September 1990 Papers 781

A Facile Synthesis of Methyl 1,5-Disubstituted Imidazole-4-carboxylates¹

Kiwamu Hiramatsu, Ken-ichi Nunami,* Kimiaki Hayashi, Kazuo Matsumoto Research Laboratory of Applied Biochemistry. Tanabe Seiyaku Co., Ltd., 16-89 Kashima-3-chome, Yodogawa-ku, Osaka 532, Japan

Various methyl 1,5-disubstituted imidazole-4-carboxylates are synthesized by the reaction of methyl 3-bromo-2-isocyanoacrylates with a variety of primary amines in the presence of triethylamine.

In connection with the synthetic studies² on biologically interesting amino acids and heterocyclic compounds using isocyanoacetic acid analogs, we have recently focused our attention on the multifunctional 3-bromo-2-isocyanoacrylic acid derivatives. We previously reported the facile synthesis of β -substituted β -amino- α,β -didehydro- α -amino acid, α,β -didehydrocysteine, and α,β -didehydroserine derivatives utilizing these kind of reactive molecules.³

In this paper, we wish to report an extension of the reactivity of these molecules to the synthesis of methyl 1,5-disubstituted imidazole-4-carboxylates, useful intermediates in pharmaceutical and agricultural science, for which only one direct synthetic method has been reported⁴ so far.

3-Substituted 2-formylaminoacrylates 1 were first converted to 3-substituted 3-bromo-2-isocyanoacrylates 3 via 3-substituted 3-bromo-2-formylaminoacrylates 2 by treatment with N-bromosuccinimide (NBS)³ followed by dehydration of the formyl group with phosphoryl chloride and triethylamine.⁵ Reaction of 3-bromo analogs 3 with two equimolar of primary amines in hexamethylphosphoric triamide (HMPT) at room temperature directly gave methyl 1,5-disubstituted imidazole-4-carboxylates 4 in good yield (Table). The formation of 4 was detected by

Dragendorff reagent on TLC and the ¹H-NMR spectra showed imidazole N=CH-N signals at $\delta = 7.38-7.70$. This facile method can be applied not only for the regioselective synthesis of not easily attainable N^1 -substituted imidazoles, but also for the preparation of 5-aryl- or 1,5-diarylimidazoles.

1–3	R ¹	4	R¹	R ²
a	Ph	a	Ph	PhCH ₂
b	Et ₂ CH	b	Et ₂ CH	PhCH ₂
	-	c	Ph	PhCH ₂ CH ₂
		d	Ph	3-Picolyl
		e	Ph	Me
		f	Et ₂ CH	4-MeOPh
		g	Ph	Ph

SYNTHESIS

Table. Methyl 1,5-Disubstituted Imidazole-4-carboxylates 4a-g Prepared

Prod- uct		mp (°C) (solvent)	Molecular Formula ^a	IR (Nujol) v(cm ⁻¹)	1 H-NMR (CDCl ₃ /TMS) δ , J (Hz)		
					OCH ₃	CH _{imidazole}	others
4a	80	111–113 (EtOAc/ <i>i</i> -Pr ₂ O)	$C_{18}H_{16}N_2O_2$ (292.3)	1700	3.76	7.56	4.96 (s, 2 H, CH ₂), 6.84–7.52 (m, 10 H _{arom})
4b	61	80–81 (<i>i</i> -Pr ₂ O)	$C_{17}H_{22}N_2O_2$ (286.4)	3100, 1710	3.64	7.40	0.62 (t, 6H, $J = 7.4$, CH_2CH_3), 1.58-1.96 (m, 4H, CH_2CH_3), 2.71-3.34 (m, 1H, CH), 5.12 (s, 2H, CH_2Ph), 7.04-7.11 (m, 2H _{arom}), 7.24-7.34 (m, 3H _{arom})
4c	78	Syrup	$C_{19}H_{18}N_2O_2$ (306.4)	3200, 1720 ^b	3.76	7.38	2.80 (t, 2 H, $J = 7.0$, CH_2Ph), 4.03 (t, 2 H, $J = 7.0$, CH_2N), 6.82-6.91 (m, 2 H _{arom}), 7.19-7.21 (m, 5 H _{arom}), 7.41-7.49 (m, 3 H _{arom})
4d	71	115–116 (EtOAc/ <i>i</i> -Pr ₂ O)	$C_{17}H_{15}N_3O_2$ (293.3)	3010, 1700	3.78	7.64	5.02 (s, 2 H, CH ₂), 7.20–7.28 (m, 4 H _{arom}), 7.38–7.45 (m, 3 H _{arom}), 8.20 (s, 1 H _{arom}), 8.53 (t, $J = 3.2, 1$ H _{arom})
4 e	74	140–141 (EtOAc/ <i>i</i> -Pr ₂ O)	$C_{12}H_{12}N_2O_2$ (216.2)	3100, 1690	3.74	7.50	3.48 (s, 3H, NCH ₃), 7.24–7.59 (m, 5H _{arom})
4f	54	130–131 (EtOAc/ <i>i</i> -Pr ₂ O)	$C_{17}H_{22}N_2O_3$ (302.4)	1700	3.85	7.40	0.71 (t, 6H, $J = 7.4$, CH_2CH_3), 1.49–1.94 (m, 4H, CH_2CH_3), 2.61–2.94 (m, 1H, CH), 3.88 (s, 3H, $Ar-OCH_3$), 6.97 (d, 2H _{arom} , $J = 4$), 7.13 (d, 2H _{arom} , $J = 4$)
4g	59	153–155 (EtOAc/ <i>i</i> -Pr ₂ O)	$C_{17}H_{14}N_2O_2$ (278.3)	3090, 1715	3.83	7.70	6.98–7.43 (m, 5H _{arom}), 7.26 (s, 5H _{arom})

