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A B S T R A C T

A concise and efficient approach was developed for the synthesis of mono-substituted and di-substituted
pyrimidines products via palladium-catalyzed amination of chloro-substituted 5-nitropyrimidines and
amines. This synthetic methodology can produce various di-substituted pyrimidines in high yields with
good functional group tolerance, and provide a complementary tool for the syntheses of important
intermediates of nucleosides and purines with bioactivities.
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1. Introduction

Growing efforts in the past decades were paid to develop
methods toward the functionalization of pyrimidine derivatives
[1]. These six-membered heterocycles are an important class of
nitrogen-containing heterocyclic compounds, which either display
a wide variety of biological activities by themselves [2] or can be
used as key intermediates of medicinally relevant molecules [3]. A
particularly interesting subset of these molecules is chloro-
substituted 5-nitropyrimidines, which are intermediates of several
bioactive nucleoside analogs. For example, clitocine, an antitumor
nucleoside isolated from the mushroom Clitocybe inversa, is
featured with a 5-nitropyrimidine moiety [4]. Reverse transcrip-
tase inhibitors tenofovir [5] and kinase inhibitor purinone
derivatives [6] can also be synthesized from chloro-substituted
5-nitropyrimidines, which demonstrates their unique roles as
milestones for substituted purine syntheses (Fig. 1) [7].

In the course of our ongoing syntheses of clitocine analogs, a
series of modified bases are needed for studies on structure-
activity relationships. The present synthetic method under
aromatic nucleophilic substitution reaction (SNAr) of
4,6-dichloro-5-nitropyrimidine and nucleophiles suffers from
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low selectivity, long reaction time and troublesome operation
procedure [8]. On the other hand, palladium-catalyzed coupling
processes have become an indispensable tool for the synthesis of
bioactive substance and organic building blocks, and C–N coupling
reactions of aryl halides with amines catalyzed by palladium have
become an important tool for aromatic amines [9]. But to our
surprise, there have been scarce investigations on Pd-catalyzed
coupling of pyrimidine halides and amines [10], presumably due to
their ability to inhibit and/or deactivate the palladium catalyst [11].
In this contribution, we report the scope of Pd-catalyzed amination
for a number of chloro-substituted 5-nitropyrimidines with
different amines.

2. Results and discussion

We initiated our studies by screening conditions for the
coupling of 4,6-dichloro-5-nitropyrimidine 1 and 4-anisidine 2
(Table 1) [12]. To improve the yield of the reaction, various
temperatures, molar ratios, solvents, bases and ligands were
examined. For this Pd-catalyzed coupling reaction system, the best
yield is 10%–20% higher than that under original nucleophilic
reaction conditions [8a]. The experimental results also prove that
palladium and ligand are beneficial for this reaction (Table 1,
entries 1–3). The Pd-catalyzed aryl amination reactions most likely
proceed by the oxidative addition of chloro-substituted 5-nitro-
pyrimidines to a Pd0 species, followed by the formation of an
intermediate “(BINAP)Pd(Ar)(Cl)(NR1R2)” which BINAP may switch
edica, Chinese Academy of Medical Sciences. Published by Elsevier B.V. All rights
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Fig. 1. Biologically active compounds synthesized from chloro-substituted 5-
nitropyrimidines.

Table 1
Pd-catalyzed cross-coupling of 1 with 2 under various conditions.a

Entry 1 (mmol) Ligand Base Yield (%)b

1 1.5 Null Cs2CO3 33.6c

2 1.5 Null Cs2CO3 34.0
3 1.5 R-BINAP Cs2CO3 53.0
4 1.5 S-BINAP Cs2CO3 52.2
5 1.5 Rac-BINAP Cs2CO3 52.0
6 1.5 Xantphos Cs2CO3 43.2
7 1.5 Xphos Cs2CO3 42.3
8 1.5 R-BINAP K2CO3 52.4
9 0.75 R-BINAP K2CO3 25.0d

10 0.75 R-BINAP K2CO3 35.2e

11 0.75 R-BINAP K2CO3 40.1
12 0.375 R-BINAP K2CO3 23.1
13 1.5 R-BINAP K2CO3 42.0f

14 1.5 Null Cs2CO3 45.2g

15 1.5 Null Cs2CO3 36.9g

16 1.5 Null (CH3)3CONa 23.2h

17 1.5 Null (CH3)3CONa 5.1h

a Reaction conditions: 1 (1.5 mmol), 4-anisidine 2 (0.5 mmol), base (0.7 mmol),
5 mL toluene as solvent, 25 �C, 3.5 h.

b Isolated yield.
c Catalyst-free.
d Temperature was 75 �C.
e Temperature was 65 �C.
f Solvent was 5 mL THF.
g Solvent was 5 mL DMF.
h Solvent was 5 mL DMSO.

Fig. 2. Structures of the five phosphine ligands.

Scheme 1. Scope of Pd-catalyzed aminations of 1 with different alkylamines and arylam
toluene as solvent, 25 �C, 3.5 h. All yields are isolated yield.
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to a monodentate binding mode. The chlorine is then dissociated
from the intermediate with the help of base, to yield neutral
complex “(BINAP)Pd(Ar)(NR1R2)” which BINAP may switch to a
bis-ligated mode. Finally the neutral complex undergoes reductive
elimination to afford the desired arylamine and regenerates the
Pd0 catalyst [13].

