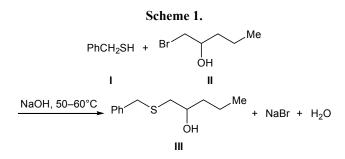
Synthesis of 2-Aminomethoxy-1-benzylsulfanylpentanes

E. G. Mamedbeili^a, I. A. Dzhafarov^b, K. A. Kochetkov^c, T. G. Kyazimova^a, Kh. I. Gasanov^b, and S. T. Alieva^a

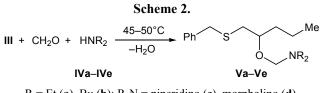
^a Mamedaliev Institute of Petrochemical Processes, National Academy of Sciences of Azerbaijan, pr. Khodzhały 30, Baku, Az 1025, Azerbaijan e-mail: eldar_mamedbeyli@mail.ru

^b Azerbaijan Pedagogical University, Baku, Azerbaijan

^c Nesmeyanov Institute of Organometallic Compounds, Russian Academy of Sciences, ul. Vavilova 28, Moscow, 119991 Russia


Received February 23, 2010

Abstract—Mannich condensation of 1-benzylsulfanylpentane with equimolar amounts of formaldehyde and secondary amine gave in 3–4 h at 45–50°C the corresponding 2-aminomethoxy-1-benzylsulfanylpentanes in 72–76% yield.


DOI: 10.1134/S1070428011060029

Organic compounds containing both nitrogen and sulfur atoms exhibit strong and diverse biological activity. Effective antiviral, antitumor, neurotropic, and antibacterial agents were found among such compounds [1]. Some nitrogen-and-sulfur-containing derivatives are used as antioxidant, anticorrosion, and antimicrobial dopes to fuels and oils [2]. An important problem is search for new N,S-containing compounds and improvement of general procedures for their synthesis [3].

Mannich reaction is widely used in the synthesis of organic compounds containing nitrogen and sulfur atoms [4]. While continuing our studies on the chemistry of dialkylamino derivatives of aryl(alkyl)sulfanylalkanes [5], in the present work we synthesized aminomethoxy derivatives of 1-benzylsulfanylpentane and examined their antimicrobial activity. In the first step of our study we synthesized previously unknown 1-benzylsulfanylpentan-2-ol (III) by reaction of

phenylmethanethiol (I) with an equimolar amount of 1-bromopentan-2-ol (II) in alkaline medium (40% aq. sodium hydroxide, 50–60°C, 3–4 h; Scheme 1). Alcohol III was then brought into Mannich condensation with formaldehyde and secondary amines IVa-IVe taken at an equimolar ratio. The Mannich reactions were carried out at 45–50°C (reaction time 3–4 h), and the products were new 2-aminomethoxy-1-benzylsulfanylpentanes Va–Ve (Scheme 2).

 $R = Et (a), Bu (b); R_2N = piperidino (c), morpholino (d), azepan-1-yl (e).$

Alcohol **III** and amines **Va–Ve** were isolated as colorless liquids with a sharp odor. Compounds **Va–Ve** are insoluble in water but are readily soluble in organic solvents (ethanol, acetone, benzene, CHCl₃, CCl₄, etc.). Their structure was determined on the basis of their elemental compositions and IR, ¹H NMR, and mass spectra. The purity of the initial compounds and products and composition of the reaction mixtures were monitored by gas–liquid chromatography.

