An Efficient One-Step Synthesis of 1*H*-pyrazolo[3,4-*b*]pyridines in Basic Ionic Liquid [bmim]OH

Ling-ling Zhao^{a,c}, Yu Wan^b, Hai-ying Wang^{a,c}, Chao Wang^a, Xiao-xiao Zhang^a, Shu-ying Huang^a, Gui-xiang Liu^a, Liang-feng Chen^a and Hui Wu^{a,b*}

^aSchool of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, P. R. China ^bJiangsu Key Laboratory of Biotechnology on Medical Plant, Xuzhou, 221116, P. R. China

^cJiangsu Key Laboratory of Green Synthesis of Functional Material, Xuzhou, 221116, P. R. China

Received March 02, 2012: Revised August 01, 2012: Accepted September 06, 2012

Abstract: Chain 1,3-dicarbonyl compounds were firstly used as starting material to react with 5-amino-3-methyl-1-phenylpyrazol and aromatic aldehydes to prepare 1*H*-pyrazolo[3,4-*b*]pyridines in basic ionic liquid [bmim]OH. The one-step three-component reaction is simple and efficient. Additionally, water was the only one by-product during the whole process.

Keywords: Basic ionic liquid, pyrazolo[3,4-b]pyridines.

1. INTRODUCTION

Pyrazolopyridine is an important fused heterocyclic framework which has attracted significant attention because of their biological activities for many years. They were used as dopamine D3 receptor antagonist, [1] partial agonist, [1] dopamine D4 antagonist, [2] adenosine A1 receptor antagonist, [3] TYK2 kinase and PDE10a inhibitors [4, 5]. Particularly, pyrazolo[3,4-*b*]pyridines are useful for the treatment of a wide variety of stress-related illnesses, such as depression, Alzheimer's disease, gastrointestinal disease, anorexia nervosa, hemorrhaged stress, drug and alcohol withdrawal symptoms, drug addiction and infertility [6]. Recently, pyrazolopyridines were used as inhibitors of the kinase LRRK2 to treat cancer and neurodegenerative diseases [7]. Therefore, their synthesis is very important in medicine and pharmaceutics chemistry.

By far, there have been many approaches to synthesize pyrazoles. In 1986, Nielsen [8] firstly obtained pyrazolo[3,4-b]quinolines from aminopyrazole, cyclohexanone and aromatic amine with P₄O₁₀ as catalyst. Then, pyrazolo[3,4-b]quinolines were prepared by several groups in succession [8-10]. But most of them are associated with one or more of the following drawbacks: unavailable raw material, lower yields, higher temperatures, rigorous reaction conditions and use of organic solvent.

Most of all, due to their lower reactivity than that of ring 1,3-dicarbonyl compounds, chain 1,3-dicarbonyl compounds haven't been employed as substrate until now to synthesize pyrazolo[3,4-*b*]pyridines.

Herein, we report a new method to access pyrazolo[3,4b]pyridines via an efficient one-step three-component reaction of chain 1,3-dicarbonyl compounds, 5-amino-3-methyl-1-phenylpyrazol and aromatic aldehydes in basic ionic liquid [bmim]OH. Moreover, basic ionic liquids are rarely used as solvent in organic reactions, so, we hope our efforts can provide some support to the synthesis of pyrazolopyridines and give some supplements for the applied range of basic ionic liquids (Scheme 1).

2. RESULTS AND DISCUSSION

Initially, the three-component reaction of pfluorobenzaldehyde (1a), 5-amino-3-methyl-1-phenylpyrazol (2) and acetylacetone (3) was investigated to optimize the reaction conditions. The results are summarized in Table 1. As can be seen, when water was chosen as solvent, the yield was 58% (Entry 1). But when DMF (Entry 2) and DMSO (Entry 3) was taken as medium, there is no desired product. Then, ethanol, [bpy]Br, [bpy]BF₄, [bmim]Br and [bmim]BF₄ (Entries 4-8) was tested. It was found that the solvent with higher pKa could give the higher yield, which indicated that this reaction is a nucleophilic one. So, basic ionic liquid [bmim]OH (pH=9~10) was used to increased the yield (91%, Entry 9). Subsequently, we found the optimum temperature is 60 °C (Entries 10-12). Finally, the reaction time was investigated. The results shown in Table 1 indicated that the optimum condition is to react in [bmim]OH under 60 °C for 6 h.

