3-phenylpropargyl)ammonium bromide with sodium ethoxide in absolute ethanol [9]. In the same investigation the expected 2-methyl-4-phenylbenzo[*f*]isoindoline was not obtained from dimethylbis(3-phenylpropargyl)-ammonium bromide either with sodium ethoxide in absolute ethanol or with NaOH in aqueous solution, and

Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 9, pp. 1410-1417, September, 2012. Original article submitted February 20, 2011; revision submitted January 31, 2012.

^{*}To whom correspondence should be addressed, e-mail: shhl@mail.ru.

¹Scientific Technological Center of Organic and Pharmaceutical Chemistry of National Academy of Sciences, Republic of Armenia, 26 Azatutyan Ave., Yerevan 0014, Republic of Armenia.

the authors explained this by steric effects. A. T. Babayan and co-workers established that the $Alk_2(PhC \equiv CCH_2)_2N^+X^-$ salts undergo cyclization when their aqueous solutions are heated even in the absence of bases, i.e., the cyclization is apparently facilitated by the second phenyl group [10].

Based on those considerations we assumed that the second phenyl group, located at the γ -position of the allyl substituent (in place of one phenylpropargyl group), must also promote cyclization. To check this assumption in the present work, we studied the behavior of dialkyl(3-phenylpropen-2-yl)(3-phenylpropyn-2-yl)ammonium bromides **1a-f** under the conditions of base catalysis. Contrary to our expectations, the cyclization of the salts **1a-f** took place under fairly rigorous conditions (salt:alkali molar ratio 2:1, reaction time 5-6 h at 90-92°C). The salts **1a-f** are poorly soluble in water, and the reaction was therefore conducted in a water-alcohol solution. As a result of the cyclization of salts **1a-d**, the corresponding dialkyl-4-phenyl-3a,4-di-hydrobenzo[*f*]isoindolinium bromides **2a-d** are formed in 62-72% yields.

The bromides **1e**,**f** under the same conditions did not produce the 4-phenyl-substituted salts **2e**,**f**, but rather their 9-phenyl-substituted isomers **3a**,**b** with yields of 65-68%.

1e, 2e, 3a $R = R^1 = Et$, 1f, 2f, 3b $R+R^1 = -(CH_2)_{5}-$

It should be noted that the product formed upon the cyclization of salt **1b** under the conditions of base catalysis could not be obtained in the crystalline state, and it was therefore used in further transformations without isolation of the cyclic salt **2b**.

4,5 a $R = R^1 = Me$, **b** $R = R^1 = Pr$, **c** $R+R^1 = -(CH_2)_4$, **d** $R+R^1 = -(CH_2)_2O(CH_2)_2$

When refluxed in a 25% KOH solution, the salts **2a-d** are cleaved quite smoothly at the C(1)–N(2) bond (path I) or N(2)–C(3) bond (path II), forming a mixture of the isomeric 2-(dialkylaminomethyl)-3-methyl-1-phenylnaphthalenes **4a-d** and 3-(dialkylaminomethyl)-2-methyl-1-phenylnaphthalenes **5a-d** with overall yields of 65-68%.

Under the same conditions, a mixture of the amines 4e and 5e was formed from the salt 3a, while only the isomer 4f was obtained from compound 3b with a yield of 75%.

The presented structures of the salts **1a-f**, **2a-d**, **3a,b** and the amines **4a-f**, **5a-e** agree well with their IR and ¹H NMR spectral data. The structure of the salts **2a,c,d** and **3a,b** was also confirmed by ¹³C NMR spectroscopy. Double resonance and two-dimensional correlation spectroscopy (COSY, NOESY, DEPT, HMQC) were used to assign the signals in the ¹H and ¹³C NMR spectra. Thus, in the spectra of the isomers **4a-f**, a nuclear Overhauser effect is observed for the signals of the protons of the 3-CH₃ group and H-4, and also for the protons of the CH₂ group and the *ortho*-proton of the phenyl substituent. On the other hand, the spectra of the isomers **5a-e** exhibit a nuclear Overhauser effect for the signals of the 2-CH₂ group and the *ortho*-proton of the phenyl substituent, and also for the signals of the CH₂ group and the H-4 proton. The signals of the 2-CH₂ and 3-CH₂ groups and also the 2-CH₃ and 3-CH₃ groups have different chemical shifts, allowing to determine fairly accurately the content of the isomers **4** and **5** from the signal intensity ratio in the reaction product spectra. It was shown that the content of the isomer **4** in the mixtures obtained from compounds **2a-d**, **3a** amounts to 68-80%.

Thus, in comparison with the other allyl analogs, the cyclization of (3-phenylpropen-2-yl)-(3-phenylpropyn-2-yl)ammonium bromides in an water-alcohol solution of alkali leads to high yields of dialkyl-4(9)-phenyl-3a,4-dihydrobenzo[f]isoindolinium bromides. It was found that these salts undergo aqueous-alkaline cleavage at the C(1)–N(2) and N(2)–C(3) bonds. 2,2-Pentamethylene-9-phenyl-3a,4-dihydrobenzo-[f]isoindolinium bromide is only cleaved at the C(1)–N(2) bond.