The IR spectrum of **III** contained a broad absorption band in the region of 3625 cm^{-1} , which is typical

of stretching vibrations of hydroxy group (v_{OH}) in secondary alcohols; no such band was present in the IR spectra of Va-Ve. Compounds III and Va-Ve displayed in the IR spectra absorption bands at 2910-2895 and 2850–2830 cm⁻¹ due to vibrations of C-H bonds in CH₃ and CH₂ groups, respectively. Stretching vibrations of aromatic C-C bonds in Va-Ve gave medium-intensity absorption bands at 1600-1585 and 1500-1400 cm⁻¹. Medium-intensity bands at 3100-3050 cm⁻¹ belong to stretching vibrations of C-H bonds in the benzene ring. The IR spectra of III and Va-Ve also contained strong absorption bands in the region 700-650 cm⁻¹ due to out-of-plane bending vibrations of C–H bonds (δ_{C-H}). Stretching vibrations of the C-O bonds appeared as a strong band at 1100-1050 cm⁻¹, and C–N vibrations gave rise to a mediumintensity band at 1250–1200 cm⁻¹. In the IR spectra of Va-Ve we also observed absorption bands in the region 735–730 cm⁻¹, which are typical of C–S stretching vibrations.

The ¹H NMR spectra of III and Va–Ve were consistent with the assumed structures. Compounds III and Va–Ve displayed in the mass spectra the corresponding molecular ion peaks and fragment ion peaks.

EXPERIMENTAL

The IR spectra were recorded on a UR-20 spectrometer. The ¹H NMR spectra were measured on a Bruker WP-400 spectrometer (400 MHz) from solutions in CDCl₃ using tetramethylsilane as internal reference. The mass spectra (electron impact, 70 eV) were obtained on a VG-7070E mass spectrometer. The densities d_4^{20} (g/cm³) were determined by weighing precisely measured volumes, and the refractive indices $n_{\rm D}^{20}$ were measured using an IRF-22 refractometer. Chromatographic analysis of the reaction mixtures and products was performed on an LKhM-8MD chromatograph equipped with a thermal conductivity detector and a 300×3 -mm steel column packed with 5% of polyethylene glycol succinate on Dinokhrom P; carrier gas helium, flow rate 40 cm³/min; oven temperature 150°C, injector temperature 240°C.

1-(Benzylsulfanyl)pentan-2-ol (III). 1-Bromopentan-2-ol (II), 83.5 g (0.5 mol), was added dropwise to a mixture of 62 g (0.5 mol) of phenylmethanethiol (I) and 20 g (0.5 mol) of sodium hydroxide in 30 ml of water (a 40% solution) under vigorous stirring at 50°C. The mixture was stirred for 3–4 h at 50–60°C and cooled, 50 ml of benzene was added, the aqueous phase was separated, and the organic phase was

washed with water until neutral washings and dried over MgSO₄. The solvent was distilled off, and the residue was distilled under reduced pressure. Yield 73.6 g (70%), bp 146–148°C (1 mm), $n_{\rm D}^{20} = 1.5476$, $d_4^{20} = 1.0528$; MR_D = 63.42, calcd. 63.76. IR spectrum, v, cm⁻¹: 3625 (OH), 2910 (CH₃), 2850 (CH₂), 3070 (C-H_{arom}), 1590 (C=C_{arom}), 1050 (C-O), 730 (C-S). ¹H NMR spectrum, δ , ppm: 0.9 t (3H, CH₃), 1.5 m (4H, CH₂), 2.5 t (2H, CH₂S), 2.8 m (OH), 3.5 t (OCH), 3.8 s (2H, PhCH₂), 7.30 m (1H, *p*-H), 7.34 m (2H, *m*-H), 7.36 m (2H, *o*-H). Mass spectrum, m/z (I_{rel} , %): 210 (10) $[M]^+$, 193 (100) $[M - OH]^+$, 179 (8) [M - $OH - CH_2$ ⁺, 138 (72) $[C_8H_{10}S]^+$, 135 (19) $[M - M_2]^+$ $C_{11}H_9 - H_2O$ ⁺, 122 (6) $[C_7H_6S]^+$, 95 (50) $[PhCH_2]^+$. Found, %: C 68.34; H 8.56; S 15.12. C12H18OS. Calculated, %: C 68.54; H 8.62; S 15.24. M 210.34.

