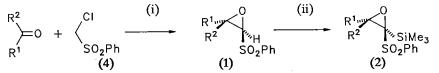

PREPARATION AND RING-OPENING REACTIONS OF 2-PHENYLSULPHONYL-2-TRIMETHYLSILYL OXIRANES

Cheryl T. Hewkin and Richard F.W. Jackson*

Department of Chemistry, Bedson Building, The University, Newcastle upon Tyne, NE1 7RU, U.K.

Summary: Reaction of 2-phenylsulphonyl oxiranes (1) with butyllithium in the presence of chlorotrimethylsilane gave 2-phenylsulphonyl-2-trimethylsilyl oxiranes (2), which on treatment with $MgBr_2$. Et 2O gave 2-bromoacylsilanes (3) and either bromovinyl sulphones (5) or α,β -unsaturated acylsilanes (6) and 2-trimethylsilyl carboxylic acids (7), depending on structure.

As part of our efforts to extend the synthetic utility of 2-phenylsulphonyl oxiranes (1), 1, 2, 3 we have established that treatment of phenylsulphonyl oxirane (1a) with chlorotrimethylsilane and butyllithium in THF at -102 °C gives 2-phenylsulphonyl-2-trimethylsilyl oxirane (2a). Reaction of (2a) with magnesium bromide etherate then gave bromoacetyltrimethylsilane (3a) in good yield. In view of the recent interest in the synthesis, 4, 5, 6 and synthetic utility, 6, 7 of 2-haloacylsilanes, we now report the results of our efforts to induce ring-opening of substituted 2-phenylsulphonyl-2-trimethylsilyl oxiranes (2) with MgBr₂.Et₂O.



(2a)

(1a)

(3a)

The 2-phenylsulphonyl oxiranes (1) were easily prepared by Darzens reaction of chloromethyl phenylsulphone (4) with either aldehydes or ketones.⁹ Trans oxiranes are obtained from aldehydes, and mixtures of stereoisomers are obtained from unsymmetrical ketones. Treatment of each of these oxiranes with chlorotrimethylsilane and butyllithium⁹ then gave the corresponding 2-phenylsulphonyl-2-trimethylsilyl oxiranes (2) in high yield (Scheme 1, Table 1).¹⁰

Scheme 1. i, 50% aq. NaOH, Et BnN⁺Br⁻; ii, Me SiCl (2.5 equiv.), BuLi (1.8 equiv), THF, -102 °C.

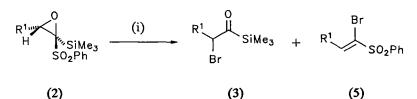
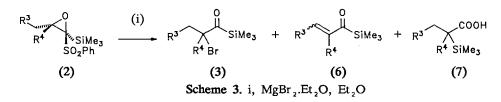

R1	R²	Phenylsulphonyl Oxirane	Yield %	Silyl Oxirane,	Yield 🕅
Me	н	(1b)	73	(2b)	62 ^b
Et	н	(1c)	69	(2c)	61 ^b
Pr	н	(1d)	93	(2d)	72 ^b
Pr ⁱ	Н	(1e)	99	(2e)	91
Bu	Н	(1f)	90	(2f)	80 ^b
Ph	н	(1g)	69	(2g)	73
Me	Ме	(1h)	96	(2h)	99
Et/Me		(11)	96 ^a	(21)	92a
Et	Et	(1j)	84	(2j)	93
PhCH ₂ /Et		(1k)	35a	(2k)	93a
(CH ₂) ₄		(11)	85	(21)	91
(CH ₂) ₅		(1m)	100	(2m)	91

Table 1

^a Chromatographically inseparable mixtures of diastereoisomers.

^b Small amounts of material silvlated additionally at the *ortho*-position of the phenylsulphonyl group were also isolated.

