September 1990 Papers 781 ## A Facile Synthesis of Methyl 1,5-Disubstituted Imidazole-4-carboxylates¹ Kiwamu Hiramatsu, Ken-ichi Nunami,* Kimiaki Hayashi, Kazuo Matsumoto Research Laboratory of Applied Biochemistry. Tanabe Seiyaku Co., Ltd., 16-89 Kashima-3-chome, Yodogawa-ku, Osaka 532, Japan Various methyl 1,5-disubstituted imidazole-4-carboxylates are synthesized by the reaction of methyl 3-bromo-2-isocyanoacrylates with a variety of primary amines in the presence of triethylamine. In connection with the synthetic studies² on biologically interesting amino acids and heterocyclic compounds using isocyanoacetic acid analogs, we have recently focused our attention on the multifunctional 3-bromo-2-isocyanoacrylic acid derivatives. We previously reported the facile synthesis of β -substituted β -amino- α,β -didehydro- α -amino acid, α,β -didehydrocysteine, and α,β -didehydroserine derivatives utilizing these kind of reactive molecules.³ In this paper, we wish to report an extension of the reactivity of these molecules to the synthesis of methyl 1,5-disubstituted imidazole-4-carboxylates, useful intermediates in pharmaceutical and agricultural science, for which only one direct synthetic method has been reported⁴ so far. 3-Substituted 2-formylaminoacrylates 1 were first converted to 3-substituted 3-bromo-2-isocyanoacrylates 3 via 3-substituted 3-bromo-2-formylaminoacrylates 2 by treatment with N-bromosuccinimide (NBS)³ followed by dehydration of the formyl group with phosphoryl chloride and triethylamine.⁵ Reaction of 3-bromo analogs 3 with two equimolar of primary amines in hexamethylphosphoric triamide (HMPT) at room temperature directly gave methyl 1,5-disubstituted imidazole-4-carboxylates 4 in good yield (Table). The formation of 4 was detected by Dragendorff reagent on TLC and the ¹H-NMR spectra showed imidazole N=CH-N signals at $\delta = 7.38-7.70$. This facile method can be applied not only for the regioselective synthesis of not easily attainable N^1 -substituted imidazoles, but also for the preparation of 5-aryl- or 1,5-diarylimidazoles. | 1–3 | R ¹ | 4 | R¹ | R ² | |-----|--------------------|---|--------------------|-----------------------------------| | a | Ph | a | Ph | PhCH ₂ | | b | Et ₂ CH | b | Et ₂ CH | PhCH ₂ | | | - | c | Ph | PhCH ₂ CH ₂ | | | | d | Ph | 3-Picolyl | | | | e | Ph | Me | | | | f | Et ₂ CH | 4-MeOPh | | | | g | Ph | Ph | | | | | | | SYNTHESIS Table. Methyl 1,5-Disubstituted Imidazole-4-carboxylates 4a-g Prepared | Prod-
uct | | mp (°C)
(solvent) | Molecular
Formula ^a | IR (Nujol) v(cm ⁻¹) | 1 H-NMR (CDCl ₃ /TMS) δ , J (Hz) | | | |--------------|----|---|-----------------------------------|---------------------------------|---|-------------------------|---| | | | | | | OCH ₃ | CH _{imidazole} | others | | 4a | 80 | 111–113
(EtOAc/ <i>i</i> -Pr ₂ O) | $C_{18}H_{16}N_2O_2$ (292.3) | 1700 | 3.76 | 7.56 | 4.96 (s, 2 H, CH ₂), 6.84–7.52 (m, 10 H _{arom}) | | 4b | 61 | 80–81
(<i>i</i> -Pr ₂ O) | $C_{17}H_{22}N_2O_2$ (286.4) | 3100,
1710 | 3.64 | 7.40 | 0.62 (t, 6H, $J = 7.4$, CH_2CH_3), 1.58-1.96 (m, 4H, CH_2CH_3), 2.71-3.34 (m, 1H, CH), 5.12 (s, 2H, CH_2Ph), 7.04-7.11 (m, 2H _{arom}), 7.24-7.34 (m, 3H _{arom}) | | 4c | 78 | Syrup | $C_{19}H_{18}N_2O_2$ (306.4) | 3200,
1720 ^b | 3.76 | 7.38 | 2.80 (t, 2 H, $J = 7.0$, CH_2Ph), 4.03 (t, 2 H, $J = 7.0$, CH_2N), 6.82-6.91 (m, 2 H _{arom}), 7.19-7.21 (m, 5 H _{arom}), 7.41-7.49 (m, 3 H _{arom}) | | 4d | 71 | 115–116