EXPERIMENTAL

The IR spectra of the salts **1a-f**, **2a,c,d**, **3a,b** (films from chloroform) and the amines **4a-f**, **5a-e** (thin layers) were recorded on a Specord IR-75 spectrometer. The ¹H and ¹³C NMR spectra were recorded on a Varian Mercury 300 VX spectrometer (300 and 75 MHz, respectively) in 1:3 DMSO-d₆–CCl₄ with TMS as internal standard. Elemental analysis was performed on a Vario MICRO Cube compact element analyzer. The melting points of the salts were determined on a VEB Wägetechnik Rapido instrument. The purity of the obtained compounds was monitored by TLC on Silufol UV-254 plates in the 10:2:1:5 *n*-BuOH–EtOH–H₂O–AcOH system and visualization with iodine vapor.

Preparation of Salts 1a-f (General Method). 3-Bromo-1-phenylpropene [14] (4.2 g, 22.5 mmol) was added to a solution of the corresponding dialkyl(3-phenylpropyn-2-yl)amine [11-13] (15.0 mmol) in Et₂O (20 ml) and MeCN (5 ml). The reaction occurred with moderate spontaneous heating. The precipitated salts **1a-f** were washed with absolute Et₂O (2×30 ml). The product was recrystallized from absolute EtOH.

Dimethyl(3-phenylpropen-2-yl)(3-phenylpropyn-2-yl)ammonium Bromide (1a). Yield 5.2 g (97%). White crystals, mp 130–132°C. IR spectrum, v, cm⁻¹: 1580, 1600, 3010, 3060 (Ar), 2240 (C=C), 1630 (C=C), 1940, 730, 700, 680 (Ph). ¹H NMR spectrum, δ , ppm (*J*, Hz): 7.60-7.55 (6H, m, H Ph); 7.45-7.25 (4H, m, H Ph); 7.06 (1H, d, *J* = 15.6, =C<u>H</u>Ph); 6.55 (1H, dt, *J* = 15.6, *J* = 7.5, CH₂C<u>H</u>=); 4.87 (2H, s, NCH₂C=C); 4.52 (2H, d, *J* = 7.5, NC<u>H₂CH=</u>); 3.37 (6H, s, N(CH₃)₂). Found, %: C 67.88; H 6.49; Br 22.77; N 4.18. C₂₀H₂₂BrN. Calculated, %: C 67.42; H 6.22; Br 22.43; N 3.93.

Dipropyl(3-phenylpropen-2-yl)(3-phenylpropyn-2-yl)ammonium Bromide (1b). Yield 6.0 g (97%). White crystals, mp 170-174°C. IR spectrum, v, cm⁻¹: 1580, 1600, 3010, 3050 (Ph), 2240 (C=C), 1640 (C=C), 1930, 720, 700, 680 (Ph). ¹H NMR spectrum, δ , ppm (*J*, Hz): 7.61-7.50 (6H, m, H Ph); 7.45-7.25 (4H, m, H Ph); 7.08 (1H, d, *J* = 15.6, =C<u>H</u>Ph); 6.54 (1H, dt, *J* = 15.6, *J* = 7.4, CH₂CH=); 4.79 (2H, s, NCH₂C=C); 4.41 (2H, d, *J* = 7.4, NCH₂CH=); 3.52-3.46 (4H, m, N(CH₂CH₂CH₃)₂); 1.98-1.84 (4H, m, N(CH₂CH₂CH₃)₂); 1.06 (6H, t, *J* = 7.2, 2CH₃). Found, %: C 69.43; H 6.96; Br 19.67; N 3.77. C₂₄H₃₀BrN. Calculated, %: C 69.90; H 7.33; Br 19.37; N 3.40.

N-(3-Phenylpropen-2-yl)-*N*-(3-phenylpropyn-2-yl)pyrrolidinium Bromide (1c). Yield 5.6 g (97%). White crystals, mp 92-95°C. IR spectrum, v, cm⁻¹: 1590, 1610, 3020, 3060 (Ph), 2230 (C=C), 1640 (C=C), 1930, 720, 700, 680 (Ph); ¹H NMR spectrum, δ , ppm (*J*, Hz): 7.61-7.50 (6H, m, H Ph); 7.45-7.25 (4H, m, H Ph); 7.08 (1H, d, *J* = 15.6, =C<u>H</u>Ph); 6.59 (1H, dt, *J* = 15.6, *J* = 7.6, CH₂C<u>H</u>=); 4.80 (2H, s, NCH₂C=C); 4.50 (2H, d, *J* = 7.6, NC<u>H₂</u>CH=); 3.95-3.80 (4H, m, 2,5-CH₂ pyrrolidine); 2.35-2.21 (4H, m, 3,4-CH₂ pyrrolidine). Found, %: C 69.57; H 6.59; Br 21.22; N 4.06. C₂₂H₂₄BrN. Calculated, %: C 69.11; H 6.33; Br 20.90; N 3.66.

