A Versatile Approach to Protected (4*S*,5*R*)-4-Hydroxy-5-(α-hydroxyalkyl)-2pyrrolidinones

Xiang Zhou, Pei-Qiang Huang*

Department of Chemistry and The Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, P. R. of China Fax +86(592)2186400; E-mail: pqhuang@xmu.edu.cn

Received 11 November 2005

Dedicated to Professor Ben-Li Huang on the occasion of his 80th birthday

Abstract: Starting from (*S*)-*N*,*O*-dibenzylmalimide (**7**), a versatile four-step approach to (4S,5R)-*N*-benzyl-4-benzyloxy-5- $(\alpha$ -hy-droxyalkyl)-2-pyrrolidinones **9** is reported. The method consists of Grignard reagent addition, *p*-toluenesulfonic acid monohydrate-mediated dehydration, one-pot epoxidation–methanol ring-opening reaction and reductive demethoxylation. 2-Pyrrolidinones **9** were obtained with excellent *trans*-diastereoselectivity in the pyrrolidinone ring and low diastereoselectivity at the carbinol center.

Key words: dehydration, enamide, 2-pyrrolidinones, epoxidation, asymmetric synthesis

Carbanion-based C–C bond formation is a fundamental transformation in organic chemistry. While a huge number of methods have been developed for the carbanion generation and subsequent C–C bond formation,¹ there still exist many challenges in the classical carbanion chemistry.² The generation and C–C bond formation of chiral non-racemic *N*- α -carbanion of protected 4-hydroxy-2-pyrrolidinone **A** is one such challenge.³ 4-Hydroxy-2-pyrrolidinone *N*- α -carbanion **A** represents a highly desirable synthon according to a conceptually attractive retrosynthetic analysis of 2-(α -hydroxyalkyl) 5-substituted 3-pyrrolidinols **1** (Scheme 1), the common structural motifs shared by a number of bioactive polyhydroxylated alkaloids⁴ and azasugars⁵ such as swainsonine⁶ (**3**) and bulgecinine⁷ (**4**).

Scheme 1

SYNLETT 2006, No. 8, pp 1235–1239 Advanced online publication: 05.05.2006 DOI: 10.1055/s-2006-939695; Art ID: W31105ST © Georg Thieme Verlag Stuttgart · New York In recent years, we have been engaged⁸ in the development of carbanion-based asymmetric approaches to 5-alkyl 4-hydroxy-2-pyrrolidinones (via tetramates),⁹ 2-alkyl-3-pyrrolidinols,^{3a,10} 2,5-dialkyl-3-pyrrolidinols,^{9a} and 2-(α -hydroxyalkyl) 3-amino-pyrrolidines.¹¹ As a continuation of these studies and in connection with a related project, we now report a flexible approach to 5-(α -hydroxyalkyl) 4-hydroxy-2-pyrrolidinones **2**.

Our approach to **2** arose from some unexpected results in a related project.¹² When we attempted the α -amidoallylation (AllTMS, BF₃·OEt₂, CH₂Cl₂, -78 °C to r.t., 15 h) of *N*,*O*-acetals **5a**,**d**,**e**,**g** (a. R = H; d. R = *n*-Pr; e. R = *i*-Pr; g. R = *n*-C₆H₁₃),¹² only **5a** led to the desired α -amidoallylation product, the reaction of **5d**,**e**,**g** gave the dehydrated products **6d**,**e**,**g**, respectively, in 75–82% yields (Scheme 2). In view of the recent advances in the enamide chemistries,^{13,14} it was realized that these findings would found a basis of a versatile approach to 5-(α -hydroxyalkyl)-4-hydroxy-2-pyrrolidinones **2**, and thus provided an alternative solution to the challenging problem.

To this end, a further investigation on the acid-catalyzed dehydration¹³ of *N*,*O*-acetals 5^{12} was undertaken (Scheme 2) and the results were summarized in Table 1. As can be seen from Table 1 (entries 1-5, 10), the dehydration of N,O-acetals 5 can be promoted by either Lewis acid or Brønsted acid. Comparable yields were obtained when using BF₃·OEt₂ or TsOH·H₂O as an acid catalyst under optimized conditions (Table 1, entries 1, 2 vs. entry 3). The reaction can also be promoted by trifluoroacetic anhydride (TFAA)–pyridine system (Table 1, entry 6).^{13e,g} However, this system was not adapted considering the complication in the work-up procedure, the cost and the safety of the chemicals used. Although the use of Lewis acid $BF_3 \cdot OEt_2$ also led to satisfying results, the simplicity in using TsOH·H₂O as a catalyst led us to select it for further investigation.

