Original Russian Text Copyright © 2004 by Kuznetsov, Shubin, Petrov. ## SHORT COMMUNICATIONS ## Synthesis of Benzo [4,5] imidazo [2,1-a] phthalazines ## V.A. Kuznetsov, K.M. Shubin, and M.L. Petrov St. Petersburg State Technological Institute, St. Petersburg, 190013 Russia e-mail: mlpetrov@tu.spb.ru Received March 2, 2004 Benzo[4,5]imidazo[2,1-a]phthalazines constitute a poorly studied class of angular polycyclic aromatic heterocycles that can be regarded as isoelectronic nitrogen-containing analogs of chrysene. Only twice appeared publications describing preparation and properties of these compounds. First benzo[4,5]imidazo-[2,1-a]phthalazines were obtained by cyclization of phthalazinones at heating in sealed tubes [1]. Phthalazinones in their turn were synthesized from o-nitroarylhydrazones of 2-carboxybenzaldehyde and 2-carboxyacetophenone. In 1992 an alternative procedure was advanced for preparation of benzo[4,5]imidazo[2,1-a]phthalazines from o-aminophenols [2]. At the same time the biological activity of this class compounds was discovered. We developed a new method of synthesis for benzo[4,5]-imidazo[2,1-a]phthalazines involving building up in succession of phthalazine and the benzimidazole structure. The synthesis of phthalazinones III was performed by cyclization of 2-acylbenzoic acid I with o nitrophenylhydrazines II. One of the most common ways of benzimidazole synthesis involves the use of o-arylenediamines with one amino group acylated. The reaction is successful in case the cyclization of the initial compound affords a product of aromatic structure [3]. To prepare such substrate we subjected phthalazinones III to catalytic hydrogenetion with gaseous hydrogen aiming at synthesizing aminophthalazinones IV. The heating of compounds IV in polyphosphoric acid (PPA) afforded benzo[4,5]imidazo-[2,1-a]phthalazines (V) due to $I, R = CH_3(a), C_6H_5(b); II, R' = H(a), 4-NO_2(b), 5-Cl(c); III, R = CH_3: R' = H(a), 4-NO_2(b), 5-Cl(c); R = C_6H_5, R' = 5-Cl(d); IV, R = CH_3, R' = 5-Cl(a), R = C_6H_5, R' = 5-Cl(b); V, R = CH_3: R' = H(a), 10-NH_2(b), 9-Cl(c); R = C_6H_5, R' = 9-Cl(d).$ intramolecular dehydration (procedure *a*) where the phthalazine fragment acted as a cyclic amide. We simplified the synthesis by developing a direct procedure of converting compound **III** into tetracyclic system **V**. This method consists in reduction of nitro compounds **III** with metallic iron in PPA at heating, and the arising amine **IV** is converted into benzoimidazophthalazine (**V**) by increasing the reaction mixture temperature to 130–140°C (procedure *b*). By this method we succeeded in preparation of compounds **Va**, **b** unpossible to obtain by method *a* because of low solubility of nitro compounds **IIIa**, **b** and the corresponding amines. Compounds **Vc**, **d** were synthesized by procedure *b* in higher yields. The synthetic procedures we developed are a lot simpler than the previous one [2] and also make it possible to synthesize a wide range of benzoimidazophthalazine derivatives in a good yield. **4-Methyl-2-(2-nitrophenyl)-1,2-dihydro-1-phthalazinone (IIIa).