N-(3-Phenylpropen-2-yl)-*N*-(3-phenylpropyn-2-yl)morpholinium Bromide (1d). Yield 5.9 g (98%). White crystals, mp. 178-181°C. IR spectrum, v, cm⁻¹: 1590, 1600, 3020, 3060 (Ph), 2230 (C=C), 1630 (C=C), 1940, 740, 700, 680 (Ph). ¹H NMR spectrum, δ , ppm (*J*, Hz): 7.61-7.56 (6H, m, H Ph); 7.45-7.25 (4H, m, H Ph); 7.13 (1H, d, *J* = 15.5, =C<u>H</u>Ph); 6.58 (1H, dt, *J* = 15.5, *J* = 7.6, CH₂C<u>H</u>=); 5.01 (2H, s, NCH₂C=C); 4.67 (2H, d, *J* = 7.6, NC<u>H₂CH=</u>); 4.15 (2H, dt, *J* = 13.9, *J* = 4.8) and 4.07 (2H, dt, *J* = 13.9, *J* = 4.8, (OCH₂)₂); 3.80 (4H, t, *J* = 4.8, (NCH₂)₂). Found, %: C 66.81; H 6.36; Br 20.36; N 3.82. C₂₂H₂₄BrNO. Calculated, %: C 66.34; H 6.07; Br 20.06; N 3.52.

Diethyl(3-phenylpropen-2-yl)(3-phenylpropyn-2-yl)ammonium Bromide (1e). Yield 5.5 g (96%). White crystals, mp 143-145°C. IR spectrum, v, cm⁻¹: 1590, 1600, 3020, 3060 (Ph), 2230 (C=C), 1640 (C=C), 1940, 740, 710, 690 (Ph). ¹H NMR spectrum, δ , ppm (*J*, Hz): 7.61-7.53 (6H, m, H Ph); 7.45-7.26 (4H, m, H Ph); 7.08 (1H, d, *J* = 15.5, =C<u>H</u>Ph); 6.53 (1H, dt, *J* = 15.5, *J* = 7.5, CH₂C<u>H</u>=); 4.73 (2H, s, NCH₂C=C); 4.35 (2H, d, *J* = 7.5, NC<u>H₂CH=</u>); 3.62 (4H, q, *J* = 7.2, (N(C<u>H₂CH₃)₂); 1.46 (6H, t, *J* = 7.2, (N(CH₂C<u>H</u>₃)₂). Found, %: C 69.21; H 7.08; Br 21.09; N 3.90. C₂₂H₂₆BrN. Calculated, %: C 68.75; H 6.82; Br 20.79; N 3.64.</u>

N-(3-Phenylpropen-2-yl)-*N*-(3-phenylpropyn-2-yl)piperidinium Bromide (1f). Yield 5.7 g (96%). White crystals, mp 94-96°C. IR spectrum, v, cm⁻¹: 1590, 1610, 3020, 3060 (Ph), 2240 (C=C), 1640 (C=C), 1940, 730, 720, 680 (Ph). ¹H NMR spectrum, δ , ppm (*J*, Hz): 7.60-7.54 (6H, m, H Ph); 7.45-7.25 (4H, m, H Ph); 7.08 (1H, d, *J* = 15.5, =C<u>H</u>Ph); 6.54 (1H, dt, *J* = 15.5, *J* = 7.6, CH₂C<u>H</u>=); 4.83 (2H, s, NCH₂C=C); 4.50 (2H, d, *J* = 7.6, NC<u>H₂CH=</u>); 3.75 (4H, t, *J* = 5.7, 2,6-CH₂ piperidine); 2.09-1.92 (2H, m) and 1.83-1.71 (4H, m, 3,4,5-CH₂ piperidine). Found, %: C 70.16; H 6.26; Br 20.51; N 3.88. C₂₃H₂₆BrN. Calculated, %: C 69.70; H 6.61; Br 20.16; N 3.53.

