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ABSTRACT: The first palladium-catalyzed Hiyama cross-
coupling of arylsilanes with benzyltrimethyl-ammonium salts is 
reported. The reaction proceeds smoothly to facilitate 
C(sp2)−C(sp3) bond formation via cleavage of the C−N bond, 
and provides a useful approach to various diarylmethanes with a 
broad substrate scope and excellent functional group tolerance in good to excellent yields.

Diarylmethane is an important scaffold in a large number of 
bioactive natural products and pharmaceuticals (Figure 1).1 For 
example, the marine natural product Avrainvilleol (I) which 
contains the diarylmethane unit, has been reported to exhibit 
both antibacterial2 and antioxidant activities.3 Moreover, a 
number of commercially available drugs such as Segontin (II) 
(for the treatment of coronary heart disease),4 the antidepressant 
Bifemelane (III),5 the antiallergic medicines Benadryl (IV)6 
and Tolpropamine (V)7, and the anticancer agent Piritrexim 
(VI),8 contain the diarylmethane sub-structure. The 
development of efficient methods for the synthesis of this 
skeleton has therefore attracted considerable attention over the 
past few decades.9 More specifically, classic strategies 
including the Friedel−Crafts reaction10 and the reduction of 
diarylmethane derivatives11 have been established to construct 
the diarylmethane skeleton. Although efficient, these methods 
often suffer from disadvantages, such as harsh reaction 
conditions, poor regioselectivities and difficult available 
substrates. Recently, transition metal-catalyzed cross-coupling 
reactions have emerged as powerful methods for the direct 
construction of diarylmethane derivatives,12 with palladium 
being undoubtedly one of the most effective catalysts due to its 
widespread application and versatility.13 In these palladium-
catalyzed reactions, a variety of nucleophiles have been 
employed for the syntheses of diarylmethane derivatives, with 
examples including organoboranes,14 organoindium reagents15 
and organostannanes.16 Compared with these organometallic 
reagents, organosilicon nucleophiles are an attractive 
alternative coupling partner in the palladium-catalyzed Hiyama 
coupling reaction due to their facile synthesis and low toxicity.17 
However, to date, nearly all studies of the palladium-catalyzed 
Hiyama coupling reaction have focused on C(sp2)−C(sp2) bond 
formation.18 In contrast, very few examples of the construction 
of C(sp2)−C(sp3) bonds have been reported based on this 
strategy.19 As such, a novel and efficient palladium-catalyzed 
Hiyama cross-coupling reaction for the preparation of 
diarylmethanes via C(sp2)−C(sp3) bond formation is highly 
desirable.

Recently, ammonium salts emerged as electrophiles which 
have been widely used in transition metal-catalyzed cross-
coupling reactions via C−N cleavage.20 Since the pioneering 
work by Sarandeses,21 many efforts have been made in this

Figure 1. Bioactive Compounds Containing the 
Diarylmethane Motif
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field by the groups of Wang,22 MacMillan,23 Watson,24 and 
Tortosa,25 among others.26 In this context, our group is 
interested in the palladium-catalyzed cross-coupling reaction 
via the cleavage of C−N bond,27 and we have reported the 
palladium-catalyzed Suzuki cross-coupling of benzyltrimeth-
ylammonium salts for the synthesis of diarylmethane28 and 
triarylmethane derivatives.29 Based on our previous successes, 
we envisioned that arylsilanes could also be used as coupling 
partners to react with benzylic ammonium salts for the C(sp2)- 
C(sp3) bond formation in the presence of palladium catalyst. In 
such context, we herein report the first palladium-catalyzed 
Hiyama cross-coupling of benzyltrimethyl-ammonium salts for 
the construction of diarylmethane derivatives.

Initial exploratory experiments to optimize the reaction 
conditions for the coupling reaction were performed with 
benzyltrimethylammonium salt 1a and trimethoxy(phenyl)-
silane 2a as the model substrates (Table 1). To our delight, the 
desired coupling product 3aa was indeed obtained, albeit in 20% 
yield when the reaction was performed at 120 oC for 24 h in the 
presence of 5 mol% Pd(OAc)2, 20 mol% PPh3, and 2.0 equiv of 
tetrabutylammonium fluoride (TBAF) in EtOH under a 
nitrogen atmosphere (Table 1, entry 1). A brief screening of 
palladium catalysts revealed that PdCl2(CH3CN)2 gave a 
relatively good performance (Table 1, entries 2−4). Rapid 
screening with other solvents led to a complex reaction or lower 
yields (Table 1, entries 5−9). When PPh2Cy was used as the 
ligand instead of PPh3, the coupling product was obtained with 

