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ABSTRACT: A straightforward synthesis of ecteinascidin 

743 was accomplished from readily available L-glutamic acid 

as a single chiral source. Our novel synthesis features a con-

cise and convergent approach for construction of the B-ring, 

consisting of a sequence of a stereoselective Heck reaction 

between a diazonium salt and an enamide, oxidative cleavage 

of the resulting alkene and intramolecular ortho substitution of 

the phenol by an aldehyde. 

Ecteinascidin 743 (1, Scheme 1), a tetrahydroisoquinoline 

alkaloid, was isolated from the Caribbean tunicate Ecteinas-

cidia turbinata by Rinehart and coworkers.
1
 This alkaloid 

attracted strong interest as a potential anticancer agent due to 

its combination of strong cytostatic properties and antitumor 

activity
2,3
 and has recently been approved for the treatment of 

soft tissue sarcoma and ovarian cancer. However, only minute 

quantities of ecteinascidin 743 are available from the marine 

sources. While several total syntheses have been reported to 

date,
4,5
 they are not amenable to scale up for manufacturing 

purposes. Ecteinascidin 743 is currently provided by a long-

step semisynthesis from cyanosafracin B.
6
 There is, however, 

an urgent need for more efficient synthesis of the natural 

product from readily available chemicals due to the increasing 

demand. Since our first-generation total synthesis was reported 

in 2002,
4b
 we have made continued efforts to establish a prac-

tical synthetic pathway that could meet the demand for ectein-

ascidin 743. Herein we disclose an interim report of our novel 

approach for the robust synthesis of ecteinascidin 743. 

As shown in our retrosynthesis in Scheme 1, the ten-

membered cyclic sulfide in 1 would be generated according to 

our published strategy
4b
 from alcohol 2, a key intermediate 

with the pentacyclic core structure. Construction of the B-ring 

could be achieved via an intramolecular ortho substitution of 

the phenol with an aldehyde. Intermediate 3 bearing two alde-

hyde moieties would be derived from dihydropyrrole 4. Given 

the aryl group on the less hindered side, stereoselective intro-

duction of the aryl group in 4 would be achieved via a Heck 

reaction between diazonium salt 5 and enamide 6.
7
 

Our synthesis commenced with preparation of amine 11 as 

the precursor for diazonium salt 5 (Scheme 2). Oxidation of 

known phenol 7
5e,8
 with PhI(OAc)2 in methanol gave dienone 

8, which was treated with sodium cyanide to afford nitrile 9. 

After benzylation of the phenolic hydroxy group, the resulting 

nitrile was hydrolyzed to furnish carboxamide 10. Hofmann 

rearrangement followed by hydrolysis afforded amine 11. 

Scheme 1. Retrosynthesis 

 

Scheme 2 

 

Reagents and conditions: (a) PhI(OAc)2, MeOH, 0 °C; (b) 
NaCN, DMF-H2O, 0 °C to rt, 37% (2 steps); (c) BnBr, K2CO3, 
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DMF, rt; (d) aq H2O2, K2CO3, DMSO, rt; (e) PhI(OAc)2, KOH, 
MeOH, 0 °C; (f) LiOH, EtOH-H2O, reflux, 83% (4 steps). 

We next focused on construction of the enamide unit 

(Scheme 3). L-glutamic acid, chosen as an inexpensive, readi-

ly available, and reliable chiral source, was converted to N,N’-

diacetylated diketopiperazine 13.
9
 Perkin condensation of 13 

with aldehyde 14 proceeded stereoselectively to give 15. After 

introduction of a Boc group at the lactam, cleavage of the ben-

zyl group and stereoselective reduction of the double bond 

were simultaneously carried out to furnish 16. Hydrazinolysis 

of the acetyl group in 16 followed by selective reduction of the 

imide carbonyl group with sodium borohydride afforded 17. 

Upon treatment of 17 with TFA, the N-acyliminium ion-

mediated cyclization reaction proceeded smoothly, and subjec-

tion of the product to PhNTf2 under basic conditions afforded 

bis-triflate 18 in 88% yield. Suzuki-Miyaura coupling of 18 

with trimethylboroxine took place selectively at the less hin-

dered triflate to produce 19 in 92% yield. After the Boc group 

was switched to a methoxycarbonyl group, partial reduction of 

the ester moiety in 20 with L-Selectride
®
 and subsequent de-

hydration of the resulting hemiaminal under acidic conditions 

afforded enamide 21. The Tf group was replaced with a MOM 

group in a one-pot process to afford 22. 