Cyclization of Salts 1a-f (General Method). A 3 N KOH aqueous solution (2 ml) was gradually added to a solution of the salt **1a-f** (12 mmol) in water (5 ml) and EtOH (2.5 ml) (salt:KOH molar ratio 2:1). Spontaneous heating of the reaction mixture was not observed. The reaction mixture was maintained at 90-92°C for 5-6 h, cooled, and extracted with Et_2O (3×30 ml). Crystals of the products **2a,c,d** and **3a,b** separated from the aqueous layer at room temperature. They were filtered off and recrystallized from absolute

EtOH (compounds 2c,d, 3a,b) or water (compound 2a). Crystals of the starting salt 1a-f separated from the filtrate at -2-3°C (~10-15% on the amount used in the reaction). They did not give a melting point depression in a mixed melting test with an authentic sample of this salt. To isolate the product 2b, the aqueous layer after extraction of the reaction mixture with ether and separation of the starting salt 1b was treated with an HBr aqueous solution to an acidic reaction and evaporated to dryness. The salt 2b was extracted from the residue with absolute ethanol and was precipitated from the alcohol extract with absolute ether in the form of a honeylike substance. Attempts to obtain the salt 2b in crystalline form were unsuccessful. Therefore, the substance isolated after decantation of the liquid phase was used for aqueous-alkaline cleavage (see below) without further purification.

2,2-Dimethyl-4-phenyl-3a,4-dihydrobenzo[*f*]isoindolinium Bromide (2a). Yield 2.65 g (65%). Shiny crystals, mp 180-182°C. IR spectrum, v, cm⁻¹: 1580, 1600, 3000, 3020, 3060 (Ar), 670, 700, 740, 770, 1940 (Ph), 1630 (C=C). ¹H NMR spectrum, δ , ppm (*J*, Hz): 7.45-7.39 (4H, m, H Ph); 7.37-7.30 (1H, m, H Ph); 7.21-7.12 (2H, m, H-7,8); 7.03 (1H, td, *J* = 7.3, *J* = 1.9, H-6); 6.72 (1H, q, *J* ≈ 1.5, H-9); 6.54 (1H, d, *J* = 7.6, H-5); 4.74 (1H, d, *J* = 16.4) and 4.70 (1H, d, *J* = 16.4, 1-CH₂); 4.22 (1H, d, *J* = 14.0, 4-CH); 3.89-3.82 (1H, m) and 3.65 (1H, dd, *J* = 9.5, *J* = 7.0, 3-CH₂); 3.81-3.70 (1H, m, 3a-CH); 3.44 (3H, s, CH₃); 3.26 (3H, s, CH₃). ¹³C NMR spectrum, δ , ppm: 139.8; 137.3; 135.5; 133.5; 128.5; 127.1; 126.9; 126.4; 126.3; 126.2; 121.3; 68.1 and 67.4 (CH₂); 52.1 (CH₃); 51.5 (CH₃); 48.6 (CH); 41.9 (CH). Found, %: C 66.96; H 5.87; Br 22.91; N 4.04. C₂₀H₂₂BrN. Calculated, %: C 67.42; H 6.22; Br 22.43; N 3.93.

2,2-Tetramethylene-4-phenyl-3a,4-dihydrobenzo[f]isoindolinium Bromide (2c). Yield 2.84 g (62%). Shiny crystals, mp 163-164°C. IR spectrum, v, cm⁻¹: 1590, 1620, 3010, 3020, 3060 (Ar), 680, 710, 750, 770, 1930 (Ph), 1640 (C=C). ¹H NMR spectrum, δ , ppm (*J*, Hz): 7.41-7.37 (4H, m, H Ph); 7.35-7.26 (1H, m, H Ph); 7.16-7.09 (2H, m, H-7,8); 7.00 (H, ddd, *J* = 7.7, *J* = 6.3, *J* = 2.5, H-6); 6.67 (1H, dt, *J* = 2.1, *J* = 2.1, H-9); 6.52 (H, d, *J* = 7.6, H-5); 4.81 (1H, d, *J* = 15.8) and 4.79 (1H, d, *J* = 15.8, 1-CH₂); 4.19 (1H, d, *J* = 14.5, 4-CH); 4.07-3.90 (2H, m) and 3.85-3.55 (5H, m, 2,5-CH₂ pyrrolidine, 3-CH₂, 3a-CH); 2.32-2.07 (4H, m, 3,4-CH₂ pyrrolidine). ¹³C NMR spectrum, δ , ppm: 139.7; 137.1; 134.9; 133.4; 128.5 (2C); 128.4; 127.0; 126.8; 126.4 (3C); 126.1; 121.3 (=CH); 65.5 and 64.8 (C-1); 62.9; 62.5; 48.6; 42.2; 21.5; 21.3. Found, %: C 68.64; H 5.97; Br 21.41; N 3.79. C₂₂H₂₄BrN. Calculated, %: C 69.11; H 6.33; Br 20.90; N 3.66.

