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One-pot Synthesis of α-Aminophosphonates via Cascade 

Sequence of Allylamine Isomerization/Hydrophosphonylation 
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a
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a
 Qiang Yang,

a
 Ming-Xing Cheng,

a
 Shang-Dong Yang*

a,b
 

A Rh/Ni-catalyzed cascade sequence of allylamine isomerization 

and hydrophosphonylation to synthesis α-aminophosphonates 

has been disclosed. This method, not only allows the generation 

of widespread valuable α-aminophosphonates under simple 

systems and mild condition, but also enriches the process of olefin 

isomerization-addition both in catalytic system and reaction type 

variedly. 

α-Aminophosphonates and α-aminophosphonic acids have 

received enormous attention owing to their potential 

biological activities in various natural products and 

pharmaceutical compounds.
1 

Representative compounds such 

as
 

the antibacterial agent alafosfalin,
2
 hapten for the 

generation of catalytic antibodies B,
3
 and the allosteric 

inhibitors of hFPPS (A, Scheme 1).
4
 Among the existing 

methods for the preparation of α-aminophosphonates, one of 

the most convenient approach is the nucleophilic addition of 

H-phosphonates to imines to construct the C-P bond, that is, 

the Pudovik reaction.
5
 Another important approach is the the 

Kabachnik–Fields reaction,
6
 which involes three-component 

reaction between amines, carbonyl compounds, and H-

phosphonates. At the same time, transition-metal-catalyzed 

hydrogenation
7
 and phase transfer catalysis system

8
 have also 

been used in preparation of α-aminophosphonates 

derivartives. However, these process usually suffers from 

serious limitations on substrates scope and/or  reaction 

applicability due to the poor stability and availability of imines, 

To overcome these limitations, Li’s CDC reaction provide a new 

strategy which take the advantage of an in-situ oxidative 

generated imine from simple amine and then reacted with H-

phosphonates by nucleophilic addition to obtain the α-

aminophosphonates.
9
 However, base on these methodology, 

the examples of transition-metal-catalyzed the nucleophilic 

addition of allylamine isomerization to in-situ generate imine 

or enamine intermediate is very rare,
10

 only few 

representative works have been reported by Terada
11

 and 

Nielsen’s groups.
12

 Therefore, the development of a facile and 

efficient protocol toward α-aminophosphonates from the 

combination of stable and accessible allylamine and enamine 

intermediate is still highly desirable. 

Herein, for the first time, we report an one-pot synthesis of 

α-aminophosphonates via cascade sequence transformations 

of allylamine isomerization and hydrophosphonylation
13

 (B, 

Scheme 1). Notable features of this methodology include (a)  

direct hydrophosphonylation of enamine intermediate with 

high atom economy; (b) both terminal and unterminal allylic 

compound can be applied in reaction system, and the catalytic 

process of allylamine isomerisation to enamine intermediate 

which goes through the π-allyl mechanism;
14

 (c) the  reaction 

substrate is stable and accessible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1. Cascade Sequence Transformations of Allylamine 

for the Synthesis of α-Aminophosphonates 

To begin our study, we chose Bz-protected allylamine and 

diphenylphosphine oxide as the model substrates to examine 

different catalysts such as [RuClH(CO)(PPh3)3], Pd(PPh3)4, 

Ni(COD)2, [Ir(COD)Cl]2, [Rh(COD)Cl]2, by using Ag2CO3 as the 
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oxidant, Although α-aminophosphonates was not obtained as 

the desired product, we got the significant amount of 

isomerization product enamine when using [Rh(COD)Cl]2 as the 

catalyst. Then, we investigated a range of N-protecting groups 

for allylamine, including Ts, Bz, Boc, Ph. Fortunately, we 

detected the desired product 3aa in a yield of 91% with phenyl 

as N-protecting group by using [Rh(COD)Cl]2 as catalyst and 

Ag2CO3 as additive in toluene under 60 ˚C. These results 

showed that the existence of phenyl group is the key to the 

hydrophosphonylation process. Subsequently, different 

solvents and additives examinations indicated that dioxane 

and Ag2CO3 were the best choices (for details see Supporting 

Information). Finally, we got our best result with 2.5 mol % 

[Rh(COD)Cl]2, 20 mol % Ag2CO3 in dioxane at 60 
o
C for 16 h 

under Argon, and the desired product was formed in 97 % 

yield. 