Under the optimal conditions, the reaction of a variety of aromatic aldehydes with acetylacetone and 5-amino-3-methyl-1-phenylpyrazol was investigated (Table 2). The Product 5 (except 5j), was obtained with the yields ranging from 78 to 89 %. We think the reason is the activity of acety-

^{*}Address correspondence to this author at the School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, 221116, P. R. China; Tel: +86 (0) 51683500434; Fax: +86 (0) 51683500431; E-mail: zllcpu@163.com

Scheme 1. One-pot synthesis of pyrazolo[3,4-*b*]pyridines.

Entry	Solvent	T(°C)	Time (h)	Yield (%)
1	H_2O	60	6	58
2	DMF	60	6	NP ^a
3	DMSO	60	6	NP
4	EtOH (95%)	60	6	53
5	[bpy] Br ^b	60	6	NP
6	[bpy]BF ₄	60	6	35
7	[bmim]Br	60	6	NP
8	[bmim]BF ₄	60	6	46
9	[bmim]OH	60	6	91
10	[bmim]OH	25	6	NP
11	[bmim]OH	40	6	46
12	[bmim]OH	80	6	90
13	[bmim]OH	60	2	43
14	[bmim]OH	60	4	69
15	[bmim]OH	60	8	92
16	[bmim]OH	60	10	90

^a: No desired products;

lacetone is too low to react with 3,4,5-trimethoxybenzaldehyde (1j) which has high steric hindrance and low reactivity. The results indicated that the electronic nature of substituted group has no obvious influence on the yield. Subsequently, another chain 1,3-dicarbonyl compound ethyl acetoacetate (4) was used as reagent to react with aromatic aldehydes (1) and **5-amino-3-methyl-1-phenylpyrazol** (2), the yields of **6** displayed a similar regulation with that of **5**. the advantages that all the reactants were added at the beginning and the same reaction conditions were maintained throughout, the features of this process include: (1) commercial available starting material; (2) mild reaction conditions; (3) good yields; (4) convenient procedure; (5) water was the only one by-product.

3. EXPERIMENTAL

General Information

In summary, low active chain 1,3-dicarbonyl compounds were applied to synthesize 1*H*-pyrazolo[3,4-*b*]pyridines in basic ionic liquid [bmim]OH simply and efficiently. Besides

All reagents were purchased from commercial sources and used without purification. TLC analysis was performed

Entry	Ar	Product	Time (h)	Yield (%)	mp (°C)
1	4-FC ₆ H ₄	5a	6	84	167-168
		ба		82	213-214
2	4-ClC ₆ H ₄	5b	6	83	144-146
		6b		83	237-238
3	$4\text{-BrC}_6\text{H}_4$	5c	7	79	147-149
		бс		85	209-210
4	$2,4$ - $Cl_2C_6H_3$	5d	7	81	113-114
		6d		83	122-123
5	4-CNC ₆ H ₄	5e	7	78	192-193
		6e		73	136-138
6	3-NO ₂ C ₆ H ₄	5f	12	80	149-150
		6f		65	137-138
7	$4-MeC_6H_4$	5g	6	85	250-251
		6g		81	123-124
8	4-MeOC ₆ H ₄	5h	6	87	161-162
		6h		88	218-219
9	2,3-(MeO) ₂ C ₆ H ₃	5i	6	88	133-135
		61		86	214-215
10	3,4,5-(MeO) ₃ C ₆ H ₂	5j	6	-	-
		6ј		83	116-118

Table 2. Synthesis of Compounds 5 and 6 in Ionic Liquid [bmim]OH.

with glass backed plates precoated with silica gel and examined under UV (254 nm). NMR spectra were measured in DMSO- d_6 or CDCl₃ with Me₄Si as the internal standards on a Bruker Advance DPX-400 at room temperature. IR spectra were recorded on Bruker FTIR spectrometer, absorbances are reported in cm⁻¹.

General Procedure for the Preparation of 1*H*-pyrazolo[3,4-*b*]pyridines

Aromatic aldehyde (1, 2 mmol), 5-amino-3-methyl-1phenylpyrazol (2, 2 mmol), acetylacetone (3, 2 mmol), and [bmim]OH (2 mL) were added into a one-necked 50 mL round bottom flask, the mixture was then heated in a 60 °C oil bath. When the reaction was finished (monitored by TLC), distilled water was poured into, the deposition was then filtered and recrystallized with DMF to give **5**.

