Contents lists available at ScienceDirect

Tetrahedron: Asymmetry

journal homepage: www.elsevier.com/locate/tetasy

Asymmetric synthesis of β -amino alcohols by the transfer hydrogenation of α -keto imines

Agnieszka Tafelska-Kaczmarek, Andrzej Prewysz-Kwinto, Krzysztof Skowerski, Katarzyna Pietrasiak, Anna Kozakiewicz, Marek Zaidlewicz *

Faculty of Chemistry, Nicolaus Copernicus University, 7 Gagarin Street, 87-100 Torun, Poland

ARTICLE INFO

ABSTRACT

Article history: Received 23 June 2010 Accepted 5 July 2010 Available online 4 August 2010

Dedicated to Professor Bohumil Štibr, on the occasion of his 70th birthday

The asymmetric transfer hydrogenation of representative aryl and benzofuranyl 2-*tert*-butylaminoethanones with formic acid-triethylamine, catalyzed by RhCl[(R,R)-TsDPEN](C_5Me_5), produced the corresponding β -*tert*-butylamino alcohols in 97–99% ee. A short asymmetric synthesis of (R)-bufuralol, a potent β -adrenergic receptor antagonist, is described. This approach to β -amino alcohols from ketones circumvents the halogenation–reduction–amination sequence.

© 2010 Elsevier Ltd. All rights reserved.

Tetrahedro

1. Introduction

Chiral β -amino alcohols are widely used as auxiliaries and ligands,¹⁻⁴ precursors of oxazaborolidines,^{5,6} and are important physiologically active compounds.⁷⁻⁹ Various asymmetric syntheses of these compounds, for example, by the aminohydroxylation of olefins,¹⁰ the reduction–amination of α -halo and α -tosyloxy ketones,^{5,6,11,12} and by other approaches,^{13–17} have been developed. The resolution of racemic β -amino alcohols, enzymatic reduction and catalytic reduction of α -amino ketones has been applied on an industrial scale.⁹ An attractive alternative to the aforementioned reductive methods is the asymmetric transfer hydrogenation of α -functionalized ketones, which avoids the use of dihydrogen under pressure, and employs phosphine-free catalysts.^{1,2,18–25} Very recently, imidazole-substituted acetophenones were reduced in this way with high selectivity,²⁶ and we reduced α -dialkylamino ketones to the corresponding β -dialkylamino alcohols in >95% ee.²⁷

This study is focused on the asymmetric transfer hydrogenation of aryl and heteroaryl *N*-alkyl α -keto imines, readily available from the corresponding glyoxals. The approach makes an access to β -amino alcohols from ketones possibly circumventing the halogenation–reduction–amination or halogenation–amination–reduction sequences. Earlier, α -keto imines were reduced with borane/ oxazaborolidines (10–20 mol %) producing β -amino alcohols, 89–95% ee.²⁸ However, the catalyst loading in the transfer hydrogenation is much lower, below 1 mol %, and the reducing agent is an inexpensive formic acid. Recently, we prepared (*R*)-2-*tert*butylamino-1-(7-ethylbenzofuran-2-yl)ethanol [(*R*)-bufuralol], a potent non-selective β -adrenergic receptor antagonist, via the transfer hydrogenation of 1-(7-ethylbenzofuran-2-yl)-2-chloroeth-

* Corresponding author. Fax: +48 56 6542477.

E-mail address: zaidlevi@chem.uni.torun.pl (M. Zaidlewicz).

anone achieving 96% ee.²⁵ The asymmetric synthesis of this important compound by the transfer hydrogenation of 2-*tert*-butylimino-1-(7-ethylbenzofuran-2-yl)ethanone could be a convenient alternative.

2. Results and discussion

Ring-substituted phenylglyoxals and (benzofuran-2-yl)glyoxals **8–14** were readily prepared by oxidation of the corresponding acetophenones **1–5** and (benzoburan-2-yl)ethanones **6–7** with selenium dioxide, and isolated as hydrates following a standard general procedure.²⁹ The glyoxals were reacted with amines at room temperature³⁰ to produce α -keto imines **15–24** in excellent yields (Scheme 1).

 α -Keto imines **15–19** and **22–24**, derived from acetophenones, were obtained in 71–98% yields when the reaction was carried out in toluene at room temperature, whereas in 1,4-dioxane the products could not be obtained. Benzofuran derivatives **20** and **21** were prepared either in benzene at room temperature or in 1,4-dioxane at reflux. The stability of **15–24** decreased in the order tertiary > secondary > primary alkyl derivatives. The *N-tert*-butyl α -keto imines were stable at room temperature, whereas the liquid primary *N*-propyl derivative **24** readily formed a glassy solid.

