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Abstract: Asymmetric deprotonation of N,N-dihexyl-l-naphthamide using sec-butyllithium / (-)- 
sparteine followed by reactions with methyl or ethyl alkylatioa reagents give the atropisomers of 
N,N-dihexyl-2-alkyl-l-naphthamide with 50% and 55% ee, respectively. 
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The combination of butyllithium/(-)-sparteine has proven effective for the induction of asymmetry in 

lithiations/substitutions of benzylic, a-heteroatom, and ortho aromatic hydrogens. 1 We now report an 

extension of the methodology to atropisomers by the enantioselective replacement of the ortho hydrogen of 

N,N-dihexyl-l-naphthamide. There are relatively few reports on stereoselective synthesis of non-biaryl 

atropisomeric molecules. 2 To the best of our knowledge, there is no previous report on the enantioselective 

synthesis of non-biaryl atropisorners using external chiral auxiliaries. Clayden and co-workers recently have 

reported a synthesis of diastereomeric atropisomers from the addition of N,N-dialkyl-2-1ithio-1-naphthamides 

0 1) s-Bul i / 3 / ether l "78 °C . 
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(-)-sparteine (3) 

to aldehydes.3A 

Atropisomers due to the barrier for interconversion of N,N-dialky172-substituted aromatic 

carboxamides are well known and their chiral chromatographic separations have been reported. 5-11 We have 

found that the treatment of (S)-N,N-dicyclohexyl-l-naphthamide (1) with sec-butyllithium I (-)-sparteine (3) 

followed by reaction with methyl iodide provides (S)-N,N-dicyclohexyl-2-methyl-l-naphthamide (4) in 35% 

yield (92% conversion) in 30% ee. Treatment of N,N-dihexyl-l-naphthamide (2) with sec-butyllithiuml3 at 

-78 oC in diethyl ether followed by reaction with methyl iodide provided (R)-N,N-dihexyl-2-methyl-1- 

naphthamide (5) in 30% yield (53% conversion) with 50% ee. 12 Mixtures of diastereomers resulting from the 

addition of sec-butyllithium to the naphthalene nucleus are observed as the major side products for 5.13 The 
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different absolute configurations of 4 and 5 are provisionally assigned by analogy to Pirkle's assignment for 

the corresponding N,N-dimethylamide using his chromatographic separation models. 1 la,14 

Although significandy lower amounts of side products are obtained when the reaction is carried out in 

THF, the product 5 is obtained as a racemic mixture in 62% yield. When the reaction is carried out in pentane, 

the product (R)-5 is obtained with 63% ee in approximately 5% yield. The major products in this reaction 

appear to result from the addition of sec-butyllithium to the naphthalene nucleus, and the amide group. 15 Use 

of n-butyllithium in the place of sec-butyllithium in diethyl ether resulted in n-butyl naphthyl ketone as the 

major product. 

Treatment of N,N-dihexyl- 1-naphthamide with sec-butyllithiuml3 in diethyl ether followed by reaction 

with methyl triflate afforded (R)-5 with 55% ee in 25% yield. With ethyl iodide as electrophile, the product 

N,N-dihexyl-2-ethyl-l-naphthamide (6) is obtained with 55% ee in only 8% yield. With trimethyl silyl 

chloride as the electrophile, the product N,N-dihexyl-2-(trimethylsilyl)-l-naphthamide (7) is obtained as a 

racemic mixture in 10% yield. The yield improves to 35% when trimethylsilyl triflate is used as the 

electrophile, but the product 7 is still racemic. 16 

O R2N"~O R' 

1) Reaction Conditions ,, ~ 
2) R'-X 

Substrate Reaction Conditions Electrophile (R'-X) Product Yield (%) ee (%) 

1 (R=c-C6HI 1) 
2 (R=n-C6H13) 

s-BuLi / 3 / Et20 / -78 oC CH3-I (S)-4 35 30 

s-BuLi / 3 / Et20 / -78 oC CH3-I (R)-5 30 50 

s-BuLi / 3 / TI-IF / -78 o12 CH3-I 5 62 0 

s-BuLi / 3 / pentane / -78 °(2 CH3-I (R)-5 5 63 

n-BuLi / 3 / Et20 / -78 °C CH3-I 5 <5 NA 

s-BuLi / 3 / Et20 / -78 oC CH3-OTf (R)-5 25 55 

s-BuLi / 3 / Et20 / -78 °12 C2H5-I (R)-6 8 55 

s-BuLi / 3 / Et20 / -78 °C Me3Si-CI 7 10 0 

s-BuLi / 3 / Et~O / -78 °(2 Me~Si-OTf 7 35 0 

We observe that (R)-N,N-dihexyl-2-methyl-l-naphthamhd¢ (5) of 52% e¢ racvmizes to 5% ¢¢ over 8 

days at room temperature. 17 When (R)-5 (50% ee) is heated to 65 oc over a period of one hour, the compound 

raccmizes completely. The racemization of N,N-dibexyl-2-vthyl-1-naphthamidc (6) occurs more slowly. The 

rates of racemization of 4 and 5 are similar. 

Two limiting mechanistic possibilities can be proposed to explain this enantioselectivv replacement of 

hydrogen. (0 The substrate N,N-dihexyl-l-naphthamides exist as a mixture of non-equilibrating atropisoraers 

at -78 °C, and s-BuLi/3 deprotonates the one atropomer selectively. In this mechanism, the ¢nantioselectivity 

is determined in the dvprotonation step. 15 (ii) The lithiated intermediates, N,N-dihexyl-2-1ithio- 1-naphthamide 
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exists as a rapidly equilibrating atropisomeric mixture and which react stereoselectively with the alkylating 

agent in the presence of 3. In this mechanism, the enanfioselectivity is determined in the substitution step. 

These two mechanisms were differentiated by generating N,N-dihexyl-2-fithio-l-naphthamide from a 

racemic mixture of  N,N-dihexyl-2-(trimethylstannyl)-l-naphthamide (rac-8). Treatment of  the stannyl 

compound 8 with s-BuLl/3 followed by reaction with methyl iodide provides $ in 60% yield and 14% ee. 

Under this protocol, the S-atropomer which is different from the selectivity obtained in the deprotonation- 

substitution sequence for 2, is obtained. If  it is presumed that tin-lithium exchange provides a racemic ortho- 

lithiated intermediate, this result suggests that the enantioselectivity is not determined in the substitution 

step. 17 Therefore, the enantioselection in this case is considered to arise from an asymmetric deprotonation. 

~ SnMe3 1) s.BuLi / 3 / ether / .78 oc ,,, 

2) CH31 

rao-e (SJ-S 
60% yield; 14% ee 

Optimizing the reaction conditions to improve the yields and enantioselectivities, extending the 

methodology to other substrates, and understanding further the mechanism of the reaction will be the focus of 

future work. 
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