With the same procedure, ethyl acetoacetate (4, 2 mmol) was allowed to take place of acetylacetone to give product **6**.

1-(4-(4-methoxyphenyl)-3,6-dimethyl-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-yl)ethanone (5h).

Yellow crystal (DMF), mp 161.2-161.6 °C; ¹H NMR (400MHz, CDCl₃): 1.98 (s, 3H, CH₃), 2.01 (s, 3H, CH₃),

2.46 (s, 3H, CH₃), 3.80 (s, 3H, OCH₃), 7.07 (d, J = 8.4 Hz, 2H, ArH), 7.29-7.31 (m, 3H, ArH), 7.52 (t, J = 8.4 Hz, 2H, ArH), 8.20 (d, J = 8.0 Hz, 2H, ArH). ¹³C NMR (100 MHz, CDCl₃): δ 13.2, 23.6, 32.2, 59.9, 114.1, 120.3, 121.7, 124.0, 125.6, 128.2, 129.1, 131.8, 138.9, 143.0, 145.5, 148.9, 152.2, 154.1, 204.3. HR-MS: cacld for C₂₃H₂₁N₃O₂ (M+H)⁺ 372.1707, found 372.1704.

1-(4-(4-fluorophenyl)-3,6-dimethyl-1-phenyl-1*H*-pyrazolo[3,4-*b*]pridine-5-yl)ethanone (5a).

Yellow crystal (DMF), mp 167-168 °C; ¹H NMR (400MHz, CDCl₃): δ 2.06 (s, 3H, CH₃), 2.13 (s, 3H, CH₃), 2.68 (s, 3H, CH₃), 7.23(t, 2H, *J*=8.0 Hz, ArH), 7.32(t, 1H, *J*=7.2 Hz, ArH), 7.37-7.40(m, 2H, ArH), 7.54(t, 2H, *J*=8.0 Hz, ArH), 8.30(d, 2H, *J*=8.0 Hz, ArH). ¹³C NMR (100MHz, CDCl₃): δ 14.4, 23.4, 32.3, 112.4, 115.3, 115.6, 120.4, 125.7, 129.1, 131.4, 131.5, 131.7, 138.8, 140.6, 142.8, 149.2, 153.9, 204.9. HR-MS: cacld for C₂₂H₁₈FN₃O (M+Na)⁺ 382.1326, found 382.1293.

1-(4-(4-chlorophenyl)-3,6-dimethyl-1-phenyl-1*H*-pyrazolo[3,4-*b*]pridine-5-yl)ethanone (5b).

Yellow crystal (DMF), mp 144-146 °C; ¹H NMR (400MHz, DMSO): δ 2.02 (s, 3H, CH₃), 2.11 (s, 3H, CH₃),

2.60 (s, 3H, CH₃), 7.35 (t, 1H, *J*=7.6 Hz, ArH), 7.48(d, 2H, *J*=8.4 Hz, ArH), 7.58(t, 2H, *J*=7.6 Hz, ArH), 7.64 (d, 2H, *J*=8.0 Hz, ArH), 8.24 (d, 2H, *J*=8.4 Hz, ArH). ¹³C NMR (100MHz, DMSO): δ 14.4, 23.4, 32.5, 112.2, 120.5, 125.8, 128.6, 129.2, 131.1, 133.1, 134.2, 138.8, 140.4, 142.8, 154.0, 173.1, 211.1. HR-MS: cacld for C₂₂H₁₈ClN₃O (M+Na)⁺ 398.1030, found 398.1007.

1-(4-(4-bromophenyl)-3,6-dimethyl-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-yl)ethanone (5c).

Yellow crystal (DMF), mp 147-149 °C; ¹H NMR (400MHz, DMSO): δ 2.02 (s, 3H, CH₃), 2.11 (s, 3H, CH₃), 2.60 (s, 3H, CH₃), 7.35 (t, 1H, *J*=7.6 Hz, ArH), 7.41(d, 2H, *J*=8.0 Hz, ArH), 7.57(t, 2H, *J*=8.4 Hz, ArH), 7.77 (d, 2H, *J*=8.4 Hz, ArH), 8.24 (d, 2H, *J*=7.6 Hz, ArH). ¹³C NMR (100MHz, DMSO): δ 14.5, 23.4, 32.5, 112.7, 120.5, 122.8, 125.8, 129.2, 131.3, 131.4, 131.6, 133.4, 139.0, 140.4, 142.8, 154.0, 183.4, 204.8. HR-MS: cacld for C₂₂H₁₈BrN₃O (M+Na)⁺ 442.0531, found 442.0555.