Spiro[morpholine-4',2-(4-phenyl-3a,4-dihydrobenzo[/]isoindolinium)] Bromide (2d). Yield 3.44 g (72%). Shiny crystals, mp 265-267°C. IR spectrum, v, cm⁻¹: 1590, 1620, 3010, 3020, 3060 (Ar), 680, 720, 760, 770, 1940 (Ph), 1630 (C=C). ¹H NMR spectrum, δ , ppm (*J*, Hz): 7.46-7.39 (4H, m, H Ph); 7.38-7.31 (1H, m, H Ph); 7.22-7.12 (2H, m, H-7,8); 7.03 (1H, td, *J* = 7.4, *J* = 1.8, H-6); 6.73 (1H, dt, *J* = 2.0, *J* \approx 2.0, H-9); 6.52 (1H, d, *J* = 7.7, H-5); 5.04 (1H, dt, *J* = 16.0, *J*= 1.5) and 4.86 (1H, dt, *J* = 16.0, *J*= 1.5, 1-CH₂); 4.25 (1H, d, *J* = 14.4, 4-CH); 4.07-3.71 (9H, m) and 3.65-3.59 (2H, m, N(CH₂CH₂)₂O, 3-CH₂, 3a-CH). Found, %: C 65.86; H 5.72; Br 20.34; N 3.98. C₂₂H₂₄BrNO. Calculated, %: C 66.34; H 6.07; Br 20.06; N 3.52.

2,2-Diethyl-9-phenyl-3a,4-dihydrobenzo[*f*]isoindolinium Bromide (3a). Yield 2.90 g (65%). Shiny crystals, mp 178-180°C. IR spectrum, v, cm⁻¹: 1570, 1610, 3000, 3020, 3060 (Ar), 680, 710, 740, 770, 1940 (Ph), 1640 (C=C). ¹H NMR spectrum, δ , ppm (*J*, Hz): 7.49-7.43 (2H, m, H Ph); 7.41-7.35 (1H, m, H Ph); 7.34-7.30 (2H, m, H Ph); 7.24 (H, d, *J*=7.5, H Ar); 7.16 (1H, td, *J* = 7.8, *J* = 1.3, H Ar); 7.08 (1H, td, *J* = 7.5, *J* = 1.3, H Ar); 6.80 (1H, dd, *J* = 7.6, *J* = 1.2, H Ar); 4.65 (1H, dd, *J* = 16.0, *J* = 2.0) and 4.15 (1H, dd, *J* = 16.0, *J* = 2.5, 1-CH₂); 4.29 (1H, dd, *J* = 11.7, *J* = 8.5) and 3.73 (1H, dd, *J* = 11.7, *J* = 9.4, 3-CH₂); 3.65–3.43 (5H, m, (CH₃CH₂)₂N, 3a-CH); 3.04 (1H, dd, *J* = 14.7, *J* = 6.7) and 2.98 (1H, d, *J* = 14.7, 4-CH₂); 1.35 (3H, t, *J* = 7.1) and 1.26 (3H, t, *J* = 7.1, (CH₃CH₂)₂N). ¹³C NMR spectrum, δ , ppm: 136.5; 134.8; 134.1; 133.7; 131.7, 128.8, 128.2; 127.4, 127.1, 126.3, 125.4; 64.7, 63.5 (1,3-CH₂); 54.8, 53.7 ((CH₃CH₂)₂N); 35.7, 31.8 (CHCH₂); 8.4, 8.2 ((CH₃CH₂)₂N). Found, %: C 68.28; H 6.45; Br 21.06; N 4.23. C₂₂H₂₆BrN. Calculated, %: C 68.75; H 6.82; Br 20.79; N 3.64.

2,2-Pentamethylene-9-phenyl-3a,4-dihydrobenzo[f]isoindolinium Bromide (3b). Yield 3.20 g (68%). Shiny crystals, mp 284-286°C (abs. EtOH). IR spectrum, v, cm⁻¹: 1580, 1610, 3010, 3030, 3060 (Ar), 690, 720, 760, 780, 1940 (Ph), 1630 (C=C). ¹H NMR spectrum, δ, ppm (*J*, Hz): 7.48-7.29 (5H, m, H Ph); 7.24 (1H,

d, J = 7.4, H Ar); 7.15 (1H, td, J = 7.4, J = 1.2, H Ar); 7.08 (1H, td, J = 7.4, J = 1.2, H Ar); 6.80 (1H, dd, J = 7.4, J = 1.2, H Ar); 4.69 (1H, dd, J = 15.9, J = 1.5) and 4.18 (1H, dd, J = 15.9, J = 2.7, 1-CH₂); 4.38 (1H, dd, J = 11.6, J = 8.2) and 3.75 (1H, dd, J = 11.6, J = 9.3, 3-CH₂); 3.74-3.45 (5H, m, 3a-CH, 2,6-CH₂ piperidine); 3.06 (1H, dd, J = 14.8, J = 6.5) and 2.93 (1H, d, J = 14.8, 4-CH₂); 2.01-1.81 (2H, m) and 1.77-1.52 (4H, m, 3,4,5-CH₂ piperidine). ¹³C NMR spectrum, δ , ppm: 136.6; 134.8; 134.2; 133.8; 131.5; 128.8 (2C, Ph); 128.3 (2C, Ph); 127.5 (CH, Ph); 127.4 (CH, Ar); 127.1 (CH, Ar); 126.3 (CH, Ar); 125.3 (CH, Ar); 65.1 and 64.1 (C-1,3); 60.4 and 59.2 (2,6-CH₂ piperidine); 35.3 (C-3a); 31.9 (C-4); 20.8, 20.6. Found, %: C 69.22; H 6.24; Br 20.45; N 4.08. C₂₃H₂₆BrN. Calculated, %: C 69.70; H 6.61; Br 20.16; N 3.53.