We have found that those oxiranes derived originally from aldehydes (2b-2g) are less reactive than those derived from ketones (2h-2m) towards reaction with MgBr, Et,O. Reaction of oxiranes (2b-2g) with magnesium bromide occurs only on prolonged exposure, to give a mixture of the 2-bromoacylsilanes (3b-3g) and the bromovinyl sulphones ' (5b-5f) (Scheme 2, For those substrates (2b-2d) which react at room temperature, good yields of Table 2).12 2-bromoacyl silanes are obtained. When refluxing in THF is required to achieve consumption of starting material, the formation of bromovinyl sulphones (5) becomes a competing process. The latter compounds are derived by attack of bromide ion α to the phenylsulphonyl and trimethylsilyl groups, followed by elimination of trimethylsilanolate.¹³ Indeed, treatment of (2d) with MgBr, Et, O in THF at reflux, rather than room temperature in Et, O, led to a mixture of the α -bromoacylsilane (3d) and the bromovinyl sulphone (5d). Previous work has shown that nucleophilic attack on trimethylsily loxiranes by magnesium bromide occurs α to the silyl group, 14 whereas attack on phenylsulphonyl oxiranes occurs at the β -position. 1, 2, 3, 15 In cases where attack at the β -position is hindered (e.g. in (2e)), the preference for β -attack in phenylsulphonyl oxiranes can be almost completely overcome.


Scheme 2. i, MgBr₂.Et₂O.

R¹	Silyl Oxirane	Time	Conditions	α -Bromoacylsilane	Yield %	Vinyl sulphone	Yield %
Me	(2b)	44h	r.t. Et ₂ 0	(3b)	79	(5b)	0
Et	(2c)	20h	r.t. Et ₂ 0	(3c)	75	(5c)	0
Pr	(2d)	48h	r.t. Et ₂ 0	(3d)	77	(5d)	0
Pr i	(2e)	9d	THF reflux	(3e)	7	(5e)	64
Bu	(2f)	72h	THF reflux	a (3f)	41	(5f)	50
Ph	(2g)	46h	THF reflux	(3g)	2	(5g)	50

Table 2

^a No detectable reaction at r.t. in THF.

Reaction of oxiranes (2h-2m), derived from ketones, with MgBr₂.Et₂O in ether occurred much more quickly, taking place at temperatures ranging from -18 °C to room temperature, and leading to the formation of the corresponding α -bromoacylsilanes (3h-3m) as the major products, together with variable amounts of the α -promoacylsilanes (6h-6m).¹² The mass balance was composed of the α -trimethylsilyl carboxylic acids (7h-7m), presumably formed by rearrangement¹⁶ (Scheme 3, Table 3). Exposure of the α -bromoacylsilane (3m) to the reaction conditions did not lead to the α , β -unsaturated acylsilane (6m). This result, and the formation of rearrangement products, supports the intermediacy of a carbocation, formed by magnesium ion induced cleavage of the O-1 to C-3 bond. Clearly, this process is favoured in oxiranes (2h-2m), which can give rise to tertiary carbocations.

Silyl Oxirane	RЗ	R4	Tjime, h	Temp., ⁰C	2-Bromoacyl Silane	Yield %	Unsaturated Acylsilane	Yield %
(2h)	н	Me	4	20	(3h)	49	(6h)	0
(2i) ^a	Ме	Me	3	0	(3i)	46	(6i)	6
(2j)	Me	Et	5 1	0	(3j)	40	(6j)	15
(2k) ^a	Me	PhCH	66	4	(3k)	64	(6k)	8p
(21)	(Cl	H ₂) ₃	4	0	(31)	57	(61)	8
(2m)	(Cl	$(H_2)_4$	120	-18	(3m)	56	(6m)	15

Table 3

a These compounds are mixtures of diastereoisomers, of which only one is drawn.

^b The corresponding regioisomer ($R^3 = Ph$, $R^4 = Et$) was isolated in 3% yield; the reason for the preferential formation of the less conjugated isomer is unclear.

Acknowledgements: We thank the SERC for a postgraduate studentship (C.T.H.).