1-(4-(2,4-dichlorophenyl)-3,6-dimethyl-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-yl)ethanone (5d).

Yellow crystal (DMF), mp 113-114 °C; ¹H NMR (400MHz, DMSO): δ 1.97 (s, 3H, CH₃), 2.27 (s, 3H, CH₃), 2.65(s, 3H, CH₃), 7.36 (t, 1H, *J*=7.6 Hz, ArH), 7.58(t, 2H, *J*=8.0 Hz, ArH), 7.64(d, 1H, *J*=2.4 Hz, ArH), 7.70(dd, 1H, *J*=8.4 Hz, ArH), 7.76 (d, 1H, *J*=8.8 Hz, ArH), 8.24 (d, 2H, *J*=8.0 Hz, ArH). ¹³C NMR (100MHz, DMSO): δ 13.0, 23.6, 32.0, 112.7, 116.1, 118.7, 120.5, 125.9, 129.2, 130.7, 131.0, 131.1, 132.0, 137.0, 138.7, 142.5, 149.1, 151.4, 154.7, 214.5. HR-MS: cacld for C₂₂H₁₇Cl₂N₃O (M+H)⁺ 410.0821, found 410.0790.

4-(5-acetyl-3,6-dimethyl-1-phenyl-1*H*-pyrazolo[3,4*b*]pyridine-4-yl)benzonitrile (5e).

Yellow crystal (DMF), mp 192-193 °C; ¹H NMR (400MHz, DMSO): δ 1.97 (s, 3H, CH₃), 2.14 (s, 3H, CH₃), 2.62 (s, 3H, CH₃), 7.35 (t, 1H, *J*=7.6 Hz, ArH), 7.58(t, 2H, *J*=7.6 Hz, ArH), 7.68(d, 2H, *J*=8.0 Hz, ArH), 8.05 (d, 2H, *J*=8.0 Hz, ArH), 8.24 (d, 2H, *J*=8.4 Hz, ArH). ¹³C NMR (100MHz, DMSO): δ 14.4, 23.5, 32.6, 103.4, 112.1, 118.4, 120.6, 125.9, 129.2, 130.3, 131.4, 132.3, 138.8, 139.1, 139.9, 142.7, 149.2, 154.1, 204.6. HR-MS: cacld for C₂₃H₁₈N₄O (M+H)⁺ 367.1553, found 367.1533.

1-(3,6-dimethyl-4-(3-nitrophenyl)-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-yl)ethanone (5f).

Yellow crystal (DMF), mp 149-150 °C; ¹H NMR (400MHz, DMSO): δ 1.98 (s, 3H, CH₃), 2.01 (s, 3H, CH₃), 2.53 (s, 3H, CH₃), 7.06-7.54 (m, 5H, ArH), 7.58 (t, 1H, *J*=8.0 Hz, ArH), 7.87 (d, 1H, *J*=7.6 Hz, ArH), 8.17 (d, 1H, *J*=8.0 Hz, ArH), 8.42 (s, 1H, ArH). ¹³C NMR (100MHz, DMSO): δ 14.5, 23.4, 32.2, 113.8, 120.4, 125.7, 126.1, 127.1, 129.1, 130.6, 138.9, 141.7, 142.9, 149.3, 153.9, 158.7, 159.8, 174.9, 205.2. HR-MS: cacld for C₂₂H₁₈N₄O₃ (M+H)⁺ 387.1452, found 387.1476.

1-(3,6-dimethyl-1-phenyl-4-*p*-tolyl-1*H*-pyrazolo[3,4*b*]pyridine-5-yl)ethanone (5g).