Table 1. Rh(I)-catalyzed Cascade Sequence Transformations 

of Allylamine with Different Phosphates
a,b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a
 All the reactions were carried out in the presence of 0.3 mmol of 1, 1.5 

equiv 2, 2.5 mol % [Rh(COD)Cl]2 and 20 mol % Ag2CO3 in dioxane under Ar. 
b 

Isolated yields based on 1. 
c
 The d.r. value was determined by 

31
P NMR. 

With the optimal condition in hand, we then investigated 

reactivity of different allylamines (Table 1). First, we tested 

differnt N-protecting groups effect(3aa-3ab and 3av-3aw) and 

found that the desired product could be obtained in an 

excellent yield by using Ph or Bn as protecting group. When we 

use N-methyl-phenyl allylamine as substrate, the reaction 

required a higher temperature to produce desired product in 

excellent yield (3ac). When chiral benzyl group was used to 

protect amino group, we got the product in a yield of 65% with 

low diastereoselectivity (3ad). Next, the investigation of 

different aromatic N-protecting groups (3ae-3aj) showed that 

electron-rich aromatic substituents are more conducive to 

produce final products. The (E)-typed alkyl substituted N-

phenyl allylamine all worked well, in general, the longer alkyl 

chain substrates require a harsher reaction condition (3ak-

3am). Also, the (Z)-typed substrates need a harsher reaction 

condition to generate the final product(3an-3as). When using 

phenyl, carbonyl or other groups that can conjugate with C-C 

double bond as the substution on olefin, no product was 

obtained (3at-3au). Finally, we tested different phosphorus 

source in the reaction (3ba-3ea) and found that 

diarylphosphoryl oxygen could well tolerate under reaction 

condition, with both electron-rich or electron-deficient 

substitution on the aromatic ring.  

Beside allylamines derivities, we wanted to extend our 

substrates scope to other types of olefin amines. To our 

delight, Isomerization and hydrophosphonylation were 

successfully achieved over a 4/5/7-carbon chain, and the 

corresponding desired products were obtained in moderate to 

good yields by using longer reaction time, this result 

highlighted the universality and scope of this cascade reaction 

(entries 1-3, Table 2).  

Table 2. Isomerization-Hydrophosphonylation with Special 

Vinyl amines
a,b

 

 

 

 

 

 

 

 

 

 
a
 The reaction was carried out with [Rh(COD)Cl]2 2.5 mol %, 1 (0.30 mmol), 

2a (1.5 equiv.) and 20 mol % Ag2CO3 in dioxane (1.5 mL) under argon. 

b
Isolated yields of 3 based on 1'. 

Unfortunately, under above system, phosphite ester was 

not an efficient phosphorus source for Rh(I)-catalyzed the 

allylamine isomerization and hydrophosphonylation reaction. 

After a massive screening on different metal catalysts, base, 

ligand, and solvent, we finally found the best conditions for 

using phosphite ester as phosphorus source on this cascade 

reaction:5 mol % NiCl2, 120 mol % K3PO4, DMF as solvent at 60 
o
C for 10 h under Ar, and the desired product diethyl (1-(4-

methylphenylsulfonamido)propyl) phosphonate (6aa) was 

obtained in an excellent yield of 91% (Table S2, see Supporting 

Information). Then a variety of phosphite esters were 

evaluated with N-allyl-4-methylbenzenesulfonamide under this 

Ni-system, and desired α-aminophosphonate products was 

obtained in good to excellent yields (6aa-6ae, Table 3). 

Different N-protecting groups were also examined, and 

methanesulfonyl, P,P-diphenylphosphoryl, (S)-(-)-t-butylsulfinyl, 
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and D(+)-10-Camphorsulfonyl were proven to be suitable 

protecting groups for this reaction and the corresponding 

products were produced in good yields (6af-6ai). (E)-N-(hex-2-

en-1-yl)-4-methylbenzenesulfonamide could also be used as 

substrate, although the desired product was obtained in a low 

yield (6aj). 