As depicted in Table 1, using Pd2(dba)3 as the precatalyst, five
phosphine ligands (R-BINAP, S-BINAP, Rac-BINAP, Xantphos and
Xphos, Fig. 2) [14] were screened for this reaction (entries 3–7). On
the choice of ligands, we screened the most general ones for the
cross-coupling reaction without regard to chirality. All other
ligands examined here afforded yields inferior to BINAP for this
reaction, and unsurprisingly all R-BINAP, S-BINAP and Rac-BINAP
give similar results. So we chose R-BINAP as the ligand because of
the highest yield. Although bases played a very important role in
the Buchwald–Hartwig coupling reaction, which had different
results in different solvents [13a], replacement of cerium carbon-
ate with potassium carbonate gave similar results (yield 52.4% and
53.0%; Table 1, entries 8 and 3). So potassium carbonate was chosen
as base for the rest of experiments due to cost. Three different
temperatures are screened, and results showed that low tempera-
ture was preferable for the synthesis of the title product 3 (Table 1,
entries 9–11). It could be explained by strong nucleophilicity of
4-anisidine at higher temperature and selectivity issue due to
existence of two labile chlorine groups. A high molar ratio between
4,6-dichloro-5-nitropyrimidine 1 and 4-anisidine 2 was needed for
a better yield. Substantially low yields were found when lower
molar ratios were used (Table 1, entries 8, 11, 12). Another
commonly used solvent THF was also tried in this reaction, but it
gave lower yield (Table 1, entry 13). Four experiments were carried
under different strong bases and high polarity solvents to compare
with the result obtained through Pd-catalyzed cross-coupling
reaction. As shown in Table 1, the Pd-catalyzed reaction system has
a higher yield (entries 8, 14–17).

Using this optimized protocol, with Pd2(dba)3 (2 mol%),
R-BINAP (6 mol%), and K2CO3 (1.4 equiv) in toluene, we assessed
the scope of the amine coupling partners for the amination of
4,6-dichloro-5-nitropyrimidine (Scheme 1). The palladium-
ines. Reaction conditions: 1 (1.5 mmol), amine 2 (0.5 mmol), base (0.7 mmol), 5 mL
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Scheme 2. Scope of 4-amino-6-chloro-5-nitropyrimidine coupling with aliphatic, heterocyclic and aromatic amines. Reaction conditions: 4 (0.5 mmol), amine 2 (1.0 mmol),
base (0.7 mmol), 5 mL acetonitrile as solvent, 25 �C, 3.5 h. All yields are isolated yield.
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catalyzed coupling reaction was proved to be efficient for a number
of amines, but the yields varied greatly among different amines. As
shown in Scheme 1, this system was found to be effective for
electron-rich aliphatic primary and secondary amines (3a–3f).
Medium yields (3g–3j) are usually afforded when primary aryl-
amines with electron-rich substituents were used as substrates,
while arylamines with electron-deficient groups such as cyano
suffered from substantial drop in yields (3k–3m).

We also observed that ortho substituent exerts more influence
on arylamine coupling reaction than para substituent, and meta
substituent has smallest influence on reactant’s activity. For
example, a methoxy in ortho,meta and para position of aniline
(2h–2j) gave yields as 60.1%, 49.1% and 52.4% respectively,
compared with 49.6% of aniline. Another case was the ortho, meta
and para-substituted cyano analogs showed the similar results to
give yields as 9.7%, 24.4% and 13.3% respectively. The reason of
these three low yields (3k–3m) were the substrates did not react
completely. Arylamines appear to be more sensitive to the
electronic effect than steric crowding and typically arylamines
with electron-deficient substituents would require more reaction
time or higher temperature and afford products in diminished
Scheme 3. Scope of 6-chloro-5-nitropyrimidine coupling with aliphatic, heterocyclic a
(0.7 mmol), 5 mL toluene as solvent, 25 �C, 3.5 h. All yields are isolated yield. a10 h. b3 (
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yields. Secondary arylamines gave higher yields than correspond-
ing primary ones (3g vs. 3n, 3j vs. 3o), which is probably due to the
difficulty of further coupling of secondary amines and mono-
substituted products under current reaction conditions. The
results also illustrate unambiguously again that electron-rich
group in secondary arylamines (methoxy, 2o) is favorable to the
coupling reaction.

To further demonstrate the accessibility of this method to C–N
coupling reaction of mono-substituted pyrimidines, we examined
the reaction of 4-amino-6-chloro-5-nitropyrimidine with multiple
aliphatic, heterocyclic and aromatic amines under the condition as
shown in Scheme 2. Acetonitrile was selected as solvent because of
products’ high solubility. We can see that this reaction system was
effective for synthesizing amino-substituted pyrimidines. These
compounds could be used as intermediates of 6-substituted purine
derivatives [15].