The transfer hydrogenation of **15–21** was carried out with formic acid–triethylamine 5:2, catalyzed by RhCl[(R,R)–TsD-PEN](C_5Me_5), in DMF or ethyl acetate at room temperature. The conversion and enantioselectivities were higher for the reactions in DMF, 30–95% and 97–99% ee, than in ethyl acetate 10–85% and 80–97% ee. In the aryl series, **15–17** reacted readily, the conversion of methoxy-substituted **18** was lower and the nitro-substituted **19** was unreactive (Table 1).

Both the keto and imino groups were reduced and the configuration of the product β -amino alcohols **25–27** was (*S*), as determined

^{0957-4166/\$ -} see front matter \odot 2010 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetasy.2010.07.004

Scheme 1. Synthesis of *N*-alkyl α -imino ketones.

Table 1Transfer hydrogenation of **15–19** and **20** and **21** with formic acid-triethylamine, 5:2, catalyzed by $RhCl[(R,R)-TsDPEN](C_5Me_5)$

	R ¹	Solvent	Conv. %		Yield ^a (%)	ee ^b (%)	Conf.
15	Н	DMF	85	25	31	99	(<i>S</i>) ^c
		AcOEt	35			80	
16	Cl	DMF	90	26	46	97	$(S)^{d}$
		AcOEt	85			97	
17	Br	DMF	90	27	48	98	(S) ^d
		AcOEt	50			95	
18	OMe	DMF	30	28		97	
		AcOEt	10			87	
19	NO ₂	DMF	n.r.				
		AcOEt	n.r.				
20	Н	DMF		29	57	98	(<i>R</i>) ^e
		AcOEt			56	95	
21	Et	DMF		30	73	98	$(R)^{\mathrm{f}}$
		AcOEt			47	95	

^a Isolated.

 $^{\rm b}$ By HPLC analysis, on a β -DEX 325 chiral column, see Section 4.

^c By comparison with a commercial sample (Aldrich).

^d X-ray crystal structure.

^e By comparison of the sign of rotation with the reported data.³¹

^f X-ray crystal structure of the hydrochloride.

by comparison with a commercial sample for **25** and by X-ray analysis for **26** and **27** (Figs. 1 and 2).

Figure 1. The X-ray structure of (S)-2-tert-butylamino-1-(4-chlorophenyl)ethanol.

Figure 2. The X-ray structure of (*S*)-1-(4-bromophenyl)-2-(*tert*-butylamino) ethanol.

Benzofuranyl keto imines **20** and **21** undergo reduction in DMF and ethyl acetate with high enantioselectivity. The isolated yield and selectivity achieved for (*R*)-bufuralol **30**, 73% and 98% ee, makes its synthesis by this approach the most selective and convenient. The X-ray structure of its hydrochloride is shown in Figure 3. *sec*-Alkyl-substituted α -keto imines **22** and **23** are not stable for prolonged periods at room temperature, and attempts to reduce them, under the same conditions as the *tert*-butyl derivatives, were unsuccessful.

Figure 3. The X-ray structure of (*R*)-2-*tert*-butylamino-1-(7-ethylbenzofuran-2-yl)ethanol hydrochloride.

For the sake of comparison, the reduction of chloro-substituted α -keto imine **16** with borane/oxazaborolidines, generated from (*S*)-1,1-diphenylvalinol **31**,³² and two terpene β -amino alcohols **32**³³ and **33**,³⁴ was also examined (Fig. 4).

The reduction of **16** was carried out in toluene with borane/ THF/oxazaborolidine in the molar ratio 1:1:1 at 0 °C. After 1 h, 1 equiv of borane/THF was added for reduction of the imino group.

Figure 4. Precursors of the oxazaborolidines.

The yields of the product amino alcohols obtained in the presence of oxazaborolidines generated from **31–33** were high, 93–98%, however, the selectivities of the reduction, 35%, 36% and 65% ee, respectively, were much lower as compared to those achieved by transfer hydrogenation.