Aqueous-Alkaline Cleavage of Salts 2a,c,d and 3a,b (General Method). A 25% KOH solution (2 g of KOH in 6 ml of H₂O) (~8 ml) was added to the salt 2a,c,d or 3a,b (6 mmol) in H₂O (4 ml). The mixture was maintained at 110-120°C for 1.5 h, and the water was then distilled from it with the periodic addition of new portions (10-15 ml) of water. The temperature of the reaction mixture was raised to 140-145°C for a few minutes (to complete the process). The reaction mixture and its distilled part were then extracted with Et₂O (3×50 ml). The combined extract was shaken with a 15% HCl solution, and the hydrochloric acid layer was separated, made alkaline, and extracted with Et₂O. The extract was washed with water and dried over MgSO₄. A mixture of the isomeric amines 4, 5a,c-e and the amine 4f, produced during cleavage of the salt 3b, were isolated from the residue by vacuum distillation after removal of the ether.

After cyclization of the salt **1b** under conditions of base catalysis aqueous-alkaline cleavage of the salt **2b** was performed directly without its isolation. The aqueous-alkaline cleavage and also the isolation of the isomeric amines **4b** and **5b** from the reaction mixture were carried out according to the method described above.

2-(Dimethylaminomethyl)-3-methyl-1-phenylnaphthalene (4a) and 3-(Dimethylaminomethyl)-2-methyl-1-phenylnaphthalene (5a). Total yield 1.1 g (65%), bp 177-179°C (1.0-1.5 mm Hg). IR spectrum, v, cm⁻¹: 680, 700, 730, 1940, 880, 1600, 3030, 3060 (Ar). Ratio of isomers **4a**:**5a**, 4:1. ¹H NMR spectrum of mixture of compounds **4a** and **5a**, δ , ppm (*J*, Hz): 7.75 (0.2H, br. d, *J* = 8.1, H Ar (**5a**)); 7.70 (0.8H, br. d, *J* = 8.1, H Ar (**4a**)); 7.68 (0.2H, s, H-4 (**5a**)); 7.61 (0.8H, s, H-4 (**4a**)); 7.48-7.38 (3H, m), 7.36-7.31 (1H, m), and 7.23-7.16 (4H, m, H Ar (**4a**+**5a**)); 3.53 (0.4H, s, Me₂NC<u>H₂</u> (**5a**)); 3.31 (1.6H, s, Me₂NC<u>H₂</u> (**4a**)); 2.64 (2.4H, s, 3-CH₃ (**4a**)); 2.28 (1.2H, s, N(CH₃)₂ (**5a**)); 2.20 (0.6H, s, 2-CH₃ (**5a**)); 2.01 (4.8H, s, N(CH₃)₂ (**4a**)). Found, %: C 87.62; H 7.89; N 5.24. C₂₀H₂₁N. Calculated, %: C 87.23; H 7.69; N 5.09.

2-(Dipropylaminomethyl)-3-methyl-1-phenylnaphthalene (4b) and 3-(Dipropylaminomethyl)-2-methyl-1-phenylnaphthalene (5b). Total yield 1.3 g (67%), bp 185-187°C (1 mm Hg). IR spectrum, v, cm⁻¹: 680, 710, 740, 1930, 890, 1610, 3040, 3060 (Ar). Ratio of isomers **4b**:5**b**, 7:3. ¹H NMR spectrum of mixture of compounds **5b** and **4b**, δ , ppm (*J*, Hz): 7.76 (0.3H, s, H-4 (**5b**)); 7.59 (0.7H, s, H-4 (**4b**)); 7.74 (0.3H, d, *J* = 8.2, H Ar (**5b**)); 7.70 (0.7H, d, *J* = 8.2, H Ar (**4b**)); 7.50-7.29 (4H, m, H Ar (**4b**+**5b**)); 7.22-7.13 (4H, m, H Ar (**4b**+**5b**)); 3.69 (0.6H, s, Pr₂NC<u>H₂</u> (**5b**)); 3.49 (1.4H, s, Pr₂NC<u>H₂</u> (**4b**)); 2.67 (2.1H, s, 3-CH₃ (**4b**)); 2.21 (0.9H, s, 2-CH₃ (**5b**)); 2.48-2.42 (1.2H, m, (CH₃CH₂C<u>H₂)₂N (**5b**)); 2.19-2.13 (2.8H, m, (CH₃CH₂C<u>H₂)₂N (**4b**)); 1.56-1.44 (1.2H, m, (CH₃C<u>H₂</u>CH₂)₂N (**5b**)); 1.33-1.21 (2.8H, m, (CH₃C<u>H₂</u>CH₂)₂N (**4b**)); 0.87 (1.8H, t, *J* = 7.3, (C<u>H₃CH₂CH₂)₂N (**5b**)); 0.75 (4.2H, t, *J* = 7.3, (C<u>H₃CH₂CH₂)₂N (**4b**)). Found, %: C 87.36; H 9.03; N 4.43. C₂₄H₂₉N. Calculated, %: C 86.96; H 8.82; N 4.23.</u></u></u></u>