2-Aminomethoxy-1-benzylsulfanylpentanes Va– Ve (general procedure). Freshly distilled amine **IVa– IVe**, 0.03 mol, was added dropwise to a solution of 0.03 mol of alcohol **III** and 0.03 mol of formaldehyde (generated from paraformaldehyde during the process) in 30 ml of anhydrous benzene under stirring at 20– 22°C. The mixture was stirred for 1 h at that temperature and for 3–4 h at 45–50°C. The solvent was distilled off, and the residue was distilled under reduced pressure.

N-[1-(Benzylsulfanyl)pentan-2-yloxymethyl]-N-ethylethanamine (Va) was synthesized from 6.3 g (0.03 mol) of compound III, 0.9 g (0.03 mol) of paraformaldehyde, and 2.19 g (0.03 mol) of diethylamine (**IVa**). Yield 6.4 g (72%), bp 152–153°C (1 mm), $n_{\rm D}^{20}$ = 1.5148, $d_4^{20} = 0.9776$; $MR_D = 91.09$, calcd. 91.01. IR spectrum, v, cm⁻¹: 3070 (C-H_{arom}), 2900 (CH₃), 2840 (CH₂), 1600 (C=C_{arom}), 1200 (C-N), 1100 (C-O), 735 (C–S). ¹H NMR spectrum, δ , ppm: 1.0–1.18 m (9H, CH₃), 1.35 m (4H, CH₂), 2.65–2.95 m (6H, NCH₂, SCH₂), 7.36 m (2H, o-H), 3.40 t (OCH), 3.80 s (2H, PhCH₂), 4.20 d.d (2H, OCH₂N), 7.34 m (2H, *m*-H), 7.30 m (1H, *p*-H). Mass spectrum, *m/z* (*I*_{rel}, %): 295 (7) $[M]^+$, 223 (11) $[M - C_4 H_{10} N]^+$, 192 (9) $[M - C_5 H_{11} N - C_5 H_{11} N]^+$ H_2O ⁺, 153 (72) $[M - C_8H_{10}S]^+$, 122 (100) $[C_7H_6S]^+$, 95 (36) $[PhCH_2]^+$, 72 (6) $[C_4H_{10}N]^+$. Found, %: C 68.88; H 9.82; N 4.70; S 10.75. C₁₇H₂₉NOS. Calculated, %: C 69.10; H 9.89; N 4.74; S 10.85. M 295.5.

N-[1-(Benzylsulfanyl)pentan-2-yloxymethyl]-*N*-butylbutanamine (Vb) was synthesized from 6.3 g (0.03 mol) of compound III, 0.9 g (0.03 mol) of paraformaldehyde, and 3.87 g (0.03 mol) of dibutylamine (IVb). Yield 8.02 g (76%), bp 182–184°C (1 mm), $n_D^{20} = 1.5024$, $d_4^{20} = 0.9481$; $MR_D = 109.5$, calcd. 109.6. IR spectrum, v, cm⁻¹: 3060 (C–H_{arom}), 2910 (CH₃), 2850 (CH₂), 1585 (C=C_{arom}), 1200 (C–N), 1050 (C–O), 735 (C–S). ¹H NMR spectrum, δ, ppm: 0.95 t (9H, CH₃), 1.35–1.45 m (12H, CH₂), 2.45–2.65 m (6H, SCH₂, NCH₂), 3.40 t (OCH), 3.80 s (2H, PhCH₂), 4.25 d.d (OCH₂N), 7.35 m (5H, C₆H₅). Mass spectrum, m/z (I_{rel} , %); 352 (6) [M + H]⁺, 351 (27) [M]⁺, 333 (27) [M – H₂O]⁺, 193 (36) [M – C₉H₂₀NO]⁺, 122 (100) [C₇H₆S]⁺. Found, %: C 71.58; H 10.53; N 3.94; S 9.03. C₂₁H₃₇NOS. Calculated, %: C 71.74; H 10.60; N 3.98; S 10.43. M 351.61.