3. Conclusion

In conclusion, the asymmetric transfer hydrogenation of *N*-tertbutyl α -keto imines, catalyzed with RhCl[(*R*,*R*)-TsDPEN](C₅Me₅), is a convenient highly selective key transformation in the asymmetric synthesis of *N*-tert-butyl β -amino alcohols from aryl and benzofuranyl methyl ketones, which circumvents the halogenation-reduction-amination and halogenation-amination-reduction sequences. In this way a short convenient synthesis of (*R*)-bufuralol, 98%ee, has been achieved. A further search for the conditions and catalysts enabling the reduction of the less stable *N*-sec-alkyl α -keto imines is in progress.

4. Experimental

4.1. General

¹H and ¹³C NMR spectra were recorded on a Varian Gemini 200 and Bruker AMX 300 spectrometers. IR spectra were recorded on a Perkin-Elmer Spectrum RX I instrument using sodium chloride plates. Optical rotations were measured on an Optical Activity PolAAr 3000 automatic polarimeter. GC analyses were performed on a Perkin-Elmer Auto System XL chromatograph and HPLC analyses on a Shimadzu LC-10AT chromatograph. Melting points were determined in open glass capillaries and are uncorrected. X-ray diffraction data were measured using Oxford Sapphire CCD diffractometer with MoK α radiation, $\lambda = 0.71073$ Å at 293(2) K. The numerical absorption correction was applied, based on the crystal shape.³⁵ For all crystals, the absolute structure was determined by the Flack method.³⁶ The structures were solved by direct methods and refined with the full-matrix least-squares on F^2 with the use of SHELX-97 program package.³⁷ Elemental analyses were performed by the Microanalysis Laboratory, Faculty of Chemistry, Nicolaus Copernicus University.

4.2. Materials

Silica Gel 60, Merck 230–400, was used for preparative column chromatography. Macherey-Nagel Polygram Sil G/UV 254 0.2 mm plates were used for analytical TLC. RhCl[(R,R)-TsDPEN](C_5Me_5) was prepared from (R,R)-1,2-diphenylethylenediamine (Aldrich) and pentamethylcyclopentadienylrhodium(III) chloride dimer (Aldrich), according to the literature.³⁸

4.3. 2-tert-Butylimino-1-phenylethanone 15

tert-Butylamine (0.69 mL, 6.5 mmol) was added to a solution of $\mathbf{8}^{29,30}(1.00 \text{ g}, 6.5 \text{ mmol})$ in toluene (40 mL) and the mixture was stirred for 3 h at room temperature, washed with water (3 \times 10 mL) and

dried with anhydrous magnesium sulfate. The solvent was removed and a pale yellow liquid product was obtained, 0.92 g, 75% yield. Lit.³⁰ 69%. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 1.33 (s, 9H, CH₃), 7.42–7.53 (m, 2H, CH), 7.58 (tt, *J* = 7.2, 1.5 Hz, 1H, CH), 8.01 (s, 1H, CH), 8.20 (dm, *J* = 7.2 Hz, 2H, CH). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 29.0 (3 × CH₃), 59.1 (C), 128.1 (2 × CH), 130.6 (2 × CH), 133.2 (CH), 135.2 (C), 154.2 (CH), 191.5 (CO).

4.4. (S)-(+)-2-tert-Butylamino-1-phenylethanol 25

To a solution of **15** (0.50 g, 2.6 mmol) in DMF (10 mL) was added RhCl[(*R*,*R*)-TsDPEN](*C*₅Me₅) (8.25 mg, 0.012 mmol), formic acid-triethylamine 5:2 (0.8 mL), and the mixture was stirred under nitrogen for 24 h at room temperature. The volatiles were removed under reduced pressure, and the product was isolated by column chromatography on silica gel, petroleum ether/ethyl acetate/meth-anol/triethylamine 3:2:1:0.1, 0.16 g, 31%, mp 111–112 °C, $[\alpha]_D^{20} = +80.5$ (*c* 0.75, CHCl₃). A commercial sample (Aldrich) (*R*), $[\alpha]_D^{20} = -80$ (*c* 1, CHCl₃). GC analysis, β-DEX 325 column, 30 m, 0.25 mm, 130 °C, (*S*) 44.71 min, 99.39%, (*R*) 46.91 min, 0.61%, 98.8% ee. The racemate was also analyzed.