NMe3OTf Si(OMe)3
5 mol% PdCl2(CH3CN)2
20 mol% PPh2Cy

TBAF (2 eq)
EtOH, 120 °C, 24 h

+Ar1 Ar1Ar2 Ar2

up to 97% yield
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a dramatically increased yield (85%) (Table 1, entries 10−11). 
For the bidentate ligand BINAP, trace amounts of the product 
was obtained (Table 1, entry 12). Considering the beneficial 
effect of the fluoride ion for activation of the C−Si bond,17b 
other fluoride salts such as AgF, CsF, and KF were examined 
in this coupling reaction, but a dramatic decrease in reactivity 
was observed (Table 1, entries 13−15). In addition, only trace 
amount of product was observed when the reaction was 
performed in the absence of an additive (Table 1, entry 16). 
Furthermore, reducing of the amount of 2a from 2.0 equiv to 
1.5 equiv did not result in any remarkable decrease in the 
reaction efficiency (Table 1, entry 18).

Table 1. Optimization of the Reaction Conditionsa

NMe3OTf Si(OMe)3 Pd cat., ligand

additive, solvent
120 °C, 24 h

1a

+

2a 3aa

entry catalyst ligand addit
ive solvent yield (%)b

1 Pd(OAc)2 PPh3 TBAF EtOH 20
2 PdCl2 PPh3 TBAF EtOH 26
3 Pd2(dba)3 PPh3 TBAF EtOH 11
4 PdCl2(CH3CN)2 PPh3 TBAF EtOH 55
5 PdCl2(CH3CN)2 PPh3 TBAF PhMe 7
6 PdCl2(CH3CN)2 PPh3 TBAF DMSO 10
7 PdCl2(CH3CN)2 PPh3 TBAF DMF 8
8 PdCl2(CH3CN)2 PPh3 TBAF CH3CN 50
9 PdCl2(CH3CN)2 PPh3 TBAF THF trace
10 PdCl2(CH3CN)2 PPh2Cy TBAF EtOH 85 (89)
11 PdCl2(CH3CN)2 X-Phos TBAF EtOH 63
12 PdCl2(CH3CN)2 BINAP TBAF EtOH trace
13 PdCl2(CH3CN)2 PPh2Cy AgF EtOH trace
14 PdCl2(CH3CN)2 PPh2Cy CsF EtOH 9
15 PdCl2(CH3CN)2 PPh2Cy KF EtOH trace
16 PdCl2(CH3CN)2 PPh2Cy -- EtOH trace
17c PdCl2(CH3CN)2 PPh2Cy TBAF EtOH 58
18d PdCl2(CH3CN)2 PPh2Cy TBAF EtOH 79

aReaction conditions: 1a (0.10 mmol), 2a (0.20 mmol), palladium 
catalyst (5 mol%), ligand (20 mol%) and additive (2.0 eq) in solvent 
(2.0 mL) at 120 oC under a nitrogen atmosphere. bGC yields with 
naphthalene as an internal standard. Isolated yield is in parentheses. c3 
mol% PdCl2(CH3CN)2 was uesd. d0.15 mmol 2a was used.

With the optimized reaction conditions in hand, we then 
evaluated the substrate scope of this palladium-catalyzed cross-
coupling of trimethoxy(phenyl)silane (2a) with various 
benzylammonium salts (1). As shown in Scheme 1, electron-
donating groups such as 2-Me-, 3-Me-, 4-Me-, 3-OMe-, and 4-
OMe- on the phenyl ring were compatible and the 
corresponding coupling products (3ba−fa) were obtained in 
moderate to excellent yields. In addition, benzylammonium 
salts bearing electron-withdrawing groups (i.e., 4-F and 3,4-
difluoro groups) afford the desired coupling products 3ga and 
3ha in yields of 59% and 90%, respectively. In the case of the 
4-trifluoromethyl benzylammonium salt, the coupling reaction 
also proceeded smoothly to afford the expected product (3ia) in 
an acceptable yield. Moreover, sensitive or strong electron-
withdrawing groups, such as CN (3ja) and ester functionalities 
(3ka and 3la), were well-tolerated giving 83−88% yields under 
the standard reaction conditions. However, although 

Scheme 1. Scope of the Benzylammonium Saltsa
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aReaction conditions: 1 (0.20 mmol), 2a (0.40 mmol), PdCl2(CH3CN)2 
(5 mol%), PPh2Cy (20 mol%) and TBAF (0.40 mmol) in ethanol (2.0 
mL) at 120 oC for 24 h under nitrogen atmosphere. 

the naphthyl substrate exhibited an excellent reactivity (3ma), 
the indolyl substrate failed to afford the desired product (3na).