Finally, we turned our attention to amination reactions using 6-
chloro-5-nitropyrimidines as electrophiles to synthesize di-
substituted 5-nitropyrimidines. Under the slightly modified
reaction conditions, various aliphatic, heterocyclic and aromatic
amines of different electronic and steric properties represent
nd aromatic amines. Reaction conditions: 3 (0.5 mmol), amine 2 (1.5 mmol), base
1.5 mmol), amine 2 (0.5 mmol), 4.5 h. c4.5 h.
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useful coupling partners for the transformation (Scheme 3). This
reaction system provide a complementary tool for the synthesis of
4-((5-nitropyrimidine-4-yl)amino)benzimidamide derivatives, a
potent PRMT1 inhibitor [16], and 2,6,9-trisubstituted purine
derivatives which act as antitumor agents [17]. This synthetic
methodology can be very important to exploit practical value in
medicine and pharmacology.

3. Conclusion

In summary, we have developed a palladium-catalyzed C–N
coupling reaction of chloro-substituted 5-nitropyrimidines and
amines with high yields. Yields depended greatly on amines’
electronic effect and steric crowding when synthesizing mono-
substituted products. High yields are afforded when mono-
substituted 5-nitropyrimidines worked as aryl halides. And the
scope of this reaction system is much broad. We believe that this
methodology would provide an effective and practical tool for the
synthesis of pyrimidine derivatives and correlative purine com-
pounds.

4. Experimental

All reactions were performed under argon atmosphere.
Toluene, tetrahydrofuran and acetonitrile were dried over 3 Å
molecular sieve, fractionally distilled under reduced pressure and
stored under argon atmosphere. Pd2(dba)3 was purchased from
Creasyn, R-BINAP, S-BINAP, Rac-BINAP, Xantphos and Xphos were
purchased from Hwrk Chem. Co., Ltd. and used as received. 5-
Nitropyrimidines were purchased from commercial vendors and
used as received. Amines were purchased from TCI Co., Ltd.,
Aladdin Co., Ltd. or J&K Co., Ltd. CDCl3 and DMSO were purchased
from Henwos Co., Ltd. and used as received. 6-Chloro-N-methyl-5-
nitropyrimidin-4-amine, 4-(6-chloro-5-nitropyrimidin-4-yl)mor-
pholine and 6-chloro-N-methyl-5-nitro-N-phenylpyrimidin-4-
amine were prepared according to the procedures reported in
this paper. All other chemicals were obtained from commercial
vendors and used as received. Reaction courses and product
mixture were routinely monitored by TLC on silica gel purchased
from Merck Co., Ltd. and visualized with UV and aqueous KMnO4.
Melting points were determined on a Gallenkamp apparatus. NMR
spectra were recorded on a Bruker Avance III 600 spectrometer at
ambient temperature. High-resolution mass spectra were obtained
on a miorOTOF-QII.

4.1. General procedure for reaction of amines with 4,6-dichloro-5-
nitropyrimidine (3a–3o)

To a stirred solution of 4,6-dichloro-5-nitropyrimidine
(1.5 mmol), amine (0.5 mmol), Pd2(dba)3 (0.01 mmol), R-BINAP
(0.03 mmol) and potassium carbonate (0.7 mmol) in toluene (5 mL)
at room temperature and the mixture was under an argon
atmosphere for 3.5 h. The resulting reaction mixture was filtered
and evaporated. The residue was purified by column chromatog-
raphy on silica gel.

4.2. General procedure for reaction of amines with 6-chloro-5-
nitropyrimidine-4-amine (5a–5l)

6-Chloro-5-nitropyrimidine-4-amine (0.5 mmol), amine
(1.5 mmol), Pd2(dba)3 (0.01 mmol), R-BINAP (0.03 mmol) and
potassium carbonate (0.7 mmol) were dissolved in acetonitrile
(5 mL). The solution was stirred at room temperature for 3.5 h
under an argon atmosphere. The resulting reaction mixture was
treated with saturated brines (50 mL) and extracted with acetoni-
trile (3 � 25 mL), and dried with anhydrous Na2SO4. The anhydrous
Please cite this article in press as: M.-M. Liu, et al., Palladium-catalyzed am
Chem. Lett. (2016), http://dx.doi.org/10.1016/j.cclet.2016.11.019
Na2SO4 was removed by filtration and the filtrate was concentrat-
ed. The residue was washed with ethyl acetate (3 � 2 mL) and
diethyl ether (3 � 2 mL), filtered and dried under vacuum.

4.3. General procedure for synthesis of di-substituent pyrimidines
(6a–6o)

Amine (1.5 mmol), 3b (0.5 mmol), Pd2(dba)3 (0.01 mmol),
R-BINAP (0.03 mmol), potassium carbonate (0.7 mmol) and tolu-
ene (5 mL) were successively added into a reactor. After stirring at
room temperature for 3.5 h under an argon atmosphere, water was
added. The resulting reaction mixture was extracted with EA
(3 � 20 mL). The combined organic phases were dried over
anhydrous Na2SO4, concentrated by rotary evaporation and
purified by chromatography on silica gel.

The detailed spectral data and NMR spectra of synthesized
compounds are attached as electronic Supporting information.
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