(EtOAc/ <i>i</i> -Pr ₂ O) | $C_{17}H_{15}N_3O_2$ (293.3) | 3010,
1700 | 3.78 | 7.64 | 5.02 (s, 2 H, CH ₂), 7.20–7.28 (m, 4 H _{arom}), 7.38–7.45 (m, 3 H _{arom}), 8.20 (s, 1 H _{arom}), 8.53 (t, $J = 3.2, 1$ H _{arom}) | | 4 e | 74 | 140–141
(EtOAc/ <i>i</i> -Pr ₂ O) | $C_{12}H_{12}N_2O_2$ (216.2) | 3100,
1690 | 3.74 | 7.50 | 3.48 (s, 3H, NCH ₃), 7.24–7.59 (m, 5H _{arom}) | | 4f | 54 | 130–131
(EtOAc/ <i>i</i> -Pr ₂ O) | $C_{17}H_{22}N_2O_3$ (302.4) | 1700 | 3.85 | 7.40 | 0.71 (t, 6H, $J = 7.4$, CH_2CH_3), 1.49–1.94 (m, 4H, CH_2CH_3), 2.61–2.94 (m, 1H, CH), 3.88 (s, 3H, $Ar-OCH_3$), 6.97 (d, 2H _{arom} , $J = 4$), 7.13 (d, 2H _{arom} , $J = 4$) | | 4g | 59 | 153–155
(EtOAc/ <i>i</i> -Pr ₂ O) | $C_{17}H_{14}N_2O_2$ (278.3) | 3090,
1715 | 3.83 | 7.70 | 6.98–7.43 (m, 5H _{arom}), 7.26 (s, 5H _{arom}) | ^a Satisfactory microanalyses obtained: $C \pm 0.36$, $H \pm 0.26$, $N \pm 0.28$. All melting points were measured with a Yamato MP-21 melting point apparatus and are uncorrected. IR spectra were determined on a Shimadzu IR-420 spectrophotometer. ¹H-NMR spectra were recorded on a Hitachi R-20A (90 MHz) and Bruker AC-200 (200 MHz) spectrometers. Column chromatography was carried out on silica gel, Kieselgel 0.040-0.063 mm Merck. ## Methyl (E)- and (Z)-3-Bromo-2-isocyanocinnamate (3a); Typical Procedure: POCl₃ (5.1 g, 33 mmol) is added dropwise to a mixture of methyl (E)- and (Z)-3-bromo-2-formylaminocinnamate³ (2a; 8.52 g, 30 mmol) and Et₃N (8.41 g, 83 mmol) in CH₂Cl₂ (30 mL) at -10° C to -20° C under vigorous stirring. The mixture is stirred at r.t. for 2 h and then poured into 20% aq K₂CO₃ (30 mL). The organic layer is washed with water, dried (MgSO₄), and concentrated *in vacuo*. The resultant oil is chromatographed on a silica gel column using CHCl₃ as an eluent to give a mixture of (E)- and (Z)-3a as a colorless oil; yield: 7.2 g (90%). IR (film): v = 2110, 1740 cm⁻¹. ¹H-NMR (CDCl₃): $\delta = 3.65$, 3.92 (2 s, 3 H, OCH₃), 7.23–7.63 (m, 5 H_{arom}). Methyl (E)- and -(Z)-3-Bromo-4-ethyl-2-isocyano-2-hexenoate (3b): colorless oil; yield: 94%. IR (film): v = 2110, 1735 cm⁻¹. ¹H-NMR (CDCl₃): $\delta = 0.82$ (t, 6 H, J = 7.4 Hz, CH₃CH₂), 1.34–1.74 (m, 4 H, CH₃CH₂), 3.56–3.96 (m, 1 H, CH), 3.82 (s, 3 H, OCH₃). ## Methyl 1-Phenethyl-5-phenylimidazole-4-carboxylate (4c); Typical Procedure: Phenethylamine (0.53 g, 4.4 mmol) is added dropwise to a solution of **3a** (1.06 g, 4 mmol) and Et₃N (0.62 mL, 4.4 mmol) in HMPT (4 mL) under ice cooling. After stirring is continued at r.t. for 6 h, the mixture is poured into a mixture of Et₂O and sat. aq NaHCO₃. The organic layer is dried (MgSO₄) and concentrated *in vacuo*. The residue is chromatographed on a silica gel column using EtOAc/hexane (1:1) as an eluent to afford methyl 1-phenethyl-5-phenylimidazole-4-carboxylate (4c) as a colorless oil; yield: 0.96 g (78%). Received: 8 January 1990; revised: 17 April 1990 - (1) Synthesis of Amino Acids and Related Compounds, Part 39. Part 38: - Takiguchi, K.; Yamada, K.; Suzuki, M.; Nunami, K.; Hayashi, K.; Matsumoto, K. Agric. Biol. Chem. 1989, 53, 77. - (2) Matsumoto, K.; Moriya, T.; Suzuki, M. Yuki Gosei Kagaku Kyokaishi 1985, 43, 764; C.A. 1985, 103, 160064. - (3) Nunami, K.; Hiramatsu, K.; Hayashi, K.; Matsumoto, K. Tetrahedron 1988, 44, 5467. - (4) Hunt, J.T.; Bartlett, A.P. Synthesis 1978, 741. - (5) Suzuki, M.; Nunami, K.; Moriya, T.; Matsumoto, K.; Yoneda, N. J. Org. Chem. 1978, 43, 4933. b IR spectrum obtained as film.