Having demonstrated the broad scope of benzylammonium 
salts that can be used in the palladium-catalyzed Hiyama cross-
coupling reaction, we next sought to explore a variety of 
arylsilane substrates (Scheme 2). Interestingly, substrate 
PhSi(OEt)3 also reacted with benzylammonium salts (1j) under 
the standard conditions to afford the coupling product 3ja in 88% 
yield, thereby demonstrating a comparable reactivity to 
PhSi(OMe)3. With respect to the trimethoxy arylsilanes, the 
substrates bearing electron-donating groups (i.e., 2-Me-, 3-Me-, 
4-Me-, and 4-OMe-) on the phenyl ring effectively provided the 
desired coupling products (3jb−je) in

Scheme 2. Scope of the Arylsilanesa 
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aReaction conditions: 1j (0.20 mmol), 2 (0.40 mmol), PdCl2(CH3CN)2 
(5 mol %), PPh2Cy (20 mol%) and TBAF (0.40 mmol) in ethanol (2.0 
mL) at 120 oC for 24 h under nitrogen atmosphere. bPhSi(OEt)3 was 
used as the substrate.
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moderate to excellent yields. The reaction also showed a good 
tolerance toward a special substrate, namely benzo[d]- 
[1,3]dioxol-5-yltrimethoxysilane, to give (3jf) in a 97% yield. 
In addition, trimethoxy(naphthalen-2-yl)silane and trimethoxy 
(naphthaalen-1-yl)silane reacted to afford the corresponding 
products (3jg and 3jh) in yields of 95% and 82%, respectively. 
Furthermore, substrates bearing heterocycles, such as the furan 
(3ji) and thiophene (3jj) moieties, were well-tolerated in this 
reaction. However, the p-chloro-substituted phenylsilane 
derivative only provided a trace amount of the expected 
coupling product (3jk). 

Scheme 3. Proposed Reaction Mechanism
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A plausible mechanistic pathway for the palladium-catalyzed 
Hiyama cross-coupling reaction is described in Scheme 3. 
Firstly, Pd(0) species A is formed in situ from PdCl2(CH3CN)2 
under the optimized reaction conditions. Subsequently, A 
underoges an oxidative addition with benzyltrimethyl-
ammonium salt 1 to produce C(sp3)−Pd complex B through 
C−N bond cleavage, releasing trimethylamine as a by product. 
Palladium complex E is then produced via transmetalation of 
C(sp3)−Pd complex B with arylsilane D, the latter of which is 
formed via the activation of substrate 2 by TBAF.17b, 18a Finally, 
the coupling product 3 is released upon the reductive 
elimination of palladium complex E, and Pd(0) is regenerated 
to complete the catalytic cycle.

■ CONCLUSIONS

In summary, we have successfully developed an un-
precedented palladium-catalyzed Hiyama cross-coupling 
reaction of benzyltrimethylammonium salts for the synthesis of 
diarylmethane derivatives. The relatively mild and simple 
reaction conditions employed, the use of readily available 
substrates, and the moderate to excellent yields obtained render 
this method synthetically attractive for organic synthesis.

■ EXPERIMENTAL SECTION

All reactions were performed in oven-dried glassware under a 
N2-atmosphere unless otherwise noted. Materials were obtained 
from commercial suppliers and were used without further 
purification. All of the reactions were monitored by thin-layer 

chromatography (TLC); products purification was carried out using 
silica gel column chromatography.

1H NMR and 13C NMR spectra were recorded on Bruker Avance 
400 MHz and Bruker AMX 400 MHz spectrometer at 400 and 100 
MHz, respectively. 1H NMR spectra were recorded in CDCl3 and 
referenced to residual CHCl3 at 7.26 ppm, while the 13C NMR 
spectra were referenced to the central peak of CDCl3 at 77.0 ppm. 
GC yields were obtained using naphthalene as an internal standard. 
Flash column chromatography purification was carried out by a 
gradient elution method using ethyl acetate (EA) in light petroleum 
ether (PE). Multiplicities are reported using the following 
abbreviations: s = singlet, d = doublet, t = triplet, q = quartet, m = 
multiplet. 