Table 1 Effects of the Reaction Condition on the Dehydration Reaction of 5c,d,e,h

Entry	Starting material	Dehydration agent	Temperature	Time	Yield (%)
1	5d ^a	BF ₃ ·OEt ₂ , CH ₂ Cl ₂	–78 °C, r.t.	12 h	75–77
2	5e ^a	BF ₃ ·OEt ₂ , CH ₂ Cl ₂	–78 °C, r.t.	12 h	74–83
3	5c ^b	<i>p</i> -TsOH, CH ₂ Cl ₂	r.t.	50 min	79
4	5c ^b	<i>p</i> -TsOH, CH ₂ Cl ₂	0 °C	1.5 h	68
5	5c ^b	<i>p</i> -TsOH, CH ₂ Cl ₂	−12 °C	2 h	58
6	5c ^b	TFAA/pyridine, THF	0 °C	1 h	78
7	5c ^b	Ac_2O, CH_2Cl_2	r.t.	48 h	ca. n.r.
8	5c ^b	Ac ₂ O/pyridine, CH ₂ Cl ₂	r.t.	48 h	ca. n.r.
9	5h ^a	Ac ₂ O/pyridine, CH ₂ Cl ₂	reflux	3 d	54
10	5h ^b	<i>p</i> -TsOH, CH ₂ Cl ₂	r.t.	3 h	77

^a Two diastereomers were used for the dehydration.

^b Only *trans*-diastereomers were used for the dehydration.

The reaction was then extended to other N,O-acetals 5, which were obtained by Grignard reaction with (S)-N,Odibenzylmalimide (7) described previously¹² as (Scheme 3). Most of the N,O-acetals (5a-g and 5i) were obtained with excellent C-2 regioselectivities (only one regioisomer was obtained in each case) and with diastereoselectivities ranged from 6:1 to 8:1 in favor of trans-diastereomer (*trans-5*). Only the reaction with benzyl magnesium bromide led to a 1:1 diastereomeric ratio. The results of the TsOH-promoted (5% molar equiv) dehydration reaction of the major diastereomers of 5 were displayed in Table 2. It is worth noting that the dehydration of 5a was unsuccessful under several acidic conditions (TsOH, TFA, CSA, HCl, H_2SO_4).

Scheme 3

It is also important to note that all the dehydration reactions were incomplete, and partial epimerization of *trans*diastereomers (*trans*-**5**) to *cis*-diastereomers (*cis*-**5**) was observed according TLC monitoring. The *cis*-diastereomers were poorly reactive towards the dehydration reaction and couldn't react completely. These results suggest that *cis*-**5** are thermodynamically more stable diastereomers. The low reactivity of the *cis*-*N*,*O*-acetals (*cis*-**5**) can be attributed to stereoelectronic effect.^{16,17}

 Table 2
 Grignard Reagents Addition with 7 and the Subsequent TsOH-Mediated Dehydration Reaction¹⁵

Entry	RCH ₂ MgX	Product 5 (yield %)	Product 6 (yield %)
1	CH ₃ MgI	5a (95) ^a	NR
2	MeCH ₂ MgBr	5b (83) ^a	6b (67, ^c 95 ^d)
3	EtCH ₂ MgBr	5c (99) ^a	6c (79, ^c 93 ^d)
4	<i>n</i> -PrCH ₂ MgBr	5d (95) ^a	6d (74, ^c 97 ^d)
5	<i>i</i> -PrCH ₂ MgBr	5e (86) ^a	6e (83, ^c 95 ^d)
6	<i>n</i> -BuCH ₂ MgBr	5f (81) ^a	6f (69, ^c 91 ^d)
7	<i>n</i> -C ₆ H ₁₃ CH ₂ MgBr	5g (90) ^a	6g (63, ^c 92 ^d)
8	PhCH ₂ MgBr	5h (92) ^b	6h (77, ^c 93 ^d)
9	BnCH ₂ MgBr	5i (95) ^a	6i (55,° 89 ^d)

^a Diastereomeric ratios: 6:1 to 8: 1, only the major diastereomers were used for the dehydration.