Yellow crystal (DMF), mp 250-251 °C; ¹H NMR (400MHz, CDCl₃): δ 2.03 (s, 3H, CH₃), 2.18 (s, 3H, CH₃), 2.67 (s, 3H, CH₃), 3.92 (s, 3H, CH₃), 7.05 (d, 2H, *J*=8.4 Hz, ArH), 7.32 (d, 3H, *J*=8.4 Hz, ArH), 7.54 (t, 2H, *J*=8.0 Hz, ArH), 8.30 (d, 2H, *J*=8.0 Hz, ArH). ¹³C NMR (100MHz, CDCl₃): δ 14.4, 23.4, 32.3, 112.4, 115.3, 115.6, 120.4, 125.7, 129.1, 131.4, 131.5, 131.7, 138.8, 142.8, 149.2, 153.9, 204.9. HR-MS: cacld for C₂₃H₂₁N₃O (M +Na)⁺ 378.1577, found 378.1561.

1-(4-(2,3-dimethoxyphenyl)-3,6-dimethyl-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-yl)ethanone (5i).

Yellow crystal (DMF), mp 133-135 °C; ¹H NMR (400MHz, CDCl₃): δ 2.11 (s, 3H, CH₃), 2.26 (s, 3H, CH₃), 2.71 (s, 3H, CH₃), 3.68 (s, 3H, OCH₃), 3.96 (s, 3H, OCH₃), 6.81 (d, 1H, *J*=7.6 Hz, ArH), 7.07(d, 1H, *J*=8.0 Hz, ArH), 7.16(t, 1H, *J*=8.0 Hz, ArH), 7.31(d, 1H, *J*=7.2 Hz, ArH), 7.53 (t, 2H, *J*=7.6 Hz, ArH), 8.32 (d, 2H, *J*=8.0 Hz, ArH). ¹³C NMR (100MHz, CDCl₃): δ 13.2, 23.6, 32.2, 55.8, 59.9, 112.9, 114.1, 120.3, 121.7, 124.0, 125.6, 128.1, 129.1, 131.8, 138.4, 138.9, 143.0, 145.5, 148.9, 152.2, 154.1. HR-MS: cacld for C₂₄H₂₃N₃O₃ (M +Na)⁺ 424.1632, found 424.1641.

Ethyl-4-(4-fluorophenyl)-3,6-dimethyl-1-phenyl-1*H*-pyrazolo[3,4-*b*]pridine-5-carboxylate (6a).

White powder (DMF), mp 213-214 °C; ¹H NMR (400MHz, CDCl₃): δ 1.02 (t, 3H, CH₃), 1.58 (s, 3H, CH₃), 2.14 (s, 3H, CH₃), 4.21 (q, 2H, CH₂), 7.30 (t, 3H, *J*=8.0 Hz, ArH), 7.46-7.57 (m, 4H, ArH), 8.42 (d, 2H, *J*=8.4 Hz, ArH). ¹³C NMR (100MHz, CDCl₃): δ 14.7, 15.0, 15.3, 62.5, 113.6, 115.3, 115.5, 120.3, 121.1, 125.2, 129.0, 130.2, 130.6, 130.7, 139.6, 140.2, 144.2, 150.5, 207.0. HR-MS: cacld for C₂₃H₂₀FN₃O₂ (M+H)⁺ 390.1612, found 390.1611.

Ethyl-4-(4-chlorophenyl)-3,6-dimethyl-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylate (6b).

Yellow crystal (DMF), mp 237-238 °C; ¹H NMR (400MHz, CDCl₃): δ 1.26 (t, 3H, CH₃), 1.58 (s, 3H, CH₃), 2.15 (s, 3H, CH₃), 4.21 (q, 2H, CH₂), 7.28-7.32 (m, 2H, ArH), 7.43 (d, 1H, *J*=7.6 Hz, ArH), 7.51 (d, 2H, *J*=8.0 Hz, ArH), 7.53 (d, 2H, *J*=8.0 Hz, ArH), 8.39 (d, 2H, *J*=8.0 Hz, ArH). ¹³C NMR (100MHz, CDCl₃): δ 14.4, 23.4, 32.5, 69.0, 112.2, 120.5, 125.8, 128.6, 129.2, 131.1, 133.1, 134.2, 138.8, 140.4, 142.8, 154.0, 173.1. HR-MS: cacld for C₂₃H₂₀ClN₃O₂ (M+H)⁺ 406.1317, found 406.1316.

Ethyl-4-(4-bromophenyl)-3,6-dimethyl-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylate (6c).