General Procedure and Characterization Data of 3. The 
benzylic ammonium salts (0.20 mmol), PdCl2(CH3CN)2 (0.01 
mmol), PPh2Cy (0.04 mmol), and TBAF (0.40 mmol) were added 
sequentially to an oven-dried Schlenk tube equipped with a stirrer 
bar. After the addition of all solid reagents, a balloon filled with N2 
was connected to the Schlenk tube via the side tube and the reaction 
vessel was purged three times. EtOH (2.0 mL) containing the 
arylsilanes (0.40 mmol) was then added to the tube via a syringe. 
After stirring the reaction mixture at 120 oC for 24 h, it was cooled 
to room temperature. The reaction was then quenched using water 
and extracted three times with ethyl acetate. The combined organic 
layers were dried over anhydrous Na2SO4, filtered, and evaporated 
under reduced pressure. The crude product was purified by silica 
gel preparative thin layer chromatography to give the desired 
product.

Diphenylmethane (3aa).13d Purified by column chromatography 
on silica gel (pure PE) to give the desired product: 29.9 mg, 89% 
yield; colorless liquid. 1H NMR (400 MHz, CDCl3) δ 7.33−7.23 (m, 
4H), 7.23−7.16 (m, 6H), 3.98 (s, 2H); 13C{1H} NMR (100 MHz, 
CDCl3) δ 141.1, 129.0, 128.5, 126.1, 42.0.

1-Benzyl-2-methylbenzene (3ba).30 Purified by column 
chromatography on silica gel (pure PE) to give the desired product: 
28.4 mg, 78% yield; colorless liquid. 1H NMR (400 MHz, CDCl3) 
δ 7.30−7.23 (m, 2H), 7.22−7.06 (m, 7H), 3.98 (s, 2H), 2.24 (s, 3H); 
13C{1H} NMR (100 MHz, CDCl3) δ 140.4, 139.0, 136.7, 130.3, 
130.0, 128.8, 128.4, 126.5, 126.0, 125.9, 39.5, 19.7.

1-Benzyl-3-methylbenzene (3ca).30 Purified by column 
chromatography on silica gel (pure PE) to give the desired product: 
18.6 mg, 51% yield; colorless liquid. 1H NMR (400 MHz, CDCl3) 
δ 7.33−7.24 (m, 2H), 7.22−7.14 (m, 4H), 7.00 (t, J = 7.2 Hz, 3H), 
3.94 (s, 2H), 2.30 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 
141.3, 141.1, 138.1, 129.8, 129.0, 128.5, 128.4, 126.9, 126.03, 
126.00, 41.9, 21.4.

1-Benzyl-4-methylbenzene (3da).13d Purified by column 
chromatography on silica gel (pure PE) to give the desired product: 
30.2 mg, 83% yield; colorless liquid. 1H NMR (400 MHz, CDCl3) 
δ 7.30−7.23 (m, 2H), 7.21−7.15 (m, 3H), 7.12−7.04 (m, 4H), 3.94 
(s, 2H), 2.31 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 141.5, 
138.1, 135.6, 129.2, 128.9, 128.8, 128.5, 126.0, 41.6, 21.0.

1-Benzyl-3-methoxybenzene (3ea).30 Purified by column 
chromatography on silica gel (PE/EtOAc = 100/1) to give the 
desired product: 36.5 mg, 92% yield; yellow liquid. 1H NMR (400 
MHz, CDCl3) δ 7.32−7.24 (m, 2H), 7.20 (t, J = 8.2 Hz, 4H), 6.76 
(dd, J = 17.3, 7.0 Hz, 3H), 3.95 (s, 2H), 3.76 (s, 3H); 13C{1H} NMR 
(100 MHz, CDCl3) δ 159.8, 142.7, 140.9, 129.4, 128.9, 128.5, 
126.1, 121.4, 114.8, 111.4, 55.2, 42.0.