^b Diastereomeric ratio: ca. 1:1, only the *trans*-diastereomer was used for the dehydration.

^c Isolated yield.

^d Yield based on the recovered starting material (*cis*-diastereomer).

Another feature of the dehydration reaction is that the reaction is highly stereoselective, and only *E*-enamides (6) were obtained. The stereochemistry of 6d was determined by NOESY experiences (¹H NMR).

Next, one-pot epoxidation–ring-opening of compounds **6** was investigated by using the method of Nagasaka and coworkers.¹⁴ Thus, when **6d** was treated with MCPBA in absolute MeOH and CH_2Cl_2 , the desired products **8d** were obtained as a mixture of four diastereomers with a combined yield of 83% (Scheme 4). To confirm the structure of the products, flash column chromatography separation

of a sample of diastereomeric mixture of **8d** was undertaken, two pure diastereomers, and a mixture of the other two diastereomers were isolated and characterized.

The diastereomeric mixture of 8d was then subjected to Lewis acid mediated ionic hydrogenation (BF₃·OEt₂, Et₃SiH, CH₂Cl₂, -78 °C to r.t.),^{18,12} which gave two separable diastereomers *trans*- $9d^{15}$ in 1:2 ratio with a combined yield of 78%. The fact that the reductive deoxygenation of a mixture of four diastereomers (8d) led to only two diastereomers (9d) might implicate that the transformation of 8d to 9d proceeded via the intermediacy of *N*-acyliminium ion¹⁹ **B** ($\mathbf{R} = n$ -Pr), and the stereoselectivity in the 2-pyrrolidinone ring was higher than 95%. Both diastereomers 9d were assigned to trans according to the observed vicinal coupling constant^{20,12} (both $J_{4,5}$ = ca. 0 Hz). That oxidation of the diastereomeric mixture of 9d (1:2; PCC, CH₂Cl₂, r.t., 4 h, yield 70%) afforded the corresponding ketone as the sole diastereomer $(J_{4.5} = \text{ca. 0 Hz})$, confirmed the *trans*-stereochemistry in the 2-pyrrolidinone ring. The stereochemistries of the two diastereomers of 9d at the C-1' position were not determined.

With the MCPBA epoxidation-ring-opening of **6d** and the subsequent reductive deoxygenation reactions secured, the syntheses of other homologues or analogues of **9d** were investigated and the results were outlined in Table 3. The results displayed in Table 3 showed that the one-pot epoxidation-ring-opening of other enamides **6** worked similarly as **6d** did in terms of chemical yields and diastereoselectivities, which demonstrated the flexibility of the method.

In summary, stemmed from some unexpected findings in a related research project, a flexible four-step *trans*-diastereoselective approach to (4S,5R)-*N*-benzyl-4-benzyloxy-5-hydroxyalkyl-2-pyrrolidinones **9** was established starting from the known (S)-*N*,*O*-dibenzyl malimide (**7**). To the best of our knowledge, this represents the first flexible asymmetric approach to **9**, the protected form of **2**, and provides an alternative solution to the challenging problem showed retrosynthetically in Scheme 1. Application of the present method to the asymmetric synthesis of hydroxylated pyrrolidine-ring-containing alkaloids is under investigation and will be reported in due course.

 Table 3
 Results of MCPBA Epoxidation-Ring-Opening of 6 and the Subsequent Reductive Demethoxylation Reaction Leading to 9

Entry	Starting material	Epoxidation– ring-opening product (yield, %) ^a	Reductive deoxygenation product (yield, %) ^b	Diastereo- selectivity at C-1'
1	6b	8b (85)	9b (85)	1:1.6 ^d
2	6c	8c (90)	9c (74)	1:2 ^c
3	6d	8d (83)	9d (78)	1:2 ^c
4	6e	8e (80)	9e (85)	1:4 ^d
5	6f	8f (86)	9f (78)	1:1°
6	6g	8g (86)	9 g (81)	1:4 ^c
7	6h	8h (90)	9h (98)	1:2.6 ^e
8	6i	8i (93)	9i (98)	1:1.5°

^a Combined yield of four diastereomers.

^b Combined yield of two diastereomers.