Scheme 3 

 

Reagents and conditions: (a) Ac2O, 130 °C, 80%; (b) 14, t-
BuOK, THF, –78 to 0 °C; DBU, 0 °C; (c) Boc2O, DMAP, THF, rt, 
quant (2 steps); (d) H2 (750 psi), Pd/C, EtOAc, rt; (e) 
H2NNH2·H2O, THF, rt; evaporation; NaBH4, MeOH, 0 °C, 57% 
(2 steps); (f) TFA, CF3CH2OH, rt; evaporation; PhNTf2, DMAP, 
Cs2CO3, MeCN, rt, 88%; (g) trimethylboroxine, Pd(PPh3)4, 

K3PO4, 1,4-dioxane, 100 °C, 92%; (h) HCl, EtOAc, rt; ClCO2Me, 
NaHCO3, H2O, 0 °C, 91%; (i) L-Selectride

®, THF, –42 °C; (j) 
CSA, toluene, reflux, 55% (2 steps); (k) aq KOH, 1,4-dioxane, rt; 
MOMCl, 0 °C, 95%. 

With the requisite units in hand, we next investigated con-

struction of the B-ring (Scheme 4). After treatment of amine 

11 with tert-butyl nitrite and BF3·OEt2,
10
 the resulting diazoni-

um salt was reacted with enamide 22 in the presence of a pal-

ladium catalyst to perform the crucial Heck reaction. As ex-

pected, the reaction occurred exclusively from the less hin-

dered face of the enamide to produce coupling product 23 

with the desired stereo- and regiochemistry. It should be noted 

that this crucial intermolecular Heck reaction was carried out 

on a multi-gram scale in an excellent yield. An osmium-

mediated dihydroxylation of the resulting, highly hindered 

double bond in 23 was accomplished by using K3[Fe(CN)6] as 

a co-oxidant in the presence of quinuclidine and methanesul-

fonamide.
11,12,13

 Oxidative cleavage of the resulting 1,2-diol 

with H5IO6 formed a dialdehyde, which underwent facile hy-

dration to afford 25. Although partial epimerization occurred 

during the oxidative cleavage of the diol, the crude product 

could be purified by recrystallization from methanol to give 25 

as a single diastereomer.
14
 Hydrogenolysis of the benzyl ether 

in 25 gave phenol 26. Heating 26 in m-xylene promoted lib-

eration of the dialdehyde, which was trapped intramolecularly 

by the electron-rich A-ring moiety to furnish 27.
15
 Subsequent 

reduction of 27 with Red-Al
®
 afforded 28 in 76% yield over 

the 2 steps. Treatment of 28 with KCN in acetic acid induced 

cleavage of the oxazolidine ring, forming aminonitrile 29. 

Having established an efficient and robust synthetic route 

toward the pentacyclic core skeleton of the target molecule, 

we then undertook a study to construct the ten-membered cy-

clic sulfide. Condensation of the primary hydroxy group in 29 

with cysteine derivative 30
4b
 followed by selective cleavage of 

the S-acetyl group with hydrazine furnished thiol 31 in good 

yield. Upon treatment of 31 with TFA, the cyclic sulfide for-

mation occurred presumably via the generation of an ortho 

quinone methide to give, after acetylation of the phenolic hy-

droxy group, compound 32 in 55% yield. Sequential cleavage 

of the MOM and Alloc protecting groups furnished 33, which 

was identical to the intermediate of our previous synthesis, 

and was converted into ecteinascidin 743 (1) via the published 

3-step sequence.
4b
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Scheme 4 

 

Reagents and condition: (a) BF3·OEt2, t-BuONO, THF, –15 to 0 °C; 22, Pd2(dba)3, NaOAc, MeCN-THF, 0 °C to rt; (b) OsO4, 
K3[Fe(CN)6], K2CO3, quinuclidine·HCl, MeSO2NH2, t-BuOH, H2O, rt, 93% (2 steps); (c) H5IO6, THF, 0 °C, 87%; (d) H2, Pd/C, MeOH, 

rt; (e) m-xylene, 120 °C; Red-Al®, –42 to 60 °C, 76% (2 steps); (f) KCN, AcOH, rt, 98%; (g) 30, EDCI·HCl, DMAP, CH2Cl2, rt, 92%; (h) 
H2NNH2·H2O, MeCN, rt, 85%; (i) TFA, CF3CH2OH, 25 °C; toluene, evaporation; Ac2O, pyridine, rt, 55%; (j) TFA, CH2Cl2, rt, 64%; (k) 
(Ph3P)2PdCl2, AcOH, n-Bu3SnH, CH2Cl2, rt, 95%.  

In conclusion, a straightforward synthesis of ecteinascidin 

743 has been accomplished in 28 steps and 1.1% overall yield 

from readily available L-glutamic acid as a single chiral source. 

Our novel synthesis features a concise and convergent ap-

proach for construction of the B-ring, consisting of a sequence 

of a stereoselective Heck reaction between a diazonium salt 

and an enamide, oxidative cleavage of the resulting alkene and 

intramolecular ortho substitution of the phenol by an aldehyde. 

Other highlights of the synthesis include a straightforward 

method to access a functionalized diketopiperazine by Perkin 

condensation, facile construction of the bicyclo[3.3.1] system 

by an N-acyliminium ion-mediated cyclization, and a regiose-

lective Suzuki-Miyaura coupling. We are currently exploring a 

more practical synthetic route that could be applied on a man-

ufacturing scale to supply ecteinascidin 743 for clinical use. 
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