Table 3. Ni(II)-catalyzed Cascade Sequence Transformations 

of Allylamine with Different Phosphates
a,b

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
a
All the reactions were carried out in the presence of 0.2 mmol of 4, 1.5 

equiv 5, 5 mol % NiCl2 and 120 mol % K3PO4 in DMF at 60 
o
C for 10 h under 

Ar. 
b
Isolated yields. 

c
The d.r. value was detected by 

31
P NMR. 

d 
Separation 

from the column chromatography. 

Next, several derivatization of our products were carried out, 

the deprotection of tosyl group of 6aa was achieved by simply 

using hydrochloric acid as the reagent (10M aq.)
15

 , and  α-

aminophosphonic acid 7a was obtained in 58% yield (A, 

Scheme 2). we have also used thieno[2,3-d]pyrimidin-4(3H)-  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2. Synthesis of α-aminophosphonic acid 7a and 

hFPPS (9a) 

one (1) as the  starting material to synthesis 8a in four steps 

and then underwent Ni-catalyzed allylamine isomerization and 

hydrophosphonylation with diethyl phosphite, and 9a which is 

an allosteric inhibitor of hFPPS was produced in a 43 yield
4
 , 

this result highlight the synthetic utility of our method (B, 

Scheme 2). 

To gain some insight into the  this allylamine isomerization 

and hydrophosphonylation reaction, some control 

experiments were carried out. We first excluded the radical 

process because after we added BHT as a radical scavenger in 

the reaction, the desired product was obtained in 97% yield.  

(detail see Supporting Information). Next, different deuterium 

experiments were preformed under standard reaction 

condition (Scheme 3). When we used the deuterated 

diphenylphosphine oxide (2a-d) and deuterated N-

phenylallylamine (1a-d) under reaction system, only a small 

amount of the both C-1 and C-2 deuterated product was 

observed (a, Scheme 3). However, when 3.0 equivalent D2O 

was added into the same reaction system (b, Scheme 3), C-2 

deuterated product was increased remarkably. It’s worth to 

note that the no deuteration was occur on NH group. These 

results indicated that only enamine produced in the olefin 

isomerization process and the deuterated product mainly was 

generated from D2O in the reaction system. To further gain 

direct evidence, we used N-deuterated phenylallylamine (1a-

Nd)  as substrate under standard reaction condition (c, Scheme 

3), the correspodding N-deuterated product (Nd-3aa) was 

obtained in a quantitative yield. This result showed that there 

was no imine intermediate formed in the reaction. Most 

notably, the selective deuterium incorporation at the C-1 and C-

3 positions in the product was consist with  the π-allyl-type 

mechanism. Moreover, the kinetic isotope effects (KIE) 

experiment result (kH/kD = 1.62) (d, Scheme 3) indicated that 

the Rh-allyl intermediate is generated through C-H addition from 

the allylic carbon (allylic C−H acTvaTon). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3. Deuterium Experiments Under Rh(I)-catalyzed 

Catalytic System 

Based on literature reports
 14,16

 and above results, we 

proposed a possible mechanism for Rh-catalyzed 

isomerization-hydrophosphonylation reaction in scheme 4. 
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The rhodium first go though ligand exchange with 

diphenylphosphine oxide to form complex A, then the double 

bond of allylamine was coordinated to the metal complex A, 

followed by C-H addition of  allylic carbon to generate the Rh-allyl 

intermediates B. Then, C-H reductive elimination led the 

formation of enamine intermediates C. At the same time, the 

diphenylphosphine oxide experiences a nucleophilic addition 

to enamine intermediates C to produce the 

hydrophosphonylated product 3aa and release the Rh-catalyst 

to finish the catalytic cycle. Same mechanism is proposed for 

Ni(II)-catalyzed transformation process. 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4. Possible Mechanism of Cascade Sequence 

Transformations of Allylamine 

Conclusions 
In summary, we have developed a novel and efficient 

method for the construction of α-aminophosphonates by a 

cascade sequence of allylamine isomerization and 

hydrophosphonylation. The reaction process benefits from a 

broad selection of the comparatively stable and readily 

available substrates, and potential  biological useful products 

are produced in moderate to excellent yields.  
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