^c Ratio determined by chromatography separation.

^d Ratio determined by ¹H NMR.

^e Ratio determined by HPLC.

Acknowledgment

The authors are grateful to the NSF of China (20390050, 20572088), the Ministry of Education (Key Project 104201) and the NSF of Fujian Province (China) (C0510001) for financial support.

References and Notes

- (1) For two recent reviews on the carbanion chemistry, see: (a) Yus, M. Chem. Soc. Rev. 1996, 25, 155. (b) Alonso, F.; Yus, M. Chem. Soc. Rev. 2004, 33, 284. For reviews involving the generation and application of α -lithioamines, see: (c) Cohen, T.; Bhupathy, M. Acc. Chem. Res. 1989, 22, 152. (d) Gant, T. G.; Meyers, A. I. Tetrahedron 1994, 50, 2297. (e) Beak, P.; Basu, A.; Gallagher, D. J.; Park, Y. S.; Thayumanavan, S. Acc. Chem. Res. 1996, 29, 552. (f) Cohen, T. Pure Appl. Chem. 1996, 68, 913. (g) Gawley, R. E. Curr. Org. Chem. 1997, 1, 71. (h) Kessar, S. V.; Singh, P. Chem. Rev. 1997, 97, 721. (i) Katritzky, A. R.; Qi, M. Tetrahedron 1998, 54, 2647. (j) Husson, H. P.; Royer, J. Chem. Soc. Rev. 1999, 28, 383. (k) Rassu, G.; Zanardi, F.; Battistini, L.; Casiraghi, G. Chem. Soc. Rev. 2000, 29, 109. (l) Casiraghi, G.; Zanardi, F.; Appendino, G.; Rassu, G. Chem. Rev. 2000, 100, 1929.
- (2) For a series of papers on functionalized organolithium compounds, see: Tetrahedron Symposia-in-Print, Nájera, C.; Yus, M., Eds.; *Tetrahedron* 2005, *61*, 3125.
- (3) For a short discussion on challenges associated with the generation and C–C bond formation of chiral non-racemic *N*-α-carbanion of protected 4-hydroxy-2-pyrrolidinone A, see: (a) Zheng, X.; Feng, C.-G.; Ye, J.-L.; Huang, P.-Q. Org. *Lett.* 2005, 7, 553. (b) For a synthesis of a specific 2-pirrolidinone derivative of type 9, see: Poisson, J. F.; Normant, J. F. Org. Lett. 2001, 3, 1889. (c) For a related work, see: Iula, D. M.; Gawley, R. E. J. Org. Chem. 2000, 65, 6196.