4.5. 2-tert-Butylimino-1-(4-chlorophenyl)ethanone 16

Prepared from **9**,³⁹ according to the procedure described in Section 4.3, 96%, mp 55–57 °C. ¹H NMR (200 MHz, CDCl₃) δ (ppm): 1.32 (s, 9H, CH₃), 7.42 (AA' spin system, 2H, CH), 7.96 (s, 1H, CH), 8.18 (BB' spin system, 2H, CH). ¹³C NMR (50 MHz, CDCl₃) δ (ppm): 29.0 (3 × CH₃), 59.3 (C), 128.5 (2 × CH), 132.2 (2 × CH), 133.6 (C), 135.9 (C), 154.4 (CH), 190.2 (CO). IR, HCB, (cm⁻¹): 2967, 1659, 1586, 1482, 1399, 1358, 1285, 1228, 1088, 1010, 735. Anal. Calcd for C₁₂H₁₄CINO: C, 64.43; H, 6.31; N, 6.26. Found: C, 64.52; H, 6.35; N, 6.20.

4.6. (S)-(+)-2-tert-Butylamino-1-(4-chlorophenyl)ethanol 26

Prepared from 16 (0.25 g, 1.1 mmol) according to the procedure described in Section 4.4. The product was isolated by column chromatography, *n*-hexane/ethyl acetate/methanol 6:2:1. A pale brown solid obtained was dissolved in diethyl ether (10 mL) and the solution was washed with 2 M aqueous sodium hydroxide (4 mL) and dried over anhydrous magnesium sulfate. The solvent was removed and a pale grey solid was obtained, 0.12 g, 46%, mp 158-161 °C, $[\alpha]_D^{20} = +66.6$ (c 2.06, CHCl₃), 97% ee, determined by GC analysis, chiral column β-DEX 325, 30 m, 0.25 mm, 150 °C, (S) 47.73 min, 98.62%, (R) 49.54 min, 1.38%. The racemate prepared by the reduction of 16 with sodium tetrahydroborate was also analyzed, mp 136-138 °C. Lit.⁴⁰ mp 135–136 °C. ¹H NMR (200 MHz, CDCl₃) δ (ppm): 1.10 (s, 9H, CH₃), 2.51 (dd, *J* = 12.0, 8.6 Hz, 1H, CH₂), 2.90 (dd, *J* = 12.0, 3.8 Hz, 1H, CH₃), 4.57 (dd, J = 8.6, 3.8 Hz, 1H, CH), 7.25-7.32 (m, 4H, CH). ^{13}C NMR (50 MHZ, CDCl₃) δ (ppm): 28.8 (3 \times CH₃), 50.0 (CH₂), 51.1 (C), 71.1 (CH), 127.1 (2 × CH), 128.5 (2 × CH), 133.1 (C), 141.2 (C). IR, HBC, (cm⁻¹): 3355, 3082, 2967, 1591, 1487, 1399, 1368, 1223, 1088, 1015. X-ray crystal structure: C₁₂H₁₈ClNO, M_r = 227.73. Colourless 0.25 × 0.12 × 0.08 mm crystal obtained from the petroleum ether/ethyl acetate solution, monoclinic space group C2. Cell parameters: *a* = 21.351(4), *b* = 5.7170(10), c = 11.422(2) Å, $\beta = 116.11(3)^\circ$, V = 1251.9(4) Å³, $D_{calc} = 1.208$ mg/ m³, Z = 4, F(000) = 488, $\mu = 0.281$ mm⁻¹. The maximum and minimum transmissions of 0.9772 and 0.9325. $R_1 = 0.0576$, $wR_2 = 0.1048$ for reflections $I > 2\sigma(I)$. The absolute structure Flack parameter x = -0.06(11). The structural data have been deposited at the Cambridge Crystallographic Data Centre: (CCDC No. 780731). Anal. Calcd for C₁₂H₁₈ClNO: C, 63.29; H, 7.97; N, 6.15. Found: C, 63.20; H, 7.90; N, 6.19.

4.7. 1-(4-Bromophenyl)-2-(tert-butylimino)ethanone 17

Prepared from 10^{41} by the procedure described in Section 4.3, 87%, mp 71–72 °C. ¹H NMR (200 MHz, CDCl₃) δ (ppm): 1.32 (s, 9H, CH₃), 6.90–7.00 (AA' spin system, 2H, CH), 7.96 (s, 1H, CH), 8.16–8.21 (BB' spin system, 2H, CH). ¹³C NMR (50 MHz, CDCl₃) δ (ppm): 29.0 (3 × CH₃), 59.3 (C), 128.5 (2 × CH), 132.2 (2 × CH), 133.6 (C), 135.9 (C), 154.4 (CH), 190.3 (CO). IR, HCB, (cm⁻¹): 2967, 1659, 1581, 1477, 1389, 1358, 1285, 1217, 1062, 1010, 896, 756, 725. Anal. Calcd for C₁₂H₁₄BrNO: C, 53.75; H, 5.26; N, 5.22. Found: C, 53.45; H, 5.17; N, 5.25.