Yellow crystal (DMF), mp 209-210 °C; ¹H NMR (400MHz, CDCl₃): δ 1.02 (t, 3H, CH₃), 1.57 (s, 3H, CH₃), 2.14 (s, 3H, CH₃), 4.09 (q, 2H, CH₂), 7.30 (t, 2H, *J*=7.6 Hz, ArH), 7.37 (d, 1H, *J*=8.0 Hz, ArH), 7.55 (t, 2H, *J*=7.6 Hz, ArH), 7.72 (d, 2H, *J*=8.0 Hz, ArH), 8.39 (d, 2H, *J*=8.0 Hz, ArH). ¹³C NMR (100MHz, CDCl₃): δ 14.3, 23.5, 32.6, 34.5, 112.4, 120.5, 125.6, 128.2, 129.2, 130.2, 131.3, 132.3, 138.0,

139.1, 139.8, 142.6, 154.0, 204.6. HR-MS: cacld for $C_{23}H_{20}BrN_3O_2 (M+H)^+$ 450.0812, found 450.0811.

Ethyl-4-(2,4-dichlorophenyl)-3,6-dimethyl-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylate (6d).

Yellow crystal (DMF), mp 123 °C; ¹H NMR (400MHz, CDCl₃): δ 1.01 (t, 3H, CH₃), 2.06 (s, 3H, CH₃), 2.81 (s, 3H, CH₃), 4.12 (q, 2H, CH₂), 6.71 (d, 1H, *J*=8.0 Hz, ArH), 6.93 (d, 1H, *J*=8.8 Hz, ArH), 7.30 (t, 2H, *J*=8.0 Hz, ArH), 7.42-7.54 (m, 2H, ArH), 8.27 (d, 2H, *J*=8.4 Hz, ArH). ¹³C NMR (100MHz, CDCl₃): δ 13.5, 24.4, 61.3, 112.7, 121.1, 122.5, 125.9, 129.0, 130.0, 130.4, 131.7, 132.5, 136.4, 139.1, 140.0, 143.1, 149.9, 157.2, 167.5, 206.9. HR-MS: cacld for C₂₃H₁₉Cl₂N₃O₂ (M+H)⁺ 440.0927, found 440.0935.

Ethyl-4-(4-cyanophenyl)-3,6-dimethyl-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylate (6e).

Yellow crystal (DMF), mp 136-138 °C; ¹H NMR (400MHz, CDCl₃): δ 1.35 (t, 3H, CH₃), 2.57 (s, 3H, CH₃), 2.79 (s, 3H, CH₃), 4.30 (q, 2H, CH₂), 7.31 (t, 2H, *J*=7.2 Hz, ArH), 7.55(t, 3H, *J*=8.0Hz, ArH), 7.67(d, 1H, *J*=8.0 Hz, ArH), 7.90 (d, 1H, *J*=8.0 Hz, ArH), 8.38 (d, 2H, *J*=7.6 Hz, ArH). ¹³C NMR (100MHz, CDCl₃): δ 15.0, 15.6, 30.9, 112.8, 113.2, 113.3, 120.3, 125.4, 129.0, 129.8, 131.9, 138.4, 139.3, 139.4, 143.6, 150.3, 207.0. HR-MS: cacld for C₂₄H₂₀N₄O₂ (M+H)⁺ 397.1659, found 397.1673.

Ethyl-3,6-dimethyl-4-(3-nitrophenyl)-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylate (6f).

Yellow powder (DMF), mp 137-138 °C; ¹H NMR (400MHz, CDCl₃): δ 1.04 (t, 3H, *J*=7.2 Hz, CH₃), 2.07 (s, 3H, CH₃), 2.81 (s, 3H, CH₃), 4.11 (q, 2H, CH₂), 7.34 (t, 1H, *J*=7.6 Hz, ArH), 7.55 (t, 2H, *J*=7.6 Hz, ArH), 7.70-7.77 (m, 2H, ArH), 8.29 (d, 2H, *J*=8.0 Hz, ArH), 8.33 (s, 1H, ArH), 8.39 (d, 1H, *J*=8.0 Hz, ArH). ¹³C NMR (100MHz, CDCl₃): δ 13.7, 15.1, 113.2, 113.3, 120.3, 123.5, 125.2, 129.0, 129.1, 130.5, 131.4, 133.2, 139.5, 144.1, 150.4, 207.0. HR-MS: cacld for C₂₃H₂₀N₄O₄ (M+H)⁺ 417.1557, found 417.1557.