Synlett 2006, No. 8, 1235-1239 © Thieme Stuttgart · New York

- (4) For selected reviews, see: (a) Elbein, A. D.; Molyneux, R. In *Alkaloids: Chemical and Biological Perspectives*; Pelletier, S. W., Ed.; Wiley and Sons: New York, **1987**, Vol. 5.
 (b) Takahata, H.; Momose, T. In *The Alkaloids*; Cordell, G. A., Ed.; Academic: San Diego, CA, **1993**, Vol. 44, Chap. 3.
 (c) Michael, J. P. *Nat. Prod. Rep.* **1997**, *14*, 619.
 (d) Michael, J. P. *Nat. Prod. Rep.* **1998**, *15*, 571.
 (e) Michael, J. P. *Nat. Prod. Rep.* **1999**, *16*, 675. (f) Asano, N.; Nash, R. J.; Molyneux, R. J.; Fleet, G. W. J. *Tetrahedron: Asymmetry* **2000**, *11*, 1645.
- (5) For comprehensive reviews on azasugars, see: (a) Elbein,
 A. D.; Molyneux, R. J. In *Iminosugars as Glycosidase Inhibitors*; Stutz, A. E., Ed.; Wiley-VCH: Weinheim, **1999**,
 216. (b) Sears, P.; Wong, C.-H. Angew. Chem. Int. Ed. **1999**,
 38, 2301. (c) Watson, A. A.; Fleet, G. W. J.; Asano, N.;
 Molyneux, R. J.; Nash, R. J. Phytochemistry **2001**, *56*, 265.
 (d) Afarinkia, K.; Bahar, A. Tetrahedron: Asymmetry **2005**, *16*, 1239.
- (6) El Nemr, A. Tetrahedron 2000, 56, 8579.
- (7) For a recent synthesis of bulgecinine, see: Chavan, S. P.; Praveen, C.; Sharma, P.; Kalkote, U. R. *Tetrahedron Lett.* 2005, *46*, 439.
- (8) Huang, P.-Q.; Zheng, X.; Wang, S.-L.; Ye, J.-L.; Jin, L.-R.; Chen, Z. Tetrahedron: Asymmetry **1999**, 10, 3309.
- (9) (a) Huang, P.-Q.; Wu, T.-J.; Ruan, Y.-P. Org. Lett. 2003, 5, 4341. (b) Huang, P.-Q.; Deng, J. Synlett 2004, 247.
- (10) For an achiral version, see: (a) Gallagher, T.; Giles, M.; Subramanian, R. S.; Hadley, M. S. *J. Chem. Soc., Chem. Commun.* 1992, 166. (b) Thompson, S. H. J.; Subramanian, R. S.; Roberts, J. K.; Hadley, M. S.; Gallagher, T. *J. Chem. Soc., Chem. Commun.* 1994, 933.
- (11) Tang, T.; Ruan, Y.-P.; Ye, J.-L.; Huang, P.-Q. *Synlett* **2005**, 231.
- (12) (a) Huang, P.-Q.; Wang, S.-L.; Ye, J.-L.; Ruan, Y.-P.; Huang, Y.-Q.; Zheng, H.; Gao, J. X. *Tetrahedron* 1998, 54, 12547. (b) He, B.-Y.; Wu, T.-J.; Yu, X.-Y.; Huang, P.-Q. *Tetrahedron: Asymmetry* 2003, 14, 2101. (c) Liu, L.-X.; Ruan, Y.-P.; Guo, Z.-Q.; Huang, P.-Q. J. Org. Chem. 2004, 69, 6001.
- (13) (a) Ha, D. C.; Yun, C. S.; Yu, E. *Tetrahedron Lett.* **1996**, *37*, 2577. (b) Jacobi, P. A.; Brielmann, H. L.; Hauck, S. I. J. Org. Chem. **1996**, *61*, 5013. (c) Farcas, S.; Namy, J. L. *Tetrahedron Lett.* **2001**, *42*, 879. (d) Kim, S.-H.; Park, Y.; Choo, H.; Cha, J. K. *Tetrahedron Lett.* **2002**, *43*, 6657. (e) Padwa, A.; Rashatasakhon, P.; Rose, M. J. Org. Chem. **2003**, *68*, 5139. (f) Mulder, J. A.; Kurtz, K. C. M.; Hsung, R. P.; Coverdale, H.; Frederick, M. O.; Shen, L.; Zificsak, C. A. Org. Lett. **2003**, *5*, 1547. (g) For an approach to *exo*-glycals, see: Yang, W. B.; Yang, Y. Y.; Gu, Y. F.; Wang, S. H.; Chang, C. C.; Lin, C. H. J. Org. Chem. **2002**, *67*, 3773.
- (14) (a) Koseki, Y.; Kusano, S.; Ichi, D.; Yoshida, K.; Nagasaka, T. *Tetrahedron* 2000, *56*, 8855. (b) Xiong, H.; Hsung, R. P.; Shen, L.; Hahn, J. M. *Tetrahedron Lett.* 2002, *43*, 4449. (c) Koseki, Y.; Sato, H.; Watanabe, Y.; Nagasaka, T. *Org. Lett.* 2002, *4*, 885. (d) Davies, S. G.; Key, M. S.; Rodriguez-Solla, H.; Sanganee, H. J.; Savory, E. D.; Smith, A. D. *Synlett* 2003, 1659.
- (15) All new compounds (6 and 9) gave satisfactory analytical and spectral data.