N-[1-(Benzylsulfanyl)pentan-2-yloxymethyl] **piperidine (Vc)** was synthesized from 6.3 g (0.03 mol) of alcohol III, 0.9 g (0.03 mol) of paraformaldehyde, and 2.55 g (0.03 mol) of piperidine (IVc). Yield 6.83 g (74%), bp 176–178°C (1 mm), $n_{\rm D}^{20} = 1.5282$, $d_4^{20} =$ 1.0094; $MR_{\rm D} = 93.83$, calcd. 93.60. IR spectrum, v, cm⁻¹: 3050 (C-H_{arom}), 2895 (CH₃), 2850 (CH₂), 1585 (C=C_{arom}), 1250 (C-N), 1050 (C-O), 650 (C-S). ¹H NMR spectrum, δ, ppm: 0.95 t (3H, CH₃), 1.35 m (4H, CH₂), 1.63 m (6H, CH₂), 2.40 m (2H, SCH₂), 3.40 t (OCH), 3.80 s (2H, PhCH₂), 4.25 d.d (2H, OCH₂N), 7.35 m (5H, C₆H₅). Mass spectrum, m/z $(I_{\rm rel}, \%); 307 (6) [M]^+, 289 (8) [M - H_2O]^+, 264 (5)$ $[M - C_3H_7]^+$, 204 (7) $[M - C_{15}H_{11}N - H_2O]^+$, 193 (5) $[C_{12}H_{17}S]^+$, 122 (100) $[C_7H_6S]^+$, 91 (78) $[PhCH_2]^+$. Found, %: C 70.16; H 9.43; N 4.51, S 10.34. C₁₈H₂₈NOS. Calculated, %: C 70.31; H 9.51; N 4.55; S 10.43. M 307.51.

N-[1-(Benzylsulfanyl)pentan-2-yloxymethyl]morpholine (Vd) was synthesized from 6.3 g (0.03 mol) of alcohol III, 0.9 g (0.03 mol) of paraformaldehyde, and 2.61 g (0.03 mol) of morpholine (IVd). Yield 6.96 g (75%), bp 182–184°C (2 mm), $n_{\rm D}^{20} = 1.5278, d_4^{20} = 1.0456; MR_{\rm D} = 91.11, \text{ calcd. } 90.72.$ IR spectrum, v, cm^{-1} : 3060 (C–H_{arom}); 2900 (CH₃); 2840 (CH₂); 1600, 1500 (C=C_{arom}); 1250 (C-N); 1100 (C–O); 750 (C–S). ¹H NMR spectrum, δ , ppm: 0.95 t (3H, CH₃), 1.35 m (4H, CH₂), 2.60–2.80 m (10H, OCH₂, NCH₂, SCH₂), 3.20 quint (OCH), 3.80 s (2H, PhCH₂), 4.20 d.d (2H, OCH₂N), 7.30 m (5H, C₆H₅). Mass spectrum, m/z (I_{rel} , %): 309 (6) $[M]^+$, 291 (8) $[M - H_2O]^+$, 225 (3) $[M - C_4H_6NO]^+$, 210 (8) $[M - C_4H_6NO]^+$ C_5H_9NO ⁺, 192 (5) $[M - C_5H_{11}NO_2]^+$, 99 (100) [C₅H₉NO]⁺. Found, %: C 65.81; H 8.73; N 4.49; S 10.28. C₁₇H₂₇NO₂S. Calculated, %: C 65.98; H 8.79; N 4.53; S 10.36. M 309.47.