Ethyl-3,6-dimethyl-1-phenyl-4-*p*-tolyl-1*H*-pyrazolo[3,4*b*]pyridine-5-carboxylate (6g).

Yellow crystal (DMF), mp 123-124 °C; ¹H NMR (400MHz, CDCl₃): δ 0.98 (t, 3H, CH₃), 2.08 (s, 3H, CH₃), 2.44 (s, 3H, CH₃), 2.74 (s, 3H, CH₃), 4.07 (q, 2H, CH₂), 7.30 (d, 2H, *J*=8.0 Hz, ArH), 7.24 (m, 2H, ArH), 7.51 (t, 3H, *J*=8.0 Hz, ArH), 8.26 (d, 2H, *J*=8.0 Hz, ArH). ¹³C NMR (100MHz, CDCl₃): δ 13.7, 14.7, 21.4, 23.9, 61.2, 113.1, 121.1, 123.9, 125.6, 128.6, 128.7, 129.0, 132.4, 138.5, 139.4, 143.5, 144.2, 150.0, 155.7, 168.8. HR-MS: cacld for C₂₄H₂₃N₃O₂ (M+H)⁺ 386.1863, found 386.1889.

Ethyl-4-(4-methoxyphenyl)-3,6-dimethyl-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylate (6h).

Yellow powder (DMF), mp 218-219 °C; ¹H NMR (400MHz, CDCl₃): δ 1.29 (t, 3H, CH₃), 2.07 (s, 3H, CH₃), 2.16 (s, 3H, CH₃), 3.83 (s, 3H, OCH₃), 4.30 (q, 2H, CH₂), 7.08 (d, 2H, *J*=8.4 Hz, ArH), 7.29 (d, 1H, *J*=7.6 Hz, ArH),

7.38 (d, 1H, *J*=8.0 Hz, ArH), 7.54 (t, 3H, *J*=7.6 Hz, ArH), 8.41 (d, 2H, *J*=8.4 Hz, ArH). 13 C NMR (100MHz, CDCl₃): δ 13.0, 23.6, 32.0, 112.0, 120.5, 125.9, 129.2, 130.6, 131.0, 131.1, 131.2, 132.0, 134.8, 137.0, 138.7, 142.5, 149.0, 154.6, 203.7. HR-MS: cacld for C₂₄H₂₃N₃O₃ (M+H)⁺ 402.1812, found 402.1812.

Ethyl-4-(2,3-dimethoxyphenyl)-3,6-dimethyl-1-phenyl-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylate (6i).

White powder (DMF), mp 214-215 °C; ¹H NMR (400MHz, CDCl₃): δ 1.25 (t, 3H, CH₃), 1.56 (s, 3H, CH₃), 2.17 (s, 3H, CH₃), 3.89 (s, 3H, OCH₃), 3.96(s, 3H, OCH₃), 4.22 (q, 2H, CH₂), 6.71 (d, 1H, *J*=8.0 Hz, ArH), 6.93 (d, 1H, *J*=8.8 Hz, ArH), 7.05-7.21 (m, 2H, ArH), 7.31 (d, 1H, *J*=8.4 Hz, ArH), 7.51 (t, 2H, *J*=7.6 Hz, ArH), 8.25 (d, 2H, *J*=8.0 Hz, ArH). ¹³C NMR (100MHz, CDCl₃): δ 12.3, 13.5, 14.1, 55.8, 61.1, 96.3, 112.6, 112.8, 115.7, 118.7, 120.1, 121.2, 124.0, 124.3, 128.94, 129.0, 129.1, 145.8, 207.0. HR-MS: cacld for C₂₅H₂₅N₃O₄ (M+H)⁺ 432.1918, found 432.1917.

Ethyl-3,6-dimethyl-1-phenyl-4-(3,4,5-trimethoxyphenyl)-1*H*-pyrazolo[3,4-*b*]pyridine-5-carboxylate (6j).