4.8. (S)-(+)-1-(4-Bromophenyl)-2-(tert-butylamino)ethanol 27

Prepared from **17** (0.25 g, 0.9 mmol) by transfer hydrogenation following the procedure described in Section 4.4, 0.12 g, 48% vield. pale grey solid, mp 164–166 °C, $[\alpha]_D^{20} = +65.9$ (*c* 2.05, CHCl₃), 98% ee determined by GC analysis, β-DEX 325 column 30 m, 0.25 mm, (S) 78.86 min, 99.10%, (R) 81.35 min, 0.90%. The racemate was also analyzed. ¹H NMR (200 MHz, CDCl₃) δ (ppm): 1.10 (s, 9H, CH₃), 2.51 (dd, J = 12.0, 8.6 Hz, 1H, CH₂), 2.90 (dd, J = 12.0, 3.8 Hz, 1H, CH₂), 4.57 (dd, J = 8.6, 3.8 Hz, 1H, CH), 6.85–6.98 (AA' spin system, 2H, CH), 7.25-7.32 (BB' spin system, 2H, CH). ¹³C NMR (50 MHz, CDCl₃) δ (ppm): 28.8 (3 × CH₃), 50.0 (CH₂), 51.1 (C), 71.1 (CH), 127.1 (2 × CH), 128.5 (2 × CH), 133.1 (C), 141.2 (C). IR, HCB, (cm⁻¹): 3360, 3092, 2967, 1477, 1394, 1368, 1332, 1254, 1223, 1072, 1010. X-ray crystal structure: C₁₂H₁₈BrNO, M_r = 272.18. Colourless 0.23 \times 0.10 \times 0.06 mm crystal obtained from the petroleum ether/ethyl acetate solution, monoclinic space group C2. Cell parameters: a = 21.437(4), b = 5.7370(10), c = 11.561(2) Å, $\beta = 115.91(3)^\circ$, $V = 1278.9(4) \text{ Å}^3$, $D_{\text{calc}} = 1.414 \text{ mg/m}^3$, Z = 4, F(000) = 560, $\mu = 1278.9(4) \text{ Å}^3$ 3.191 mm⁻¹. The maximum and minimum transmissions of 0.8287 and 0.5229. R_1 = 0.0808, wR_2 = 0.1852 for reflections $I > 2\sigma(I)$. The absolute structure Flack parameter x = 0.09(4). The structural data have been deposited at the Cambridge Crystallographic Data Centre: (CCDC No. 780732). Anal. Calcd for C12H18BrNO: C. 52.95: H, 6.67; N, 5.15. Found: C, 53.01; H, 6.61; N, 5.10.

4.9. 1-(Benzofuran-2-yl)-2-(tert-butylimino)ethanone 20

To a solution of **13**⁴² (1.92 g, 10 mmol) in 1,4-dioxane (65 mL) was added *tert*-butylamine (0.73 g, 10 mmol) and the mixture was stirred for 3 h at room temperature. The solvent was removed and the product was crystallized from *n*-hexane, 2.09 g, 91%, mp 112–115 °C. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 1.36 (s, 9H, CH₃), 7.30 (ddd, *J* = 7.8, 6.9, 0.9 Hz, 1H, CH), 7.48 (ddd, *J* = 8.4, 6.9, 1.5 Hz, 1H, CH), 7.61 (ddd, *J* = 8.4, 1.8, 0.9 Hz, 1H, CH), 7.74 (ddd, *J* = 7.8, 1.2, 0.9 Hz, 1H, CH), 7.97 (s, 1H, CH), 8.18 (d, *J* = 0, 9 Hz, 1H, CH). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 28.9 (3 × CH₃), 59.3 (C), 112.4 (CH), 119.4 (CH), 123.7 (CH), 123.8 (CH), 127.2 (C), 128.7 (CH), 150.1 (C), 153.8 (CH), 155.8 (C), 180.5 (CO). IR, KBr (cm⁻¹): 3381, 2985, 1653, 1565, 1166, 986, 829, 785, 655. Anal. Calcd for C₁₄H₁₅NO₂: C, 73.34; H, 6.59; N, 6.11. Found: C, 73.40; H, 6.45; N, 6.09.