General Procedure for the Synthesis of 9. To a solution of the more polar diastereomer of 5^{12} (1.0 mmol) in CH₂Cl₂ (10 mL) was added 0.05 mmol of *p*-TSA. The mixture was stirred at r.t. for 1 h. Then the reaction was quenched with sat. aq NaHCO₃ and extracted with CH₂Cl₂ (3 × 10 mL). The combined extracts were washed with brine, dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The resulting residue was purified by

column chromatography on silica gel eluting with EtOAc-PE to give 6. To a solution of 6 (1.0 mmol) in a mixture of abs. MeOH (20 mL) and dry CH₂Cl₂ (10 mL) was added dropwise a solution of MCPBA (3.0 mmol) in CH₂Cl₂ (10 mL) at –78 $^{\circ}\mathrm{C}$ under nitrogen atmosphere. After the mixture stirred for 1 h, it was allowed to reach r.t. and stirred overnight. Then, the reaction was quenched with a solution of aq Na₂S₂O₃ (10%) and sat. NaHCO₃. The mixture was extracted with CH_2Cl_2 (3 × 40 mL). The combined extracts were washed with brine, dried over anhyd Na₂SO₄, filtered and concentrated in vacuum. Filtration through a short pad of SiO₂ eluting with EtOAc-PE gave 8 as a mixture of diastereomers. The diastereomeric ratios were determined either by flash chromatographic separation or by analysis of ¹H NMR spectra of the crude mixture. To a cooled (-78 °C) solution of diastereomeric mixture of 8 (1.0 mmol) in dry CH₂Cl₂ (10 mL) were added dropwise triethylsilane (10 mmol) and BF₃·OEt₂ (10.0 mmol) under nitrogen atmosphere. After stirred for 6 h at the same temperature, the reaction was allowed to warm up and stirred at r.t. overnight. The reaction was quenched with sat. aq NaHCO₃ and extracted with CH_2Cl_2 (3 × 20 mL). The combined extracts were washed with brine, dried over anhyd Na₂SO₄, filtered and concentrated in vacuum. The residue was purified by flash column chromatography on silica gel eluting with EtOAc-PE to give 9. Selected physical and spectral data for **6d**: $[\alpha]_D^{20}$ +62.0 (*c*

0.4, CHCl₃). IR (film): 3060, 3023, 1719, 1674 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 0.80$ (t, J = 7.3 Hz, 3 H, CH₃), 1.22–1.38 (m, 2 H, MeCH₂), 1.94–2.12 (m, 2 H, EtCH₂), 2.68 (dd, *J* = 1.7, 17.8 Hz, 1 H, COCH₂), 2.78 (dd, *J* = 7.0, 17.8 Hz, 1 H, COCH₂), 4.42 (d, *J* = 11.2 Hz, 1 H, PhCH₂O), 4.53 (d, J = 11.2 Hz, 1 H, PhCH₂O), 4.70 (s, 2 H, PhCH₂N), 4.74 (dd, *J* = 1.7, 7.0 Hz, 1 H, BnOCH), 4.84 (t, *J* = 7.5 Hz, 1 H, =CH), 7.20–7.40 (m, 10 H, Ar) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 13.6, 23.3, 28.7, 36.6, 43.4, 69.9, 70.2, 108.0, 127.0, 127.2, 128.0, 128.1, 128.3, 128.4, 128.5, 135.8, 137.3, 138.9, 173.1 ppm. MS (ESI): m/z (%) = 336 (100) [M + H⁺]. Anal. Calcd for C₂₂H₂₅NO₂: C, 78.77; H, 7.51; N, 4.18. Found: C, 78.81; H, 7.47; N, 4.00. Selected physical and spectral data for 9d: major diastereomer: colorless oil; $[\alpha]_D^{20}$ +44.2 (c 1.0, CHCl₃). IR (film): 3378, 3063, 3031, 1671 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): δ = 0.84 (t, J = 7.1 Hz, 3 H, CH₃), 1.22–1.48 [m, 4 H, Me(CH₂)₂], 2.50 (dd, J = 1.3, 17.4 Hz, 1 H, COCH₂), 2.80 (dd, *J* = 6.9, 17.4 Hz, 1 H, COCH₂), 3.00 (br s, 1 H, OH), 3.40 (d, J = 4.9 Hz, 1 H, BnNCH), 3.78–3.84 (m, 1 H, CHOH), 4.18 (d, *J* = 15.0 Hz, 1 H, PhCH₂N), 4.19 (dd, J = 1.3, 6.9 Hz, 1 H, BnOCH), 4.40 (d, J = 11.7 Hz, 1 H, PhCH₂O), 4.48 (d, *J* = 11.7 Hz, 1 H, PhCH₂O), 5.00 (d, *J* = 15.0 Hz, 1 H, PhCH₂N), 7.20–7.40 (m, 10 H, Ar) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 13.9, 19.3, 34.8, 38.6, 44.2, 68.0, 68.8, 70.4, 71.9, 127.7, 127.8, 128.4, 128.8, 136.2, 137.5, 174.2 ppm. MS (ESI): *m/z* (%) = 376 (100) [M + Na⁺]; minor diastereomer: white crystals, mp 77–79 $^{\circ}$ C; $[\alpha]_{D}^{20}$ +13.9 (*c* 0.4, CHCl₃). IR (KBr, pellet): 3394, 3062, 3031, 1669 cm⁻¹. ¹H NMR (500 MHz, CDCl₃): $\delta = 0.88$ (t, J = 7.3 Hz, 3 H, CH₃), 1.10–1.32 [m, 3 H, Me(CH₂)₂], 1.42– 1.52 [m, 1 H, Me(CH₂)₂], 2.33 (br s, 1 H, OH), 2.51 (d, J = 17.7 Hz, 1 H, COCH₂), 2.75 (dd, J = 6.4, 17.7 Hz, 1 H, COCH₂), 3.58 (d, *J* = 4.6 Hz, 1 H, BnNCH), 3.61–3.65 (m, 1 H, CHOH), 4.02 (d, J = 6.4 Hz, 1 H, BnOCH), 4.18 (d, J = 15.2 Hz, 1 H, PhCH₂N), 4.42 (s, 2 H, PhCH₂O), 5.02 (d, J = 15.2 Hz, 1 H, PhCH₂N), 7.20–7.40 (m, 10 H, Ar) ppm. ¹³C NMR (125 MHz, CDCl₃): δ = 13.8, 19.2, 34.8, 38.2, 45.9, 67.8, 70.2, 71.3, 73.8, 127.5, 127.6, 127.7, 127.9, 128.4, 128.6, 136.3, 137.6, 174.3 ppm. MS (ESI): m/z (%) =

