Teteahedron Letters, Val 33, Na 14, pp 1897-1000 1962 0040.4039/92 $3 00 + 00
Printed in Great Bitam Pergamon Press Lid

Erythroselective Aldol Condensation of Amine Free
2-t-Butyl-5-Methyl-2-Phenyl-1,3-Dioxolan-4-one Lithium Enolate
Synthesis of the Ethyl Acetolactate Enantiomers
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SUMMARY © Generated by halogen metal exchange, the sterically hindered 2-t-buty(-S-methyl-2-phenyl
-1 3-dioxolan-d-one lithium_ enolate reacts. in. an erythroselective way. with. acetaldehvde  Separation. of the

resulnng diastereomers, followed by alcoholvsis lead to the corresponding enantiometically pure diols.
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5-Monosubstituted- 1,3-dioxolan-4-ones became very popular tools in diastereoselective synthesis in recent
years.!2 Our previous efforts in the area of diastereoselective dioxolanone formation using an acetal exchange
technique, allowed us to prepare with high selectivity, either in weakly or strongly acidic medium,® new
sterreally hindered 2.2-disubstitirted-1,3-dioxolan-4-ones, leading in several instances to crystalline derwvatives,
easy to punfy to an enantiomerically pure state  We report here our prehimunary results on the diastereoselective
reactivity of 2-t-butyl-3-methyl-2-phenyi-1,3-dioxolan-4-one Lthium enolate 1, and its apphecation to the
pteparation of both enantiomerically pure ethyl 2-hydroxy-2-methyl-3-oxo-butyrates 2 and 3 (R- and S- ethyl
acetolactates) 4 Previously published synthesis of the corresponding methyl esters required a low yielding
resalution step ¢

Deprotonation of dioxolanones 15 usually achieved with strong base (LDA, LHMDS).”® but has ptoven difficult
in some circonstances ¢ Deprotonanon of 4 followed by quenching with deuterated acetic acid or benzyl

enolate generation had to be devised, able to generate lithium enolate 1

brormude !? failed 10 give in good yield a-deuterated dioxolanone or alkylation product Y Another method of
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Organometallic reagents have been shown to reduce a-bromocarbonyl derrvatives to the cortesponding enolates,

and these may then be reacted further 1213 The a-bromodioxolanone 5 was easily obtained from 4 with NBS 1n
CCly, at reflux, with AIBN mnation.'# The radical stablizing capto-dative!’ center « to the carbonyl facibitates
this radical bromination  Only one stereomer was observed, with the bromine entermg on the least hindered side
of the heterocycle, 5 underwent clean balogen metal exchange in ether at -78°C with phenyllithium. Lathium
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enolate 115 consequently generated free of any other reactive species 1617 Aldol condensation was investigated

with acetaldehyde, acetone and butanone,
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Acetone reacted 1 a sterecselective manner from the least hindered side to yweld a single stereomer 7a .
2-Butanone gave two diastercomers 7b and 7c in a 55:45 rat0,'® both arising from a sumular transiton state 1T
(R'= CH; or C,Hs, R%= C;H; or CH;), with a small differentiation between methyl and ethyl 1% Acetaldehyde
reacted easily to yield two out of four possible diastereomers in a 37°63 ratio ® To establish the diastereofacial
selectivity in this condensation, this 1someric mixture 8a and 8b was oxidized with PCC  Surpnisingly, a
diastereomenc mixture of keto-dervatives 9 was obtamed (50.500.'%1% This suggests a stereochemical control
af the center R o carbonyl, not o, as would be expected trom sunilat cases® and the above tesults with acetone.
This was unambiguousty established by opening the diastereomeric mixture of dioxolanones 8a and 8b in
refluxing ethanol containing a catalytic amount of sodium ethoxide, to a single product 10 ('H and ’C NMR},
thus confirming two enantiotopic aldol fragments. A mixture of erythra and thieo aldols 10 and 11 (40 60y'8
was prepared by NaBH, reduction of ¢t ethyl 2-hydroxy- 2-methyl-3-oxo-butyrate 12 The racemic threo aldol
11 was selectively obtained by cis- hydroxylanon of ethyl tiglate 13 with cat OsOy/N-methylmorpholine
N oxide 2 Comparison of NMR spectra unambiguously confirmed the erythro configuration for 18 . The
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absolute configuratton of the products was clear from the TH NMR spectra with the shielding/deshielding effect
due to the phenyl and t-butyl substituents i 8 The major isomer 8b 15 obtatned by the aldehyde entering from
the least hindered face (cis o phenyl)
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The analysis of the anticipated transition states rationalizes this fact’
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Ketones react only through T.8 II (R'# H, R?# H) The aldehydic hydrogen, much smaller than methyl, does
not mteract severely with the bulky t-butyl or phenyl groups (T.S. I and II, R'= H), thus allowing aldehydes to
approach from both sides of the enolate, but preferubly with this hydrogen onented towards the acetal center.
Reaction involving the transition state 1n which the methyl group 1s oriented towards the phenyl (T S. 11, Rl=
CH,, R?= H), simular to the ketone transition state, is kinetically disfavored. due to steric interacnon The
consequence of these arrangements ts generation of two enantiotopic erythro aldol fragments, the acetal center
of the dioxolanone leading to diastereomers.

To obtain both enantiomeric aldols 10a, 10b, the diastereomeric muxture of dioxolanones 8a and 8b was
converted to the acetates (AL,O/EuN), the resulting diastereomers separated by chromatography on silicagel,
and recrystallized (heptane) to punty. Sodwwm ethoxide catalyzed ethanolysis afforded separately the two
erythro aldols 10a, 10b and final oxidaton (DMSOfoxalyl chloride/Et;N)?!12? yielded the (R) and (S)
enantiomers 2 and 3. The enantiomenc purity, investigated with the Eu(hfe); shift reagent, was shown to be

better than 99% for both enantiomets 23

Thus, our new methodology for enolate generation from sterically hindered dioxolanones gives access to
enantiomeric erythro aldol fragments?® from aldehydes and chiral o-hydroxy acids. It appears complementary to
previously known methods which allow to control the a-center chirality only  Further application of this

selectivity to the synthesis of biologically important compounds is currently under investiganon.
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(8,3H) 105 (s.9H.tBu). 13C NMR; &(ppm): 173 86(4-C); 140 84; 12917, 128 36; 113.92(2-C); 8690,
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gd,]=6.5 Hz.3H.CHCH,). *C NMR; 3(ppm). 175.37(ester), 76,94C-2), 72.07, 62.01, 22.21. 17.54; 14.04.
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