4.10. (R)-(+)-1-(Benzofuran-2-yl)-2-(tert-butylamino)ethanol 29

Prepared from **20** (0.60 g, 2.6 mmol) following the procedure described in Section 4.4. The product was isolated by column chromatography on silica gel, *n*-hexane/ethyl acetate/diethyl ether/ methanol/triethylamine 6:4:1:0.5:0.2, 0.35 g, 57%, mp 150–152 °C, $[\alpha]_D^{23} = +37.6$ (*c* 2.10, THF), 98% ee, determined by HPLC analysis, Daicel Chiracel OD-H column 250 × 4.6 mm, 5 µm, *n*-hexane/isopropanol 99:1, flow 0.7 mL/min, (*R*) 24.22 min, 99.32%, (*S*) 33.96 min, 0.68%. Identified by comparison with (*S*)-**29** prepared earlier.³¹ The racemate was also analyzed. ¹H NMR(300 MHz, CDCl₃)

δ (ppm): 1.12 (s, 9H, CH₃), 2.99 (dd, *J* = 12.0, 6.6 Hz, 1H, CH₂), 3.05 (dd, *J* = 12.0, 4.5 Hz, 1H, CH₂), 4.78 (ddd, *J* = 6.6, 4.5, 0.9 Hz, 1H, CH), 6.67 (t, *J* = 0.9 Hz, 1H, CH), 7.21 (td, *J* = 7.2, 1.2 Hz, 1H, CH), 7.26 (td, *J* = 7.2, 1.5 Hz, 1H, CH), 7.46 (ddd, *J* = 7.5, 1.5, 0.6 Hz, 1H, CH), 7.54 (ddd, *J* = 7.5, 2.1, 0.6 Hz, 1H, CH). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 29.1 (3 × CH₃), 46.2 (CH₂), 50.6 (C), 66.4 (CH), 103.1 (CH), 111.2 (CH), 120.9 (CH), 122.7 (CH), 123.9 (CH), 128.2 (C), 154.8 (C), 158.5 (C). IR, KBr (cm⁻¹): 3086, 2964, 2921, 1454, 1224, 1090, 961, 808, 755.

4.11. 2-tert-Butylimino-1-(7-ethylbenzofuran-2-yl)ethanone 21

Prepared from **14** following the procedure described in Section 4.9, 85%, mp 67–68 °C. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 1.36 (s, 9H, CH₃), 1.362 (t, *J* = 7.5 Hz, 3H, CH₃), 3.02 (q, *J* = 7.5 Hz, 2H, CH₂), 7.24 (t, *J* = 7.5 Hz, 1H, CH), 7.32 (dm, *J* = 7.5 Hz, 1H, CH), 7.57 (dd, *J* = 7.5, 1.5 Hz, 1H, CH), 7.98 (s, 1H, CH), 8.15 (s, 1H, CH). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 14.0 (CH₃), 22.6 (CH₂), 29.0 (3 × CH₃), 59.3 (C), 119.8 (CH), 121.1 (CH), 124.0 (CH), 126.9 (C), 127.6 (CH), 129.0 (C), 150.0 (C), 154.0 (C), 154.6 (C), 180.6 (CO). IR, KBr (cm⁻¹): 3424, 2968, 1686, 1656, 1554, 1168, 1001, 848, 745. Anal. Calcd for C₁₆H₁₉NO₂: C, 74.68; H, 7.44; N, 5.44. Found: C, 74.57; H, 7.36; N, 5.38.