1-Benzyl-4-methoxybenzene (3fa).13d Purified by column 
chromatography on silica gel (PE/EtOAc = 100/1) to give the 
desired product: 30.9 mg, 83% yield; colorless liquid. 1H NMR 
(400 MHz, CDCl3) δ 7.30−7.24 (m, 2H), 7.22−7.14 (m, 3H), 
7.12−7.06 (m, 2H), 6.86−6.77 (m, 2H), 3.91 (s, 2H), 3.76 (s, 3H); 
13C{1H} NMR (100 MHz, CDCl3) δ 158.0, 141.6, 133.2, 129.8, 
128.8, 128.4, 125.9, 113.9, 55.2, 41.0.
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1-Benzyl-4-fluorobenzene (3ga).30 Purified by column 
chromatography on silica gel (pure PE) to give the desired product: 
22.0 mg, 59% yield; yellow liquid. 1H NMR (400 MHz, CDCl3) δ 
7.32−7.25 (m, 2H), 7.23−7.09 (m, 5H), 7.00−6.91 (m, 2H), 3.95 (s, 
2H); 13C{1H} NMR (100 MHz, CDCl3) δ 161.4 (d, 1JC-F = 243.9 
Hz), 141.0, 136.8 (d, 4JC-F = 3.2 Hz), 130.3 (d, 3JC-F = 7.8 Hz), 128.8, 
128.6, 126.2, 115.2 (d, 2JC-F = 21.2 Hz), 41.1.

4-Benzyl-1,2-difluorobenzene (3ha).31 Purified by column 
chromatography on silica gel (pure PE) to give the desired product: 
36.8 mg, 90% yield; colorless liquid. 1H NMR (400 MHz, CDCl3) 
δ 7.34−7.27 (m, 2H), 7.26−7.19 (m, 1H), 7.15 (dd, J = 7.8, 0.9 Hz, 
2H), 7.05 (dt, J = 10.3, 8.3 Hz, 1H), 6.95 (ddd, J = 11.2, 7.6, 2.1 
Hz, 1H), 6.92−6.86 (m, 1H), 3.92 (s, 2H); 13C{1H} NMR (100 MHz, 
CDCl3) δ 150.8 (dd, JC-F = 132.4, 12.7 Hz), 148.4 (dd, JC-F = 130.8, 
12.7 Hz), 140.1, 138.1 (dd, JC-F = 5.4, 3.9 Hz), 128.9, 128.7, 126.5, 
124.6 (dd, JC-F = 6.1, 3.5 Hz), 117.6 (d, JC-F = 17.0 Hz), 117.1 (d, 
JC-F = 16.9 Hz), 41.1 (d, JC-F = 1.1 Hz).

1-Benzyl-4-(trifluoromethyl)benzene (3ia).13d Purified by 
column chromatography on silica gel (pure PE) to give the desired 
product: 18.4 mg, 39% yield; colorless liquid. 1H NMR (400 MHz, 
CDCl3) δ 7.53 (d, J = 8.1 Hz, 2H), 7.35−7.26 (m, 4H), 7.26−7.21 
(m, 1H), 7.17 (d, J = 7.2 Hz, 2H), 4.03 (s, 2H); 13C{1H} NMR (100 
MHz, CDCl3) δ = 145.2, 140.0, 129.2, 129.0, 128.7, 128.6 (q, 2J C-

F = 33.0 Hz), 126.5, 125.4 (q, 3J C-F = 3.8 Hz), 124.3 (q, 1J C-F = 
271.4 Hz), 41.7.

4-Benzylbenzonitrile (3ja).28 Purified by column 
chromatography on silica gel (PE/EtOAc = 100/1) to give the 
desired product: 32.9 mg, 85% yield; colorless liquid. 1H NMR 
(400 MHz, CDCl3) δ 7.59−7.51 (m, 2H), 7.35−7.19 (m, 5H), 7.15 
(dd, J = 7.7, 0.9 Hz, 2H), 4.02 (s, 2H); 13C{1H} NMR (100 MHz, 
CDCl3) δ 146.8, 139.4, 132.3, 129.7, 129.0, 128.8, 126.7, 119.0, 
110.1, 42.0.

Methyl 4-benzylbenzoate (3ka).13e Purified by column 
chromatography on silica gel (PE/EtOAc = 100/1) to give the 
desired product: 37.6 mg, 83% yield; colorless liquid. 1H NMR 
(400 MHz, CDCl3) δ 7.95 (d, J = 8.1 Hz, 2H), 7.34−7.21 (m, 5H), 
7.17 (d, J = 7.5 Hz, 2H), 4.03 (s, 2H), 3.89 (s, 3H); 13C{1H} NMR 
(100 MHz, CDCl3) δ 167.1, 146.5, 140.1, 129.8, 129.0, 128.6, 
128.1, 126.4, 52.0, 41.9.