354 (67) [M + H⁺], 376 (100) [M + Na⁺]. Anal. Calcd for C₂₂H₂₇NO₃: C, 74.76; H, 7.70; N, 3.96. Found: C, 74.77; H, 7.94: N, 4.02.

- (16) (a) Deslongchamps, P. Stereoelectronic Effects in Organic Chemistry; Pergamon: New York, 1983. See also:
 (b) Kirby, A. J. The Anomeric Effect and Related Stereoelectronic Effects at Oxygen; Springer: New York, 1983. (c) Thatcher, G. R. J. The Anomeric Effect and Associated Stereoelectronic Effects; ACS Symposium Series 593, American Chemical Society: Washington DC, 1993. (d) Juaristi, E.; Cuevas, G. The Anomeric Effect; CRC: Boca Raton, FL, 1995.
- (17) (a) For a related stereoelectronic effect observed in another class of *N*,*O*-acetals, see: Chen, M.-D.; He, M.-Z.; Zhou, X.; Huang, L.-Q.; Ruan, Y.-P.; Huang, P.-Q. *Tetrahedron* 2005, *61*, 1335. (b) For an example of stereoelectronic control of oxazolidine ring-opening, see: Sélambarom, J.; Monge, S.; Carré, F.; Roque, J. P.; Pavia, A. A. *Tetrahedron* 2002, *58*, 9559.
- (18) For reviews on the Et₃SiH-mediated ionic hydrogenation, see: (a) Kursanov, D. N.; Parnes, Z. N.; Loim, N. M. *Synthesis* 1974, 633. (b) Nagai, Y. *Org. Prep. Proced. Int.* 1980, *12*, 13.
- (19) For recent reviews on the chemistry of *N*-acyliminiums, see:
 (a) Speckamp, W. N.; Moolenaar, M. J. *Tetrahedron* 2000, 56, 3817.
 (b) Maryanoff, B. E.; Zhang, H.-C.; Cohen, J. H.; Turchi, I. J.; Maryanoff, C. A. *Chem. Rev.* 2004, *104*, 1431.
 (c) Royer, J. *Chem. Rev.* 2004, *104*, 2311.
- Bernardi, A.; Micheli, F.; Potenza, D.; Scolastico, C.; Villa, R. *Tetrahedron Lett.* **1990**, *31*, 4949.