4.12. (*R*)-(+)-*tert*-Butylamino-1-(7-ethylbenzofuran-2-yl)ethanol 30

Prepared by transfer hydrogenation of 21 following the procedure described in Section 4.4, 73%, mp 56–58 °C, $[\alpha]_{D}^{20} = +27.2$ (*c* 1.93, EtOH), 98% ee determined by HPLC analysis, Daicel Chiracel OD-H column 250×4.6 mm, 5μ m, *n*-hexane/isopropanol 95:5, flow 0.7 mL/min, (R) 8.99 min, 99.09%, (S) 14.39 min, 0.91%. Identified by comparison with (R)-**30** prepared earlier.²⁵ The racemate was also analyzed. ¹H NMR (300 MHz, CDCl₃) δ (ppm): 1.12 (s, 9H, CH₃), 1.34 (t, J = 7.5 Hz, 3H, CH₃), 2.93 (q, J = 7.5 Hz, 2H, CH₂), 3.00 (dd, /= 12.0, 6.3 Hz, 1H, CH₂N), 3.05 (dd, /= 12.0, 4.5 Hz, 1H, CH₂N), 4.81 (ddd, *J* = 6.3, 4.5, 0.9 Hz, 1H, CH), 6.66 (d, *J* = 0.9 Hz, 1H, CH), 7.08 (ddd, J = 7.2, 1.5, 0.6 Hz, 1H, CH), 7.15 (t, J = 7.5 Hz, 1H. CH), 7.37 (dd, I = 7.5, 1.5 Hz, 1H CH). ¹³C NMR (75 MHz, CDCl₃) δ (ppm): 14.1 (CH₃), 22.8 (CH₂), 29.1 (3 × CH₃), 46.2 (C), 50.3 (CH₂), 66.5 (CH), 103.1 (CH), 118.4 (CH), 122.8 (CH), 123.0 (CH), 127.6 (C), 127.8 (C), 154.3 (C), 158.3 (C). X-ray crystal structure (hydrochloride): $C_{16}H_{24}CINO_2$, $M_r = 297.83$. Colourless $0.46 \times 0.34 \times$ 0.30 mm crystal from acetone solution, orthorhombic space group $P2_12_12_1$. Cell parameters: a = 7.795(2), b = 10.358(2), c = 10.358(2)21.086(4) Å, V = 1702.5(6) Å³, $D_{calc} = 1.162$ mg/m³, Z = 4, F(000) =640, μ = 0.226 mm⁻¹. The maximum and minimum transmissions of 0.9360 and 0.9028. $R_1 = 0.0528$, $wR_2 = 0.1489$ for reflections $I > 2\sigma(I)$. The absolute structure Flack parameter x = 0.00(8). The structural data have been deposited at the Cambridge Crystallographic Data Centre: (CCDC No. 780733).

Acknowledgement

Financial support from the Ministry of Science and Higher Education, Warsaw, Grant PBZ-KBN 126/T09/2004, is acknowledged.

