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Abstract: The uncaralysed ring opening @the hetarylon’des I. 2 and 3 with bensylandne and rrimethylsilylaside 

has been studied being the observed regioselectivhy d&Jerent depending on the nacleophile used. 

The ring opening of oxiranes with nitrogen nuclophiles constitutes the most widely used method for the 
preparation of useful 1,2aminoalcohols. 1 In the case of aryl oxides; the ring opening both with amines and 
azides needs catalysis2 or severe reaction conditions.3 In this paper we wish to account for our studies on the 
regioselective ring opening of furyl- and thienyl oxides with benzylamine and trimethylsilylazide in absence of 
catalysis. The ring opening of the three hetaryloxides 1.2 and 34 with benzylamine gave, with total 
regioselectivity. the aminoalcohol arising from the nucleophilic attack on the less substituted carbon atom 
(Table, entries 1.2 and 3).5 On the other hand, reaction with ttimethylsilylazide yields the opposite regioisomer 
as unique product (Table, entries 4.5 and 6). 

+* Nuc’--_ QqN” + way 
TWF R Nu 

l-3 4-9 10-15 

1: X=0, R=H; 2: X=S, R=H; 3: X=0. R=Me 
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Table. Regioaelectivity of the Ring Opening of Helnryloxides witb Nitrogen Nucleophiles. 

Entry Oxirane Nucleophile Y Regiosel.8 Yieldb ReacLTime Temperature 

1 1 PhCHflH2 H 4/10=100/0 25c 3 days reflux THF 
2 2 PhCH2NH2 H 5/11=100/o 7oc 3 days rt 
3 3 PhCH2NH2 H 6/12=100/O 7oC 12 days It 
4 1 MegSiNg OSiMe3 7/13=0/100 87C 4 days R 
5 2 Me$W$ OSiie3 8/14=0/100 load 4 days It 
6 3 MegSiNg OSiMeg 9/15=0/100 load 5 days 0°C 

a) Determined by IH-nmr. b) Isolated yield. c) Only the indicated regioisomer was obtained. The remaining material was a mixture 

of starting oxirane and unidentified products without observation of the other regioisomeric alcohol. For oxirane 1 see reference 5. 

In all cases purifKation was achieved by column chromatography on silica gel using as eluent mixtures of diferents proportions of 

n-hexane-A&Et. Full details will be. published elsewhere. d) Pure products were obtained directly as reaction crude. Manipulation of 

them (see text) did not need further purification. 

The regioselectivity of the reactions was determined as follows: compound 5 shows 

/ \ 

n, 

in 1H-nmr spectra (300 MHz, DMSO-&) the hydroxylic proton as doublet (6 = 5.2 ppm) 

,x 0 
by coupling with the vicinal methyne proton. Regarding the aliphatic moiety, compounds 

k, $. 
4-6 show related chemical shifts and splitting patterns, both in tH and l3C-nmr. For 

H-CH,Ph 
compounds 13-15.6 desilylation7 yields the related azidoalcohols which show in tH-nmr 
(DMSO-&) the hydroxylic proton as a triplet by coupling with the vicinal methylene 

A protons. 
The difference in behaviour between both nucleophiles could be tentatively ascribed to an “electrophilic 

anchimeric assistance” by the amine hydrogen giving a transition state like A.* 
The compounds 13-15 were transformed in the related trimethylsilyloxyaminoderivatives, precursors of 

the corresponding aminoalcohols, by reduction of the azido group.9 

i) 
0SlMe3 OSlMe3 

N3 NHz 

13-15 16-18 

13,16: X=0. R=H; 14,17: X=S, R=H; 15,18: X=0. R=Me 
i) H,/Pd-C 10%. 45 psi. AcOEt. tt 

Adaptation of the method to the synthesis of ethyl cr-hydroxy-/&unino-P-hetarylpropionatelOv I1 was 

performed starting from compound 19 as model. 12 Reaction of 19 with MegSiNg (THF, rt, 48 h) gave the 
R*S* compound 2013 as unique product. Subsequent hydrogenation of 20 (H2/ W-C 10%. 45 psi, AcOEt, 
5h) affords 2114 which was transformed in 22 (SiOz/MeOH, rt).15 The relative stereochemistry of compounds 
20-22 was established by transformation of 21 into the p-lactam 23 by reaction with Me$iCl/ Et3N followed 

by treatment with ButMgCI/ Et20.16 The stereochemistry of the plactam as & was deduced from the value of 

J3 4 = 4.5 Hz,17 and from the multiplicity of H4 (dd, 6 = 5.07 ppm, J1 = 4.5 Hz, J2 = 2.1 Hz) by coupling 
with the amide proton. 
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19 20 21 XlaM.,, 22 Xd 23 
In summary, the addition of nitrogenated nucleophiles to hetaryl oxides occurs without catalysis and 

under mild conditions with opposite regioselectivity according to the nature of the nucleophilic agent (amine or 
azide). Standard manipulation of the trimethylsilylazide derivatives affords the hetarylaminoethanols in good 
yield. Adaptation of the method to carboethoxyhetaryloxides opens the way for the preparation of potentially 
useful a-hydmxy-&amino-&hetarylesters and the related P_lactams. 
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