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Asymmetric Cyclizative Dimerization of (ortho-Alkynyl Phenyl) 

(Methoxymethyl) Sulfides with Palladium(II) Bisoxazoline Catalyst 

Cheng Peng,[a] Taichi Kusakabe,[a] Shoko Kikkawa,[a] Tomoyuki Mochida,[b] Isao Azumaya,[a] Yogesh 

Daulat Dhage,[a] Keisuke Takahashi,[a] Hiroaki Sasai,[c] and Keisuke Kato*[a] 

Dedicated to Professor Dr. Kiyoshi Sakai on the occasion of his 88th birthday 

Abstract: The first example of an asymmetric cyclizative 

dimerization of (ortho-alkynylphenyl) (methoxymethyl) sulfides with a 

palladium(II) bisoxazoline (box) catalyst has been developed. The 

box ligand enhances the alkynophilicity of benzothienyl palladium(II) 

intermediate A and thus promotes coordination of the second alkyne 

substrate, leading to the dimerization. The characteristic properties 

of the box ligand were supported by density functional theory (DFT) 

calculations of the intermediate. Axially chiral bibenzothiophenes 

were obtained in good yields with good enantioselectivities.   

Axially chiral biaryl scaffolds are important structural motifs in 

natural products, pharmaceuticals, functional materials, and 

chiral ligands.[1]  Although a number of synthetic strategies have 

been developed, the catalytic asymmetric synthesis of axially 

chiral C-C bonded bi-heteroaryls is still challenging.[2] 

Benzothiophenes are present in several drug candidates,[3] and 

are widespread in materials chemistry.[4] Among them, 

bibenzothiophenes are also an important class of compounds in 

functional materials[5a,b,g,j-n] and ligands.[5h,i] However, 

conventional methods for the synthesis of axially chiral 

bibenzothiophenes have been restricted to the optical resolution 

of racemates and diastereselective Stille coupling reactions 

using chiral auxiliaries.[5g-n]   Cyclizative dimerization of 

nucleophile-bearing alkynes is a synthetically efficient 

transformation for the synthesis of bi-heteroaryls, because the 

construction of two heteroaryls and the coupling reaction occur 

in a one-step procedure.[6,7] A few examples of cyclizative 

dimerization of alkynyl ketones,[6a] o-alkynylanilines,[6i,l,m,o] o-

alkynylphenols[6e] and homopropargylic amines[6p] have been 

reported, affording bifurans, bisindoles, bibenzofurans and 

bipyrroles in good to low yields in racemic form. If the cyclizative 

dimerization could be expanded to the synthesis of axially chiral 

biaryls, the process would be more valuable.  

Previously, we reported the cyclization-carbonylation-

cyclization-coupling reaction (CCC-coupling reaction) of (o-

alkynylphenyl) (methoxymethyl) sulfides 1 catalyzed by 

palladium(II) bisoxazoline (box) complexes (Scheme 1, previous 

work).[8b] Symmetrical ketones bearing two benzothiophenes 

were obtained in a one-step procedure. We believe that the box 

ligand enhances the alkynophilicity of the acyl palladium 

intermediate A‘,[8] and thus promotes coordination of the second  

 

Scheme 1. Previous work and this work. 

triple bond, leading to the dimerization. If this characteristic 

property of the box ligand could be applied to the benzothienyl 

palladium intermediate A, enantioselective cyclizative 

dimerization of 1 can be realized (Scheme 1, this work). 

Consequently, we report herein the first example of the 

palladium(II) box complex catalyzed asymmetric cyclizative 

dimerization of (ortho-alkynylphenyl) (methoxymethyl) sulfides 1.  

    Initially, we screened several kinds of bidentate ligands such 

as diamine L1, phosphine L2, sulfoxide L3, phox L4, bipyridine 

L5 and box L6 for the cyclizative dimerization of 1a[9] (Table 1, 

entries 1-6). Interestingly, N-coordinate ligands bearing C=N L5 

and L6 were effective for this reaction, affording dimer 2a (41-

54%) along with 3a (26-32%) (entries 5 and 6). Next, optically 

active box analogues L7-L12 were tested in the reaction (entries 

7-13). Higher reaction temperature caused an increased yield of 

the monomer 3a (entries 7 and 8). Among them, L11 and L12 

gave good enantioselectivities, but not satisfactory yields. 