References

- 1. Morris, D. J.; Hayes, A. M.; Wills, M. J. Org. Chem. 2006, 71, 7035–7044. and references cited therein.
- Everaere, K.; Mortreux, A.; Bulliard, M.; Brusse, J.; van der Gen, A.; Nowogrocki, G.; Carpentier, J.-F. *Eur. J. Org. Chem.* 2001, 275–291. and references cited therein.
- 3. Ager, D. J.; Prakash, J.; Schaad, D. R. Chem. Rev. 1996, 96, 835-875.
- 4. Cardillo, G.; Tomassini, C. Chem. Soc. Rev. 1996, 25, 117-128.
- 5. Corey, E. J.; Helal, C. J. Angew. Chem., Int. Ed. Engl. 1988, 37, 1986–2012.
- Zaidlewicz, M.; Krzeminski, M.; Łączkowski, K. Encyclopedia of Reagents for Organic Synthesis; J. Wiley, 2007. first update, doi:10,1002/ 047084289X.rn00701, on line.
- Johnson, R. L. In Wilson and Gisvold's Textbook of Organic Medicinal and Pharmaceutical Chemistry; Block, J. H., Beale, J. M., Jr., Eds., 11th ed.; Lippincott Williams & Wilkins: Philadelphia, 2004; pp 524–547.
- 8. Bergmeier, S. C. Tetrahedron 2000, 56, 2561–2576.
- 9. Klingler, F. D. Acc. Chem. Res. 2007, 40, 1367-1376.
- Bayer, A. In *Comprehensive Asymmetric Catalysis*; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, Heidelberg, 2004; pp 44–71.
- 11. Cho, B. T. Aldrichim. Acta 2002, 35, 3-16.
- 12. Duquette, J.; Zhang, M.; Zhu, L.; Reeves, R. S. Org. Process Res. Dev. 2003, 7, 285–288.
- Miyano, S.; Lu, L. D.-L.; Viti, S. M.; Sharpless, K. B. J. Org. Chem. 1985, 50, 4350– 4360.
- Baeza, A.; Najeri, C.; Sansano, J. M.; Saa, J. M. Chem. Eur. J. 2005, 11, 3849– 3862.
- Xiong, Y.; Wang, F.; Huang, X.; Wen, Y.; Feng, X. Chem. Eur. J. 2007, 13, 829– 833.
- 16. Metro, T. X.; Pardo, D. G.; Cossey, J. J. Org. Chem. 2007, 72, 6556-6561.
- 17. Yadav, A. K.; Manju, M. Indian J. Chem. 2006, 45B, 2770-2772.
- Ohkuma, T.; Noyori, R.: In *Comprehensive Asymmetric Catalysis*; Jacobsen, E. N., Pfaltz, A., Yamamoto, H., Eds.; Springer: Berlin, Heidelberg, 1999; Vol. 1, pp 199–246.
- 19. Wang, C.; Wu, X.; Xiao, J. Chem. Asian J. 2008, 1750-1770.
- Tanis, S. R.; Evans, B. R.; Nieman, J. A.; Parker, T. T.; Taylor, W. D.; Heasley, S. E.; Herrington, P. M.; Perrault, W. R.; Hohler, R. A.; Dolak, L. A.; Hester, M. R.; Seest, E. P. *Tetrahedron: Asymmetry* **2006**, *17*, 2154–2182.
- Kenny, J. A.; Palmer, M. J.; Smith, A. R. C.; Walsgrowe, T.; Wills, M. Synlett 1999, 1615–1617.
- 22. Kawamoto, A. M.; Wills, M. Tetrahedron: Asymmetry 2000, 11, 3257-3261.
- 23. Kawamoto, A. M.; Wills, M. J. Chem. Soc., Perkin Trans. 1 2000, 1916-1928.
- 24. Lee, D.-M.; Lee, J.-C.; Jeong, N.; Lee, K.-I. Tetrahedron: Asymmetry 2007, 18,
- 2662–2667.
 Zaidlewicz, M.; Tafelska-Kaczmarek, A.; Prewysz-Kwinto, A. Tetrahedron: Asymmetry 2005, 16, 3205–3210.
- 26. Lennon, I. C.; Ramsden, J. A. Org. Process Res. Dev. 2005, 9, 110-112.
- Kosmalski, T.; Wojtczak, A.; Zaidlewicz, M. Tetrahedron: Asymmetry 2009, 20, 1138–1143.
- 28. Hong, Y.; Gao, Y.; Nie, X.; Zepp, C. M. Tetrahedron Lett. 1994, 35, 5551-5554.
- 29. Riley, H. A.; Grey, A. R. Org. Synth. 1947, II, 509-511.
- Alcaide, B.; Escobar, G.; Peres-Ossario, R.; Plumet, J.; Sanz, D. J. Chem. Res., Miniprint 1984, 5, 1466–1488.
- Zaidlewicz, M.; Chechłowska, A.; Prewysz-Kwinto, A.; Wojtczak, A. Heterocycles 2001, 55, 569–577.
- Itsuno, S.; Nakano, M.; Miyazaki, K.; Masuda, H.; Ito, K.; Hirao, A.; Nakahama, S. J. Chem. Soc., Perkin Trans. 1 1985, 2039–2044.
- 33. Krzemiński, M. P.; Wojtczak, A. Tetrahedron Lett. 2005, 46, 8299-8302.
- Bosiak, M. J.; Krzemiński, M. P.; Jaisankar, P.; Zaidlewicz, M. Tetrahedron: Asymmetry 2008, 19, 956–963.
- 35. CRYSALIS CCD 1.71 and RED171 package programs, Oxford Diffraction, 2000.
- 36. Flack, H. D. Acta Crystallogr., Sect. A 1983, 39, 867–881.
- 37. Sheldrick, G. M. shelx97 and shelx197. University of Göttingen, Germany, 1997.
- 38. Murata, K.; Ikariya, T.; Noyori, R. J. Org. Chem. 1999, 64, 2186-2187.
- 39. Rioux-Lacoste, C.; Viel, C. Bull. Soc. Chim. Fr. 1974, 2471-2477.
- Koshinaka, E.; Kurata, S.; Yamagishi, K.; Kubo, S.; Kato, M. Yakugaku Zasshi 1978, 98, 1198–1207. Chem. Abstr. 1979, 90, 132710z.
- 41. Karrer, P.; Musante, C. Helv. Chim. Acta 1935, 18, 1140-1143.
- 42. Fatutta, S. Gazz. Chim. Ital. 1959, 89, 1598-1607.