References

- 1. M. Ashwell and R.F.W. Jackson, J. Chem. Soc., Chem. Commun., 1988, 645.
- 2. C.T. Hewkin, R.F.W. Jackson, and W. Clegg, Tetrahedron Letts., 1988, 29, 4889.
- 3. M. Ashwell and R.F.W. Jackson, J. Chem. Soc., Perkin Trans. 1, 1989, 835.
- 4. I. Kuwajima, T. Abe, and N. Minami, Chem. Letts., 1976, 993.
- 5. P.C.B. Page and S. Rosenthal, Tetrahedron Letts., 1986, 27, 5421.
- 6. J.S. Nowick and R.L. Danheiser, Tetrahedron, 1988, 44, 4113.
- 7. J.S. Nowick and R.L. Danheiser, J. Org. Chem., 1989, 54, 2798.
- A. Jończyk, K. Bańko, and M. Makosza, J. Org. Chem., 1975, 40, 266; T. Durst, K.-C. Tin, F. de Reinach-Hirtzbach, J.M. Decesare, and M.D. Ryan, Can. J. Chem., 1979, 57, 258.
- For the first example of this process, see: J.J. Eisch and J.E. Galle, J. Organomet. Chem., 1976, 121, C10; J.J. Eisch and J.E. Galle, J. Organomet. Chem., 1988, 341, 293.
- 10. The 2-phenylsulphonyl oxirane (1) (4.42 mmol) was dissolved in dry THF (50 ml) under nitrogen. Chlorotrimethylsilane (11.05 mmol) was added and the solution was cooled to -102 °C (internal temperature). Butyllithium (7.96 mmol, solution in hexanes) was added dropwise, keeping the internal temperature below -100 °C, and then aq. NH₄Cl (10%, 10 ml) was added immediately. The organic layer was separated, and the aqueous layer extracted with CH₂Cl₂ (3 x 30 ml). The combined organic layers were dried (MgSO₄), solvent was removed, and the residue purified by flash chromatography (eluent 10:1 40-60 petrol: ethyl acetate).
- For previous syntheses of bromovinyl sulphones, see; J.C. Philips, M. Aregullin, M. Oku, and A. Sierra, *Tetrahedron Letts.*, 1974, 4157; and P. Carlier, Y. Gelas-Mialhe, and R. Vessière, *Can. J. Chem.*, 1977, 55, 3190.
- 12. The silvl oxirane (1 mmol) was dissolved in dry THF or Et_2O (10 ml) and treated with MgBr₂.Et₂O (1.2 mmol). The mixture was treated at the temperature and for the period indicated in tables 2 and 3. Following addition of pH7 phosphate buffer, the mixture was extracted with diethyl ether (3 x 20 ml). The combined organic extracts were dried (MgSO₄), solvent was removed (*care*: the α -bromoacylsilanes are relatively volatile), and the residue was purified by flash chromatography (eluent 80:1 30-40 petrol: diethyl ether). The structures of the products were established by spectroscopic methods. In particular, all acylsilanes showed characteristic absorptions in their i.r. spectra due to the carbonyl stretch. The α -bromoacylsilanes (3b-f) exhibited a stretch in the range 1636 to 1648 cm⁻¹. The more substituted α -bromoacylsilanes (3h-m) showed stretches in the range 1636 to 1643 cm⁻¹. Finally, the range for the α,β -unsaturated acylsilanes (6i-m) was 1585 to 1605 cm⁻¹.
- 13. The bromovinyl sulphones were isolated as single stereoisomers assigned as Z on the basis of the chemical shift of the vinylic proton. This stereoisomer would be formed by *syn* elimination of trimethylsilanolate from the initially formed β -hydroxy silane. For a recent discussion of the mechanism of the Peterson olefination reaction, see: P.F. Hudrlik, E.L.O. Agwaramgbo, and A.M. Hudrlik, J. Org. Chem., 1989, 54, 5613.
- 14. P.F. Hudrlik, R.N. Misra, G.P. Withers, A.M. Hudrlik, R.J. Rona, and J.P. Arcoleo, Tetrahedron Letts., 1976, 1453; J.J. Eisch and J.E. Galle, J. Org. Chem., 1976, 41, 2615.
- 15. F. de Reinach-Hirtzbach and T. Durst, Tetrahedron Letts., 1976, 3677.
- 16. Treatment of α -chloroacylsilanes with lithium alkoxides gives esters of α -trimethylsilyl carboxylic acids: I. Kuwajima, K. Matsumoto, and T. Inoue, *Chem. Letts.*, 1979, 41.

(Received in UK 2 February 1990)