3-Methyl-2-pyrrolidinomethyl-1-phenylnaphthalene (4c) and 2-Methyl-3-pyrrolidinomethyl-**1-phenylnapthalene** (5c). Total yield 1.2 g (67%), bp 195–197°C (1-2 mm Hg). IR spectrum, v, cm⁻¹: 670, 700, 730, 1940, 880, 1600, 3030, 3050 (Ar). Ratio of isomers 4c:5c, 68:32. ¹H NMR spectrum of mixture of compounds 5c and 4c, δ , ppm (*J*, Hz): 7.74 (0.32H, br. d, *J* = 8.1, H Ar (5c)); 7.69 (0.68H, br. d, *J* = 8.1, H Ar (4c)); 7.71 (0.32H, s, H-4 (5c)); 7.59 (0.68H, s, H-4 (4c)); 7.50-7.38 (3H, m), 7.36-7.29 (1H, m), and 7.23-7.14 (4H, m, H Ar (4c+5c)); 3.74 (0.64H, s, NCH₂Ar (5c)); 3.51 (1.36H, s, NCH₂Ar (4c)); 2.60-2.54 (1.28H, m, 2,5-CH₂ pyrrolidine (5c)); 2.30-2.23 (2.72H, m, 2,5-CH₂ pyrrolidine (4c)); 2.65 (2.04H, s, 3-CH₃ (4c)); 2.21 (0.96H, s, 2-CH₃ (5c)); 1.82-1.76 (1.28H, m, 3,4-CH₂ pyrrolidine (5c)); 1.66-1.54 (2.72H, m, 3,4-CH₂ pyrrolidine (5c)). Found, %: C 88.05; H 7.92; N 4.85. C₂₂H₂₃N. Calculated, %: C 87.66; H 7.69; N 4.65. *N*-[(3-Methyl-1-phenyl-2-naphthyl)methyl]morpholine (4d) and *N*-[(2-Methyl-1-phenyl-3-naphthyl)methyl]morpholine (5d). Total yield 1.3 g (68%), bp 145–146°C (1 mm Hg), mp 65–67°C. IR spectrum (thin film), v, cm⁻¹: 680, 700, 730 (Ph), 700, 730, 1940, 890, 1590, 3020, 3060 (Ar). Ratio of isomers 4d:5d, 7:3. ¹H NMR spectrum of mixture of compounds 4d and 5d, δ , ppm (*J*, Hz): 7.75 (0.3H, br. d, *J* = 8.1, H Ar (5d)); 7.71 (0.7H, br. d, *J* = 8.1, H Ar (4d)); 7.68 (0.3H, s, H-4 (5d)); 7.62 (0.7H, s, H-4 (4d)); 7.50-7.39 (3H, m), 7.37-7.32 (1H, m), and 7.24-7.14 (4H, m, H Ar (4d+5d)); 3.62-3.59 (1.2H, m, O(CH₂)₂ (5d)); 3.47-3.44 (2.8H, m, O(CH₂)₂ (4d)); 3.62 (0.6H, s, NC<u>H₂Ar (5d)</u>); 3.40 (1.4H, s, NCH₂Ar (4d)); 2.66 (2.1H, s, 3-CH₃ (4d); 2.50-2.47 (1.2H, m, (C<u>H₂)</u>₂NCH₂Ar (5d)); 2.22 (0.9H, s, 2-CH₃ (5d)); 2.20-2.17 (2.8H, m, (C<u>H₂</u>)₂NCH₂Ar (4d)). Found, %: C 83.65; H 7.53; N 4.66. C₂₂H₂₃NO. Calculated, %: C 83.24; H 7.30; N 4.41.