1-[1-(Benzylsulfanyl)pentan-2-yloxymethyl]azepane (Ve) was synthesized from 6.3 g (0.03 mol) of alcohol **III**, 0.9 g (0.03 mol) of paraformaldehyde, and 2.97 g (0.03 mol) of hexamethyleneimine (**IVe**). Yield 7.33 g (76%), bp 180–182°C (1 mm), $n_D^{20} = 1.5268$, $d_4^{20} = 1.0062$; $MR_D = 98.21$, calcd. 98.24. IR spectrum, v, cm⁻¹: 3050 (C–H_{arom}); 2895 (CH₃); 2830 (CH₂); 1600, 1500 (C=C_{arom}); 1200 (C–N); 1050 (C–O); 735 (C–S). ¹H NMR spectrum, δ , ppm: 0.95 t (3H, CH₃), 1.35 m (4H, CH₂), 1.62 t (8H, CH₂), 2.60 m (4H, NCH₂), 3.35 t (OCH), 3.80 s (2H, PhCH₂), 4.20 d.d (2H, OCH₂N), 7.30 m (5H, C₆H₅), Mass spectrum, m/z(I_{rel} , %): 321 (5) [M]⁺, 230 (5) [M – C₆H₅N]⁺, 213 (8) [M – C₆H₆NO]⁺, 138 (27) [C₈H₁₀S]⁺, 91 (100) [C₆H₅N]⁺. Found, %: C 70.75; H 9.66; N 4.33; S 9.89. C₁₉H₃₁NOS. Calculated, %: C 70.98; H 9.72; N 4.36; S 9.97. *M* 321.54.

REFERENCES

- Mashkovskii, M.D., Lekarstvennye sredstva (Drugs), Moscow: Novaya Volna, 2006; Kharkevich, D.A., Farmakologiya (Pharmacology), Moscow: Geotar Meditsina, 2005; Beletskaya, I.P. and Cheprakov, A.V., Coord. Chem. Rev., 2004, vol. 248, p. 2337; Beletskaya, I.P. and Ananikov, V.P., Eur. J. Org. Chem., 2007, p. 3431; Fetterly, B.M., Janna, N.K., and Verkade, J.G., Tetrahedron, 2006, vol. 62, p. 440.
- Kuliev, A.M., *Khimiya i tekhnologiya prisadok k maslam i toplivam* (Chemistry and Technology of Oil and Fuel Additives), Moscow: Khimiya, 1972; Allakhverdiev, M.A., Akperov, N.A., Mustafaev, K.N., and Farzaliev, V.M., *Neftekhimiya*, 2001, vol. 41, p. 325; Allakhverdiev, M.A. Mustafaev, K.N., and Farzaliev, V.M., *Russ. J. Org. Chem.*, 2002, vol. 38, p. 1620.
- Voronkov, M.G. and Deryagina, A.V., Usp. Khim., 2000, vol. 69, p. 50; Corbet, J.-P. and Mignam, G., Chem. Rev., 2006, vol. 106, p. 2651; Paut, L., Sen, T.K., and Panmiyamurthy, T., Angew. Chem., Int. Ed., 2007, vol. 46, p. 2046.
- Dotsenko, V.V., Krivokolysko, S.G., and Litvinov, V.P., *Izv. Ross. Akad. Nauk, Ser. Khim.*, 2007, p. 2397; Xiaozin, B., Zhang, D., Huang, Z., and Yong, Q., *Synlett*, 2006, p. 3419; Dotsenko, V.V., Krivokolysko, S.G., Rusakov, E.B., Gulov, A.V., and Litvinov, V.P., *Khim. Geterotsikl. Soedin.*, 2007, p. 1075; Dotsenko, V.F., Krivokolysko, S.G., and Litvinov, V.P., *Monatsh. Chem.*, 2007, vol. 138, p. 489; Gonzales-Gomes, J.C., Foubelo, F., and Yus, M., *Tetrahedron Lett.*, 2008, vol. 49, p. 2343.
- Mamedbeili, E.G., Dzhafarov, I.A., Kochetkov, K.A., Kyazimova, T.G., Talybov, A.G., and Gasanov, Kh.I., *Neftekhimiya*, 2009, vol. 49, p. 532; Dzhafarov, I.A., Mamedbeili, E.G., Nagiev, A.V., Gasanov, V.S., and Gasanov, Kh.I., *Zh. Prikl. Khim.*, 2009, vol. 82, p. 322.