Tert-Butyl 4-benzylbenzoate (3la).13d Purified by column 
chromatography on silica gel (PE/EtOAc = 100/1) to give the 
desired product: 47.2 mg, 88% yield; colorless liquid. 1H NMR 
(400 MHz, CDCl3) δ 7.94−7.86 (m, 2H), 7.33−7.19 (m, 5H), 7.16 
(dd, J = 7.8, 0.9 Hz, 2H), 4.02 (s, 2H), 1.58 (s, 9H); 13C{1H} NMR 
(100 MHz, CDCl3) δ 165.8, 145.9, 140.3, 130.0, 129.7, 128.9, 
128.8, 128.6, 126.3, 80.8, 41.9, 28.2.

2-Benzylnaphthalene (3ma).32 Purified by column 
chromatography on silica gel (pure PE) to give the desired product: 
41.0 mg, 94% yield; white solid; mp 56−58 °C. 1H NMR (400 MHz, 
CDCl3) δ 7.84−7.72 (m, 3H), 7.63 (s, 1H), 7.43 (m, 2H), 7.29 (dd, 
J = 11.6, 8.1 Hz, 3H), 7.21 (dd, J = 12.6, 7.1 Hz, 3H), 4.14 (s, 2H); 
13C{1H} NMR (100 MHz, CDCl3) δ 141.0, 138.6, 133.7, 132.1, 
129.1, 128.5, 128.1, 127.67, 127.66, 127.6, 127.1, 126.2, 126.0, 
125.4, 42.1.

4-(2-Methylbenzyl)benzonitrile (3jb).28 Purified by column 
chromatography on silica gel (PE/EtOAc = 100/1) to give the 
desired product: 23.6 mg, 57% yield; yellow liquid. 1H NMR (400 
MHz, CDCl3) δ 7.59−7.51 (m, 2H), 7.24−7.14 (m, 5H), 7.12−7.05 
(m, 1H), 4.03 (s, 2H), 2.19 (s, 3H); 13C{1H} NMR (100 MHz, 
CDCl3) δ 146.2, 137.2, 136.6, 132.3, 130.6, 130.1, 129.4, 127.1, 
126.3, 119.0, 109.9, 39.6, 19.6.

4-(3-Methylbenzyl)benzonitrile (3jc).28 Purified by column 
chromatography on silica gel (PE/EtOAc = 100/1) to give the 
desired product: 37.7 mg, 93% yield; yellow liquid. 1H NMR (400 
MHz, CDCl3) δ 7.55 (d, J = 8.1 Hz, 2H), 7.32−7.23 (m, 2H), 
7.22−7.15 (m, 1H), 7.04 (d, J = 7.5 Hz, 1H), 6.95 (d, J = 8.6 Hz, 
2H), 3.97 (s, 2H), 2.31 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) 

δ 146.9, 139.3, 138.5, 132.3, 129.8, 129.7, 128.7, 127.5, 126.0, 
119.1, 110.0, 42.0, 21.4.

4-(4-Methylbenzyl)benzonitrile (3jd).28 Purified by column 
chromatography on silica gel (PE/EtOAc = 100/1) to give the 
desired product: 40.2 mg, 97% yield; yellow solid; mp 60−61 °C. 
1H NMR (400 MHz, CDCl3) δ 7.46 (d, J = 8.1 Hz, 2H), 7.17 (d, J 
= 7.2 Hz, 2H), 7.03 (d, J = 7.8 Hz, 2H), 6.96 (d, J = 7.9 Hz, 2H), 
3.89 (s, 2H), 2.23 (s, 3H); 13C{1H} NMR (100 MHz, CDCl3) δ 
147.1, 136.3, 136.3, 132.3, 129.6, 129.5, 128.9, 119.1, 110.0, 41.6, 
21.1.

4-(4-Methoxybenzyl)benzonitrile (3je).28 Purified by column 
chromatography on silica gel (PE/EtOAc = 100/1) to give the 
desired product: 36.6 mg, 82% yield; yellow liquid. 1H NMR (400 
MHz, CDCl3) δ 7.60−7.50 (m, 2H), 7.30−7.23 (m, 2H), 7.11−7.03 
(m, 2H), 6.88−6.80 (m, 2H), 3.96 (s, 2H), 3.78 (s, 3H); 13C{1H} 
NMR (100 MHz, CDCl3) δ 158.4, 147.3, 132.3, 131.4, 130.0, 129.5, 
119.0, 114.2, 110.0, 55.3, 41.1.