2-(Diethylaminomethyl)-3-methyl-1-phenylnaphthalene (4e) and 3-(Diethylaminomethyl)-2-methyl-1-phenylnaphthalene (5e). Total yield 1.2 g (66%), bp 175-177°C (1-2 mm Hg). IR spectrum, v, cm⁻¹: 690, 710, 740, 1930, 870, 1590, 3020, 3050 (Ar). Ratio of isomers **4e**:**5e**, 69:31. ¹H NMR spectrum of mixture of compounds **4e** and **5e**, δ , ppm (*J*, Hz): 7.75 (0.31H, s, H-4 (**5e**)); 7.59 (0.69H, s, H-4 (**4e**)); 7.75 (0.31H, d, *J* = 8.2, H Ar (**5e**)); 7.69 (0.69H, d, *J* = 8.2, H Ar (**4e**)); 7.50-7.29 (4H, m) and 7.23-7.13 (4H, m, H Ar (**4e**+**5e**)); 3.69 (0.62H, s, Et₂NCH₂ (**5e**)); 3.47 (1.38H, s, Et₂NCH₂ (**4e**)); 2.59 (1.24H, q, *J* = 7.1, (CH₃CH₂)₂N (**5e**)); 2.30 (2.76H, q, *J* = 7.1, (CH₃CH₂)₂N (**4e**)); 2.67 (2.07H, s, 3-CH₃ (**4e**)); 2.21 (0.93H, s, 2-CH₃ (**5e**)); 1.07 (1.86H, t, *J* = 7.1, (CH₃CH₂)₂N (**5e**)); 0.82 (4.14H, t, *J* = 7.1, (CH₃CH₂)₂N (**4e**)). Found, %: C 87.49; H 8.53; N 4.87. C₂₂H₂₅N. Calculated, %: C 87.08; H 8.30; N 4.62.

3-Methyl-1-phenyl-2-piperidinomethylnapthalene (4f). Yield 1.4 g (75%), bp 155-157°C (1-2 mm Hg), mp 85-87°C. IR spectrum, v, cm⁻¹: 680, 700, 730, 1940, 880, 1600, 3010, 3060 (Ar). ¹H NMR spectrum, δ, ppm (*J*, Hz): 7.60 (1H, s, H-4); 7.69 (1H, d, *J* = 8.2, H Ar); 7.47-7.30 (4H, m, H Ar); 7.21-7.12 (4H, m, H Ar); 3.33 (2H, s, NC<u>H</u>₂Ar); 2.65 (3H, s, 3-CH₃); 2.19-2.13 (4H, m, 2,6-CH₂ piperidine); 1.45-1.36 (4H, m, 3,5-CH₂ piperidine); 1.35-1.28 (2H, m, 4-CH₂ piperidine). Found, %: C 87.96; H 8.22; N 4.59. C₂₃H₂₅N. Calculated, %: C 87.57; H 7.99; N 4.44.

REFERENCES

- 1. A. T. Babayan, E. O. Chukhadzhyan, G. T. Babayan, El. O. Chukhadzhyan, and F. S. Kinoyan, *Arm. Khim. Zh.*, **23**, 149 (1970).
- 2. El. O. Chukhadzhyan, E. O. Chukhadzhyan, and A. T. Babayan, Zh. Org. Khim., 10, 46 (1974).
- 3. A. T. Babayan, E. O. Chukhadzhyan, and L. A. Manasyan, Arm. Khim. Zh., 31, 489 (1978).
- 4. E. O. Chukhajian, K. G. Shakhatuni, El. O. Chukhajian, and A. T. Babayan, *Khim. Geterotsikl. Soedin.*, 615 (1989). [*Chem. Heterocycl. Compd.*, **25**, 512 (1989)].
- 5. A. T. Babayan, E. O. Chukhajian, and G. T. Babayan, Zh. Org. Khim., 6, 1161 (1970).
- 6. E. O. Chukhajian, El. O. Chukhajian, K. G. Shakhatuni, and A. T. Babayan, *Khim. Geterotsikl. Soedin.*, 759 (1991). [*Chem. Heterocycl. Compd.*, **27**, 594 (1991)].
- 7. T. Laird and W. D. Ollis, J. Chem. Soc., Chem. Commun., 557 (1972).
- 8. T. Laird, W. D. Ollis, and I. O. Sutherland, J. Chem. Soc., Perkin Trans. 1, 1477 (1980).
- 9. I. Iwai and T. Hiraoka, Chem. Pharm. Bull., 11, 1564 (1963).
- 10. A. T. Babayan, E. O. Chukhajian, and El. O. Chukhajian, Zh. Org. Khim., 9, 467 (1973).
- 11. E. O. Chukhajian, G. L. Gabrielyan, and A. T. Babayan, Arm. Khim. Zh., 29, 452 (1976).
- A. R. Gevorkyan, E. O. Chukhajian, El. O. Chukhajian, and G. A. Panosyan, *Khim. Geterotsikl. Soedin.*, 212 (2004). [*Chem. Heterocycl. Compd.*, 40, 177 (2004)].
- 13. E. O. Chukhajian, M. K. Nalbandyan, A. R. Gevorkyan, K. G. Shakhatuni, and G. A. Panosyan, *Khim. Geterotsikl. Soedin.*, 841 (2008). [*Chem. Heterocycl. Compd.*, 44, 671 (2008)].
- 14. M. Gredy, Bull. Soc. Chim. Fr., Mem., 3, 1098 (1936).