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Abstract: Deracemization of (±)-2-hydroxy-4-phenylbut-3-enoic
acid was accomplished by lipase-catalyzed kinetic resolution
coupled to mandelate racemase-mediated racemization of the non-
reacting substrate enantiomer. Stepwise cyclic repetition of this
sequence led to a single enantiomeric product, the stereochemical
outcome of which could be controlled by switching between lipase-
catalyzed acyl-transfer/ester hydrolysis reactions. Both enantio-
meric products were easily transformed into (R)- and (S)-2-
hydroxy-4-phenylbutanoic acid, important building blocks for
ACE-inhibitors.
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(R)-2-Hydroxy-4-phenylbutanoic acid (3) is an important
building block for the production of a large variety of an-
giotensin converting enzyme (ACE) inhibitors having in
common the (S)-homophenylalanine moiety as the central
pharmacophore unit.1 These agents, often denoted as the
‘-pril family’, such as enalapril, lisinopril, cilapril or
benazepril, efficiently expand the range of antihyper-
tensiva, like b-blockers, A2-antagonists or Ca-channel
blockers. Due to the fact that many of these drugs have
lost patent protection (or soon will do so), the production
costs of the required building blocks has become a major
issue.

For the synthesis of 3 or close derivatives thereof in non-
racemic form, numerous strategies have been devised,
which can be categorized into (i) classic2 or (ii) kinetic
resolution of a racemate 3or (iii) asymmetric transforma-
tion of prochiral precursor.4 The majority of these routes
have one or more weak points,4m i.e. high cost of reagents
(e.g., chiral transition metal complexes), insufficient cata-
lyst selectivity or -activity, sensitivity of catalysts (e.g.,
asymmetric hydrogenation), or stability of starting mate-
rials (e.g., keto acids). The most dramatic limitation com-
mon for all strategies relying on kinetic resolution is the
maximum theoretical yield of 50% for a single enantio-
mer. In order to overcome this fundamental drawback,
two approaches – summarized under the term ‘deracem-
ization’5 – were recently proposed: (i) dynamic kinetic
resolution6 and (ii) microbial stereo-inversion.7

Although both of these methods have the clear merit of a
100% theoretical yield of a single stereoisomeric product,
its absolute configuration is determined by the enantio-
preference of the biocatalyst employed. Since mirror-
image enzymes sensu stricto do not exist,8 production of
both enantiomers through biocatalytic deracemization by
simple choice of the ‘matching enantiomer’ of the chiral
(bio)catalyst is virtually impossible.

In order to circumvent this limitation, we envisaged to ap-
ply lipase-catalyzed ester hydrolysis and ester formation
to our recently developed deracemization protocol9 based
on the enzymatic racemization of the non-reacting sub-
strate enantiomer using a racemase.10 Taking into consid-
eration that ester hydrolysis and esterification represent
reactions in opposite directions, products of opposite
configuration are usually obtained.

The enantio-complementary deracemization protocol was
realized as follows (Scheme 1): since 2-hydroxy-4-phe-
nylbutanoate (3) is not a substrate for mandelate race-
mase,11 the corresponding butenoic acid derivative (1),
which allows resonance stabilization of the a-carbanion
(occurring during mandelate racemase catalysis) via con-
jugation with the aryl-moiety,12 was chosen.13 Mandelate
racemase racemizes (R)-1 at a rate of 53% to that of its
natural substrate – mandelate – which corresponds to a
turnover frequency of approximately 500 sec–1.11

(S)-Series: in a first step, kinetic resolution of rac-1 in the
acyl-transfer mode was accomplished using Pseudomo-
nas sp. lipase in diisopropyl ether at the expense of vinyl
acetate as acyl donor9 to furnish (S)-2 and non-reacted
(R)-1 in excellent ee (>99%) at 50% conversion. The latter
was re-racemized without separation from formed prod-
uct using mandelate racemase14 in aqueous buffer. Step-
wise repetition of this two-enzyme procedure for three
cycles furnished (S)-2 in >99% ee and 68% overall yield
from the racemate. Alkaline hydrolysis of the O-acyl moi-
ety and catalytic reduction of the C=C bond gave (S)-3 as
the sole product in >99% ee.15

(R)-Series: access to (R)-3 started by enzymatic hydroly-
sis of rac-2 (obtained by acylation of rac-1) in aqueous
acetone for sufficient solubilization of the polar substrate.
Since Pseudomonas sp. lipase displayed low enantiose-
lectivity, Candida antarctica lipase B (Novozyme 435)
was chosen for perfect enantioselectivity, which produced
a mixture of (S)-1 and unreacted (R)-2. Re-racemization
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of the former by mandelate racemase followed by re-
esterification and lipase-hydrolysis through two cycles
gave (R)-2 in >99% ee and 53% overall yield from rac-2.
Hydrolysis of the O-acetyl group and hydrogenation
furnished (R)-2 in >99% ee as the sole product.16

The main limitation of this process lies in an indispens-
able aqueous-organic solvent switch, which necessitates a
consecutive sequence of steps rather than a dynamic pro-
cess. The latter is caused by the inactivity of mandelate
racemase in organic media at low water activity.17 The en-
zyme is remarkably stable and can be used repeatedly, in
particular in immobilized form, which facilitates its re-
covery.18 Although isolated overall yields were still below
the theoretical 100%, this threshold should be approach-
able using improved recovery procedures for the polar
hydroxycarboxylic acids (e.g., by ion exchange chroma-
tography) based on the fact that this process is virtually
free of side reactions. The possibility to determine the
stereochemical configuration of the sole product by a sim-
ple switch between the acyl-transfer- and hydrolysis-
mode demonstrates the flexibility of this process.

In summary, both enantiomers of 2-hydroxy-4-phenyl-
butanoic acid were obtained as single stereoisomers in
>99% ee via stepwise deracemization of the correspond-
ing (±)-2-hydroxy-4-phenylbut-3-enoic acid through a
lipase-racemase protocol. Whereas the S-enantiomer was
formed through lipase-catalyzed acyl-transfer, the R-
counterpart was produced via ester hydrolysis.
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