4-(Benzo[d][1,3]dioxol-5-ylmethyl)benzonitrile (3jf).28 Purified 
by column chromatography on silica gel (PE/EtOAc = 100/1) to 
give the desired product: 46.0 mg, 97% yield; white solid; mp 
108−109 °C. 1H NMR (400 MHz, CDCl3) δ 7.56 (d, J = 7.6 Hz, 
2H), 7.26 (d, J = 7.6 Hz, 2H), 6.74 (d, J = 7.7 Hz, 1H), 6.62 (d, J = 
10.6 Hz, 2H), 5.92 (s, 2H), 3.93 (s, 2H); 13C{1H} NMR (100 MHz, 
CDCl3) δ 148.0, 146.9, 146.4, 133.1, 132.3, 129.5, 122.0, 119.0, 
110.1, 109.4, 108.4, 101.1, 41.7.

4-(Naphthalen-1-ylmethyl)benzonitrile (3jg).28 Purified by 
column chromatography on silica gel (PE/EtOAc = 100/1) to give 
the desired product: 39.9 mg, 82% yield; white solid; mp 88−90 °C. 
1H NMR (400 MHz, CDCl3) δ 7.91−7.76 (m, 3H), 7.57−7.38 (m, 
5H), 7.33−7.21 (m, 3H), 4.47 (s, 2H); 13C{1H} NMR (100 MHz, 
CDCl3) δ 146.4, 134.9, 134.1, 132.3, 131.9, 129.4, 128.9, 127.9, 
127.7, 126.3, 125.9, 125.6, 123.9, 119.0, 110.1, 39.2.

4-(Naphthalen-2-ylmethyl)benzonitrile (3jh).28 Purified by 
column chromatography on silica gel (PE/EtOAc = 100/1) to give 
the desired product: 46.2 mg, 95% yield; white solid; mp 
114−116 °C. 1H NMR (400 MHz, CDCl3) δ 7.85−7.72 (m, 3H), 
7.64−7.53 (m, 3H), 7.50−7.41 (m, 2H), 7.32 (d, J = 10.4 Hz, 2H), 
7.28–7.21 (m, 1H), 4.18 (s, 2H); 13C{1H} NMR (100 MHz, CDCl3) 
δ 146.6, 136.8, 133.6, 132.4, 132.3, 129.8, 128.5, 127.7, 127.6, 
127.4, 127.3, 126.3, 125.8, 119.0, 110.2, 42.1.

4-(Furan-2-ylmethyl)benzonitrile (3ji).33 Purified by column 
chromatography on silica gel (PE/EtOAc = 100/1) to give the 
desired product: 34.4 mg, 94% yield; colorless oil. 1H NMR (400 
MHz, CDCl3) δ 7.58 (d, J = 8.3 Hz, 2H), 7.32 (d, J = 8.5 Hz, 3H), 
6.31 (dd, J = 3.0, 1.9 Hz, 1H), 6.06 (dd, J = 3.1, 0.6 Hz, 1H), 4.02 
(s, 2H); 13C{1H} NMR (100 MHz, CDCl3) δ 152.6, 143.7, 142.0, 
132.3, 129.4, 118.8, 110.6, 110.4, 107.0, 34.5.

4-(Thiophen-2-ylmethyl)benzonitrile (3jj). Purified by column 
chromatography on silica gel (PE/EtOAc = 100/1) to give the 
desired product: 37.5 mg, 94% yield; yellow liquid. 1H NMR (400 
MHz, CDCl3) δ 7.59 (d, J = 8.2 Hz, 2H), 7.34 (d, J = 8.1 Hz, 2H), 
7.22−7.13 (m, 1H), 6.95 (dd, J = 5.0, 3.5 Hz, 1H), 6.82 (d, J = 2.5 
Hz, 1H), 4.21 (s, 2H); 13C{1H} NMR (100 MHz, CDCl3) δ 145.9, 
141.7, 132.4, 129.4, 127.1, 125.9, 124.7, 119.0, 110.4, 36.0. HRMS 
(ESI, m/z) calcd for C12H10NS [M + H]+: 200.0528, found: 
200.0527.
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