^a Satisfactory microanalyses obtained: $C \pm 0.36$, $H \pm 0.26$, $N \pm 0.28$.

All melting points were measured with a Yamato MP-21 melting point apparatus and are uncorrected. IR spectra were determined on a Shimadzu IR-420 spectrophotometer. ¹H-NMR spectra were recorded on a Hitachi R-20A (90 MHz) and Bruker AC-200 (200 MHz) spectrometers. Column chromatography was carried out on silica gel, Kieselgel 0.040-0.063 mm Merck.

Methyl (E)- and (Z)-3-Bromo-2-isocyanocinnamate (3a); Typical Procedure:

POCl₃ (5.1 g, 33 mmol) is added dropwise to a mixture of methyl (E)- and (Z)-3-bromo-2-formylaminocinnamate³ (2a; 8.52 g, 30 mmol) and Et₃N (8.41 g, 83 mmol) in CH₂Cl₂ (30 mL) at -10° C to -20° C under vigorous stirring. The mixture is stirred at r.t. for 2 h and then poured into 20% aq K₂CO₃ (30 mL). The organic layer is washed with water, dried (MgSO₄), and concentrated *in vacuo*. The resultant oil is chromatographed on a silica gel column using CHCl₃ as an eluent to give a mixture of (E)- and (Z)-3a as a colorless oil; yield: 7.2 g (90%).

IR (film): v = 2110, 1740 cm⁻¹.

¹H-NMR (CDCl₃): $\delta = 3.65$, 3.92 (2 s, 3 H, OCH₃), 7.23–7.63 (m, 5 H_{arom}).

Methyl (E)- and -(Z)-3-Bromo-4-ethyl-2-isocyano-2-hexenoate (3b): colorless oil; yield: 94%.

IR (film): v = 2110, 1735 cm⁻¹.

¹H-NMR (CDCl₃): $\delta = 0.82$ (t, 6 H, J = 7.4 Hz, CH₃CH₂), 1.34–1.74 (m, 4 H, CH₃CH₂), 3.56–3.96 (m, 1 H, CH), 3.82 (s, 3 H, OCH₃).

Methyl 1-Phenethyl-5-phenylimidazole-4-carboxylate (4c); Typical Procedure:

Phenethylamine (0.53 g, 4.4 mmol) is added dropwise to a solution of **3a** (1.06 g, 4 mmol) and Et₃N (0.62 mL, 4.4 mmol) in HMPT (4 mL) under ice cooling. After stirring is continued at r.t. for 6 h, the mixture is poured into a mixture of Et₂O and sat. aq NaHCO₃. The organic layer is dried (MgSO₄) and concentrated *in vacuo*. The residue is chromatographed on a silica gel column using EtOAc/hexane (1:1) as an eluent to afford methyl 1-phenethyl-5-phenylimidazole-4-carboxylate (4c) as a colorless oil; yield: 0.96 g (78%).

Received: 8 January 1990; revised: 17 April 1990

- (1) Synthesis of Amino Acids and Related Compounds, Part 39. Part 38:
 - Takiguchi, K.; Yamada, K.; Suzuki, M.; Nunami, K.; Hayashi, K.; Matsumoto, K. Agric. Biol. Chem. 1989, 53, 77.
- (2) Matsumoto, K.; Moriya, T.; Suzuki, M. Yuki Gosei Kagaku Kyokaishi 1985, 43, 764; C.A. 1985, 103, 160064.
- (3) Nunami, K.; Hiramatsu, K.; Hayashi, K.; Matsumoto, K. Tetrahedron 1988, 44, 5467.
- (4) Hunt, J.T.; Bartlett, A.P. Synthesis 1978, 741.
- (5) Suzuki, M.; Nunami, K.; Moriya, T.; Matsumoto, K.; Yoneda, N. J. Org. Chem. 1978, 43, 4933.

b IR spectrum obtained as film.