Although we investigated the protecting groups and counter ions 

of palladium, better results could not be obtained.[10] The use of 

increased amounts of catalyst (10-14 mol%) gave good yields 

and enantioselectivities (entries 14 and 15). Recently, we 

reported the CCC-coupling reaction of 1 using molecular oxygen 

as the terminal oxidant.[8e] Thus, we investigated the reaction of 

1a using the [Pd(L11)(tfa)2] (14 mol%) / p-benzoquinone (10 

mol%) / CuCl2 (10 mol%) catalytic system under an oxygen 

atmosphere (balloon) (Table 1, entry 16). Although 2a was 

obtained in 74% yield (84% ee), the reaction time was quite long. 
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With the optimal conditions in hand, we investigated the 

substrate scope (Table 2). Both aryl-substituted alkynes 1a-1c 

and alkyl-substituted alkynes 1d, 1e gave good yields and high 

enantioselectivities (entries 1-5). A thienyl group was well 

tolerated (entry 6). The reaction of 1g-1n bearing additional  

substituents (R2 and R3) provided the desired products in good 

yields and enantioselectivities (entries 7-14). Introduction of a 

 
Table 1. Optimization of the reaction conditions. 

Entry Catalyst Conditions 
Yield % of 
2a (ee %) 

Yield % of 
3a  

1[a] Pd(tfa)2 / L1 0ºC, 3days - 7 

2 Pd(tfa)2 / L2 0ºC, 3days - 82 

3 Pd(tfa)2 / L3 0ºC, 3days - 87 

4 Pd(tfa)2 / L4 0ºC, 3days trace 74 

5 PdCl2 / L5[b] 0ºC, 3days 41  32 

6 Pd(tfa)2 / L6 0ºC, 4days 54  26 

7 Pd(tfa)2 / L7 5ºC, 3days 64 (46) 22 

8 Pd(tfa)2 / L7 -20ºC ~ -10ºC, 
5days 85 (56) 6 

9 Pd(tfa)2 / L8 5ºC, 4days 24 (48) 66 

10 Pd(tfa)2 / L9 5ºC, 2days 40 (-43) 45 

11 Pd(tfa)2 / L10 -20ºC, 5days 73 (-63) 5 

12 Pd(tfa)2 / L11 -20ºC, 4days 61 (87) 7 

13 Pd(tfa)2 / L12 -20ºC ~ -10ºC, 
4days 68 (91) 6 

14[c] Pd(tfa)2 / L11 -20ºC, 4days 78 (90) 5 

15[d] Pd(tfa)2 / L11 -20ºC , 3days 81 (90) 5 

16d,e] Pd(tfa)2 / L11 -5ºC ~ -0ºC, 
7days 74 (84) 16 

[a] Recovery 75%. [b] Commercially available complex was employed. [c] [Pd 
(tfa)2(L11)] (10 mol%). [d] [Pd(tfa)2(L11)] (14 mol%), [e] p-benzoquinone (10 
mol%), CuCl2 (10 mol%), O2 balloon. 

 

 Me group as a substituent in the R2 position shortened the 

reaction time (entries 7-11). On the other hand, halogen 

substituents slowed down the reaction (entries 15-17). The 

products 2o-2q were obtained in low yields but good 

enantioselectivities, along with benzothiophenes 3o-3q (5-18%) 

and recovery of starting materials (15-65%). Interestingly, 

introduction of a methyl group (R2) into the substrates 1r and 1s 

improved the reaction, producing 2r and 2s in good yields and 

enantioselectivities (entries 18 and 19). The absolute 

configurations of 2a and 2q were determined by X-ray 

crystallographic analysis.[10] 

 

Table 2. Substrate scope. 

 

Entry SM R1 R2 R3 Time (h) 
Yield %  
(ee %) 

1 1a Ph H H 72  81 (90) 

2 1b 4-MeOPh H H 96  86 (84) 

3 1c 4-MePh H H 96  90 (85) 

4 1d Phenethyl H H 96  79 (98) 

5 1e Cyclopropyl H H 72  83 (90) 

6 1f 3-Thienyl H H 96  90 (85) 

7 1g Ph Me H 24  90 (93) 

8 1h 4-MeOPh Me H 16  91 (88) 

9 1i 3-Thienyl Me H 48  92 (85) 

10 1j 4-tBuPh Me H 17  92 (86) 

11 1k Cyclopropyl Me H 16  90 (87) 

12 1l Phenethyl Me H 72  83 (98) 

13 1m Ph Me Me 42  95 (82) 

14 1n Ph H Me 96  88 (86) 

15[a] 1o 4-BrPh H H 96  47 (91) 

16[b] 1p 4-ClPh H H 96  47 (92) 

17[c] 1q Ph Br H 96 25 (82) 

18 1r 4-BrPh Me H 96  95 (93) 

19 1s 4-ClPh Me H 96  92 (95) 

[a] 3o (9%), recovery (24%). [b] 3p (18%), recovery (15%). [c] 3q  (5%), 

recovery (60%).  

