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Carbaborane-substituted 1,2-diphosphetane reacts with elemental

lithium and hydrogen chloride to give exclusively secondary

mono- and bis(phosphino)carbaboranes. The latter reacts with

two equivalents of formaldehyde and one equivalent of aniline to

give a carbaborane-substituted 1-aza-3,6-diphosphepane.

While the chemistry of 1,2-diphosphetes is well developed, little is

known about their saturated relatives, the 1,2-diphosphetanes.1

The facile high-yield synthesis of carbaborane-substituted

1,2-diphosphetanes by reduction of bis(halophosphino)-dicarba-

closo-dodecaborane(12)s now allows their synthetic potential

to be studied. Thus, elemental iodine reacts in an oxidative ring-

opening reaction to give the first chiral 1,2-bis(iodophosphino)-

1,2-dicarba-closo-dodecaborane(12)s.2 In this preliminary

account, we present a new synthetic route to secondary mono- (1)

and bis(phosphino)carbaboranes (2) by reductive P–P bond

cleavage of carbaborane-substituted 1,2-diphosphetane with

elemental lithium and subsequent reaction with hydrogen chloride.

Secondary phosphines are very useful starting materials for

numerous phosphorus-based compounds.3 However, secondary

mono- and bis(phosphino)carbaboranes are rare, as problems

such as cleavage of the cluster carbon–phosphorus bond are

usually encountered in the reaction of the corresponding

mono- and bis(halophosphino)-dicarba-closo-dodecaborane(12)s

with LiAlH4.
4 Thus, this reaction seemed to be limited to

phenylphosphino5 and ferrocenylphosphino6 derivatives, but

using 1,2-diphosphetanes as starting material offers access to

secondary mono- and bis(phosphino)carbaboranes that were

inaccessible before.

Alkali metals, lithium alkyls and platinum(0) complexes

were reported to cleave the P–P bond of phosphorus hetero-

cycles, e.g., 1,2-dihydro-1,2-diphosphetes.7 With lithium, the

resulting dianionic lithium salts offered access to new, open-

chain diphosphaethene derivatives. Similarly, the P–P bond of

tert-butyl-substituted 1,2-diphosphetane is cleaved by elemental

lithium to give a deep red solution of the lithium diphosphane-

diide species in THF. Addition of hydrogen chloride in diethyl

ether gave equal amounts of rac- and meso-1,2-bis(tert-butyl-

phosphino)-1,2-dicarba-closo-dodecaborane(12) (2) in moderate

yield (56%). Furthermore, cleavage of one P–C bond is observed

with formation of the corresponding 1-tert-butylphosphino-

1,2-dicarba-closo-dodecaborane (1) (10% yield) and primary

phosphine (Scheme 1). A 31P NMR spectrum of the reaction

mixture already shows the presence of both species, but

the products 1 and 2 can be separated by fractional sublima-

tion and are obtained as air- and water-sensitive colourless

solids.y
The 31P NMR spectrum of 1 in C6D6 exhibits a doublet at

26.2 ppm with a P–H coupling constant (1JPH) of 220 Hz. In

the 13C{1H} NMR spectrum, two doublets are observed for

the carbon cluster atoms of the mono-substituted carbaborane

at 65.8 and 67.6 ppm with 2JCP and 1JCP of 22.2 and 66.9 Hz,

respectively. The 31P NMR spectrum of 2 is more complex and

exhibits two multiplets at 9.5 and 10.3 ppm (ratio ca. 1 : 0.8)

for the HPC–CPH fragments of the two diastereomers

(AA‘XX’ spin system). The coupling constants were obtained

from a simulated 1H NMR spectrum of one species (1JPH= 222,
3JPP = 112 Hz).8 The 13C{1H} NMR spectrum shows a complex

coupling pattern for the ABX spin system of the PCCP moiety

at 78.5 ppm, as reported earlier.9 P–H stretching modes for

both compounds were observed in the IR spectra (2316 cm�1

for 1 and 2311 cm�1 for 2).

An X-ray structure analysis was carried out for 1 (Fig. 1).10

The P1–C2 bond length (1.864(2) Å) is similar to those in the

tert-butyl-substituted 1,2-diphosphetane (1.883(6) Å), the

C1carb–C2carb bond (1.696(2) Å) is slightly longer (cf. 1.645(4) Å).2

The P1–H1p bond length (1.31(2) Å) compares well with

Scheme 1 Synthesis of tert-butyl-substituted secondary phosphino-

carbaboranes 1 and 2.
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similar bonds found in secondary phosphinocarbaboranes4 or

phosphonium salts.11 As expected, the CCarb–CCarb–P bond angle

(112.6(1)1) in 1 is much larger than in the 1,2-diphosphetane

(97.9(7)1).2

Aminomethylation of secondary phosphines is well known

and allows easy access to tertiary phosphino amino derivatives.12

Formaldehyde and secondary amines give linear condensation

products,13 whereas the reaction with primary amines results in

P,N-heterocyclic compounds.14 Accordingly, 2 reacts with two

equivalents of formaldehyde and one equivalent of aniline in

DMF at 60 1C (3 h) to give the seven-membered air- and water-

stable 4,5-(dicarba-closo-dodecaboranyl)-3,6-di-tert-butyl-1-

phenyl-1-aza-3,6-diphosphepane (3) in 67% yield (Scheme 2).y
The 31P{1H} NMR spectrum of 3 shows two singlets at 30.2

and 36.7 ppm (ratio 30 : 1 for rac : meso) for the two expected

diastereomers, while the 1H, 13C and 11B NMR spectra show

identical signals for both diastereomers.