Yellow crystal (DMF), mp 116-118 °C; ¹H NMR (400MHz, DMSO): δ 1.02 (t, 3H, CH₃), 1.56 (s, 3H, CH₃), 2.75 (s, 3H, CH₃), 3.86 (s, 6H, OCH₃), 3.93(s, 3H, OCH₃), 4.10 (q, 2H, CH₂), 6.60 (s, 2H, ArH), 7.52 (t, 3H, *J*=8.0 Hz, ArH), 8.26 (d, 2H, *J*=8.0 Hz, ArH). ¹³C NMR (100MHz, CDCl₃): δ 13.8, 14.8, 23.8, 56.2, 61.1, 61.4, 106.2, 112.8, 113.2, 121.1, 123.7, 125.8, 129.0, 130.8, 138.2, 139.3, 143.3, 143.7, 152.9, 155.8, 168.8. HR-MS: cacld for C₂₆H₂₇N₃O₅ (M+H)⁺ 462.2023, found 462.2044.

CONFLICT OF INTEREST

The author(s) confirm that this article content has no conflicts of interest.

ACKNOWLEDGEMENTS

We are grateful to the foundation of the "Priority Academic Program Development of Jiangsu Higher Education Institutions", "Qing Lan Project in Jiangsu Province" (No.08QL001T), "Key Basic Research Project in Jiangsu University" (No. 10KJA430050), the "Post-graduate Innovation Project in Jiangsu Province" (No. CXZZ12_0979 No. CXZZ11_0904) for financial support.

REFERENCES

- Bettinetti, L.; Schlotter, K.; Hübner, H.; Gmeiner, P. Interactive SAR studies: rational discovery of super-potent and highly selective dopamine D3 receptor antagonists and partial agonists. *J. Med. Chem.*, 2002, 45(21), 4594-4597.
- [2] Löber, S.; Hübner, H.; Utz, W.; Gmeiner, P. Rationally based efficacy tuning of selective dopamine D4 receptor ligands leading to the complete antagonist 2-[4-(4-Chlorophenyl)piperazin-1ylmethyl]pyrazolo[1,5-a]pyridine (FAUC 213). J. Med. Chem., 2001, 44(17), 2691-2694.
- [3] Kuroda, S.; Akahane, A.; Itani, H.; Nishimura, S.; Durkin, K.; Tenda, Y.; Sakane, K. Novel adenosine A1 receptor antagonists. Synthesis and structure-activity relationships of a novel series of 3-(2-cyclohexenyl-3-oxo-2,3-dihydropyridazin-6-yl)-2-

- [4] Blench, T.; Goodacre, S.; Lai, Y. J.; Liang, Y.; MacLeod, C.; Magnuson, S.; Tsui, V.; Williams, K.; Zhang, B. R. Preparation of pyrazolopyridines and their use as TYK2 kinase inhibitors. Internation Patent WO 2012066061, May 24, 2012.
- [5] Davenport, T.; Vile, J.; Pal, S. Pyrazolopyridine compounds as PDE10a inhibitors. Internation Patent WO 2012019954, Feb 16, 2012.
- [6] Chen, Y. L. Pyrazolo- and pyrrolopyridines useful as CRF antagonists. Internation Patent WO 9534563, Dec 21, 1995.
- [7] Chan, B.; Chen, H. F.; Estrada, A.; Shore, D.; Sweeney, Z.; McIver, E. Pyrazolopyridines as inhibitors of the kinase LRRK2 and their preparation and use in the treatment of cancer and neu-

rodegenerative diseases. Internation Patent WO 2012038743, Mar 29, 2012.

- [8] Nielsen, S. V.; Pedersen, E. B. Phosphorus pentoxide in organic synthesis. XXIX. Synthesis of 4-arylamino-5,6,7,8-tetrahydro-1Hpyrazolo[3,4-b]quinolines and the corresponding N-Mannich bases. *Liebigs. Ann. Chem.*, **1986**, *10*, 1728-1735.
- [9] Narsaiah, B.; Sivaprasad, A.; Venkatarranam, R. V. A. A novel synthesis of 3,4-disubstituted 1H-pyrazolo[3,4-b]quinolines. *Synth. Commun.*, **1991**, 21(15-16), 1611-1617.
- [10] Lipson, V. V.; Karnozhitskaya, T. M.; Desenko, S. M.; Shishkina, S. V.; Shishkin, O. E.; Musatov, V. I. Reactions of *a*-aminoazoles with diethyl benzylidenemalonate. *Russ. J. Org. Chem.*, 2007, 43(2), 249-255.