 

To gain mechanistic insights into this transformation, we 

conducted control experiments. When the reaction was 

performed under an argon atmosphere, it gave similar results to 

those above. When the benzothiophene 3a was subjected to the 
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reaction conditions, no reaction occurred, and 3a was recovered 

quantitatively, indicating that oxidative coupling of the 

benzothiophene 3 does not occur. In our previous work, the 

CCC-coupling reaction of 1o and 1p proceeded well, affording 

the corresponding ketones bearing two benzothiophene rings in 

good yields (Scheme 1). [8b,10] We wondered why the present 

reactions of 1o-1q were slow (Table 2, entries 15-17) given that 

the reaction conditions of the CCC-coupling reaction were 

almost the same as that of the present reaction with the 

exception of the CO atmosphere. Thus, a crossover experiment 

was performed using 1b and 1q as substrates (Table 3). The 

reaction of a 1 : 1 mixture of 1b and 1q afforded three kinds of 

dimers: 2t (cross: 37% yield), 2b (homo: 42% yield) and 2q 

(homo: 27% yield). Compared with the results of entry 17 (Table 

2), the conversion of 1q was slightly increased (Table 3, entry 1). 

Moreover, the use of a 2 : 1 (1b : 1q) mixture of substrates gave 

the cross coupling product 2t in 75% yield with 88% ee. 

Eventually, 80% of 1q was converted to the dimers (Table 3, 

entry 2). In these reactions, two kinds of benzothienyl palladium 

complexes Bb and Bq should be produced (Figure 1). In the 

case of the complex Bb, coordination of the triple bond of the 

second substrate induces the second cyclization leading to the 

dimers 2t and 2b. On the other hand, coordination of a second 

substrate 1q to the complex Bq may be unfavorable. These 

results suggest that electronic effects of the initially constructed 

benzothiophene moiety in the intermediates Bb and Bq play an 

important role in the coordination of the second substrate (and 

second cyclization). 

 

Table 3. Crossover experiment. 

Entry 
Ratio of 

1b : 1q 

Yield % of 
2t (ee %) 

Yield % of 
2b (ee %) 

Yield % of 
2q (ee %) 

1 1 : 1 37 (91) 42 (77) 27 (94) 

2 2 : 1 75[a] (88) 48 (85) 5 (94) 

[a] Calculated based on 1q.  

 

 

Figure 1. Coordination of the triple bond of a second substrate to the 

palladium intermediate Bb or Bq.. 

      To understand the role of the box ligand, DFT calculations 

were performed on complexes with box and other ligands (L1, 

L2, L3, L5 and L6). The calculations revealed that the affinity for 

the second substrate was significantly higher for the complexes 

with L5 and L6 that stabilized intermediate A. These results 

account for the formation of dimers when using L5 and L6. The 

stabilization of intermediate A is ascribed to the -conjugation of 

these ligands, which accept the electron density from the 

heteroaryl ring formed by the first substrate, which is a strong 

sigma donor ligand. [10]  

As a working hypothesis, a tentative model for the observed 

stereochemical outcome of the cyclizative dimerization is 

proposed as shown in Scheme 2. It is assumed that: (1) the 

sulfur atom attacks from underneath the palladium complex to 

avoid the phenyl group of the box ligand, leading to intermediate 

A; (2) the phenyl group of the benzothiophene moiety is situated 

over the palladium, such that the second cyclization should 

occur from the underside of intermediate A to avoid steric 

hindrance on the upper side; and (3) the product (R)-2 is formed 

by reductive elimination and clockwise rotations of the Pd-C 

(aryl) bonds, which is favored over counterclockwise rotations 

due to steric reasons. DFT calculations supported our working 

model. [10]  

 

Scheme 2.  Working model of the cyclizative dimerization. 

   In conclusion, we have developed an asymmetric cyclizative 

dimerization of (ortho-alkynylphenyl) (methoxymethyl) sulfides 

with a palladium(II) bisoxazoline (box) catalyst. The construction 

of two benzothiophenes and the coupling reaction occurred in a 

one-step procedure with control of axial chirality. The products 

were obtained in good yields and optical purities. DFT 

calculations indicated that the box ligand enhances the 

alkynophilicity of benzothienyl palladium(II) intermediate A and 

thus promotes coordination of the second alkyne substrate, 

leading to the dimerization. Detailed investigations of the 

reaction and the extension of this process are currently 

underway in our laboratories. 

Experimental Section 
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Typical experimental procedure: A solution of 1a (76.3 mg, 0.30 mmol) 

and p-benzoquinone (48.6 mg, 0.45 mmol) in MeOH (3 mL) was cooled 

to -20 ºC. A MeOH solution (1 mL) of [Pd(tfa)2(L11)] (32.7 mg, 0.042 

mmol) was added to the stirred solution. The remaining complex was 

washed in MeOH (1 mL) twice. After stirring for 72h at -20ºC, the mixture 

was diluted with CH2Cl2 (40 mL) and washed with 3% NaOH (40 mL). 

The aqueous layer was extracted with CH2Cl2 (20 mL) twice, and the 

combined organic layers were dried over MgSO4 and concentrated in 

vacuo. The crude product was purified by column chromatography on 

silica gel. The fraction eluted with hexane / ethyl acetate (100/1) afforded 

dimer 2a as colorless needles.  
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