The P–CH2–N protons appear as twomultiplets (2JHH= 15Hz,
2JPH = 7–11 Hz). The 13C{1H} NMR spectrum shows a

complex coupling pattern for the ABX spin system of the

PCCP moiety at 84.6 ppm and a multiplet at 52.6 ppm for the

CH2–P moiety (1JCP = 16 Hz). Compound rac-3 crystallizes

from n-hexane and was structurally characterized (Fig. 2).10

In summary, a potentially versatile route to secondary tert-

butyl-substituted mono- and bis(phosphino)carbaboranes was

developed by reductive P–P bond cleavage of 1,2-diphosphetanes

with lithium and subsequent reaction with hydrogen chloride.

The phosphorus-containing heterocycle 3 was synthesized by a

Mannich-type reaction of 2 with formaldehyde and a primary

amine. The secondary bis(phosphino)carbaborane 2 and the

P,N-heterocycle 3 will now be employed as a chelating ligand

in transition metal complexes.
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y NMR spectroscopic data of 1–3 (in C6D6 for 1 and 2): 1: 1H NMR:
d = 0.87 (d, 3JPH = 14.2 Hz, 9H, C(CH3)3), 2.80 (s, 1H, CCarb–H),
3.76 (d, 1JPH = 220 Hz, 1H, P–H), 1.20–3.60 ppm (m, 10H, B10H10);
11B{1H} NMR: d = �0.7 (br s, 1B), �1.4 (br s, 1B), �7.2 (br s, 2B),
�8.9 (br s, 1B), �10.3 (br s, 1B), �11.6 (br s, 2B), �12.8 ppm (br s,
2B); 13C{1H} NMR: d = 28.5 (d, 2JCP = 14.9 Hz, C(CH3)3), 31.9
(m, C(CH3)3), 65.8 (d,

2JCP = 22.2 Hz, CCarb–H), 67.6 ppm (d, 1JCP =
66.9 Hz, CCarb–P);

31P NMR: d = 26.2 ppm (d, 1JPH = 220 Hz). 2:
1H NMR: d= 1.00 (m, 3JPH = 8 Hz, 18H, C(CH3)3), 3.93 (m, 1JPH =
222 Hz, 3JPP = 112 Hz, 2H, P–H), 1.50–3.50 ppm (m, 10H, B10H10);
11B{1H} NMR: d=0.3 (br s, 2B),�6.3 (br s, 5B),�9.0 ppm (br s, 3B);
13C{1H} NMR: d = 29.2 (m, C(CH3)3), 32.6 (m, C(CH3)3), 78.5 ppm
(m, C2B10H10);

31P NMR: d = 9.51 (m, 1JPH = 222 Hz, 3JPP =
112 Hz), 10.27 ppm (m, 1JPH = 222 Hz, 3JPP = 112 Hz). 3: 1H NMR
(CDCl3): d = 1.16 (d, 3JPH = 13.4 Hz, 18H, C(CH3)3), 3.86 (m,
2JHH = 15 Hz, 2JPH = 7 Hz, 2H, CH2P), 3.91 (m, 2JHH = 15 Hz,
2JPH = 11 Hz, 2H, CH2P), 6.82–7.24 (m, 5H, C6H5), 1.80–3.20 ppm
(m, 10H, B10H10);

11B{1H} NMR (CDCl3): d = 0.2 (br s, 2B), �5.1
(br s, 2B), �9.2 (br s, 6B); 13C{1H} NMR (C6D6): d= 26.9 (d, 2JCP =
14.8 Hz, C(CH3)3), 33.5 (d, 1JCP = 27.6 Hz, C(CH3)3), 52.8
(m, 1JCP = 16.0 Hz, CH2P), 84.6 (m, 1JCP + 2JCP = 105 Hz,
C2B10H10), 118.0, 120.7, 129.2, 149.9 ppm (s, C6H5);

31P NMR
(CDCl3): d = 30.2 (s), 36.7 (s) ppm.
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Mackewitz, C. Peters, U. Bergsträsser, S. Leininger and M. Regitz,
J. Org. Chem., 1997, 62, 7605; (c) G. Heckmann and E. Fluck, Rev.
Heteroat. Chem., 1994, 11, 65; (d) W. Brieden and T. Kellersohn,
Chem. Ber., 1993, 126, 845; (e) M. Baudler and G. Kufprat,
Z. Anorg. Allg. Chem., 1986, 533, 153.
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C3–N1 1.472(7), N1–C4 1.447(7), C4–P2 1.869(6), P2–C2 1.895(6),
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C4–N1–C3 111.3(5) (ellipsoids are shown at 50% probability).
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