** A solution of 9.8 g (0.060 mol) of 2-acetylbenzoic acid (**Ia**) and 8.8 g (0.057 mol) of *o*-nitrophenylhydrazine (**IIa**) in a mixture of 80 ml of ethanol and 40 ml of concn. sulfuric acid was boiled for 1.5 h, then it was poured on 300 g of crushed ice, and the separated precipitate was filtered off. On recrystallization from a mixture chloroform—ethanol we obtained 9.6 g (60%) of phthalazinone **IIIa**, mp 195–197°C. ¹H NMR spectrum (DMSO), δ, ppm: 2.61 s (CH₃), 7.61–7.78 m (H⁴, H⁵), 7.82–8.01 m (H⁵, H⁶, H⁷, H⁶),* 8.08 d (H³), 8.37 d (H⁸). Found, %: C 63.93, 64.21; H 4.02, 4.13; N 14.76, 15.01. C₁₅H₁₁N₃O₃. Calculated, %: C 64.05; H 3.94; N 14.94. **2-(2,4-Dinitrophenyl)-4-methyl-1,2-dihydro-1-phthalazinone (IIIb).** Likewise from 9.9 g of compound **Ia** and 11.4 g of 2,4-dinitrophenylhydrazine **IIb** after recrystallization from DMF we obtained 9.9 g (54%) of phthalazinone **IIIb**, mp 244–246°C. 1 H NMR spectrum (DMSO), δ , ppm: 2.64 s (CH₃), 7.83–8.18 m (H⁵, H⁶, H⁷, H⁶), 8.37 d (H⁸), 8.70 d (H⁵), 8.80 s (H³). Found, %: C 55.13, 55.31; H 3.04, 3.29; N 17.19, 17.41. $C_{15}H_{10}N_{4}O_{5}$. Calculated, %: C 55.22; H 3.09; N 17.17. **4-Methyl-2-(2-nitro-5-chlorophenyl)-1,2-dihydro-1-phthalazinone** (IIIc). From 9.8 g of compound Ia and 10.7 g of 2-nitro-5-chlorophenyl-hydrazine IIc after recrystallization from a mixture chloroformethanol we obtained 13.5 g (75%) of phthalazinone IIIc, mp 168–170°C. ¹H NMR spectrum (CDCl₃), δ, ppm: 2.63 s (CH₃), 7.52 d (H⁴), 7.75 s (H⁶), 7.78–7.99 m (H⁵, H⁶, H⁷), 8.02 d (H³), 8.44 d (H⁸). Found, %: C 56.96, 57.18; H 3.29, 3.41; N 13.17, 13.42. $C_{15}H_{10}ClN_3O_3$. Calculated, %: C 57.07; H 3.19; N 13.31. **2-(2-Nitro-5-chlorophenyl)-4-phenyl-1,2-di-hydro-1-phthalazinone (IIId).** From 13.6 g of 2-benzo-yl-benzoic acid (**Ib**) and 10.7 g of 2-nitro-5-chlorophenylhydrazine (**IIc**) after recrystallization from a mixture chloroform —ethanol we obtained 13.7 g (64%) phthalazinone **IIId**, mp 137–139°C. 1 H NMR spectrum (DMSO), δ , ppm: 7.52–7.86 m (H 4 , H 6 , 4-phenyl), 7.87–8.01 m (H 5 , H 6 , H 7), 8.19 d (H 3), 8.41 t (H 8). Found, %: C 63.47, 63.68; H 3.15, 3.44; N 11.03, 11.37. $C_{20}H_{12}CIN_{3}O_{3}$. Calculated, %: C 63.59; H 3.20; N 11.12. 2-(2-Amino-5-chlorophenyl)-4-methyl-1,2dihydro-1-phthalazinone (IVa). A solution of 1.9 g (0.006 mol) of 2-(2-nitro-5-chlorophenyl)-4-methyl-1,2dihydro-1-phthalazinone (IIIc) in 20 ml of THF was subjected to hydrogenation by gaseous hydrogen at atmospheric pressure with constant stirring in the presence of 0.16 g of a catalyst (5% Pd on carbon). After consumption of 370 ml of hydrogen within 6 h the reaction mixture was filtered from the catalyst and evaporated to a volume of 10 ml. Then the residue was diluted with petroleum ether (fraction of bp 40–70°C) to 100 ml. The precipitated reaction product was chromatographically pure and was used without additional purification. We obtained 0.7 g (54%) of aminophthalazinone IVa, mp 182– 184°C. ${}^{1}H$ (DMSO), δ , ppm: 2.59 s (CH₃), 5.04 s (NH₂), 6.81 d (H³), 7.07-7.15 m (H⁴, H⁶), 7.80-7.98 m (H⁵, H^6 , H^7), 8.37 d (H^8). Found, %: C 62.87, 62.99; H 4.24, 4.41; N 14.56, 14.74. C₁₅H₁₂ClN₃O. Calculated, %: C 63.05; H 4.23; N 14.71. **2-(2-Amino-5-chlorophenyl)-4-phenyl-1,2-dihydro-1-phthalazinone (IVb).** Likewise from 2.3 g of 2-(2-nitro-5-chlorophenyl)-4-phenyl-1,2-dihydro-1-phthalazinone (**IIId**) we obtained 1.9 g (93%) of aminophthalazinone **IVa**, mp 185–187°C. ¹H NMR spectrum (CDCl₃), δ , ppm: 3.99 s (NH₂), δ .80 d (H^{3'}), 7.17 d (H^{4'}), 7.40 d (H^{6'}), 7.45–7.58 m (H², H⁴, H⁶ 4-phenyl), 7.59–7.65 m (H³, H⁵ 4-phenyl), 7.76–7.86 m (H⁵, H⁶, H⁷), 8.61 t (H⁸). Found, %: C 69.13, 69.24; H 3.98, 4.17; N 12.22, 12.37. C₂₀H₁₄ClN₃O. Calculated, %: C 69.07; H 4.06; N 12.08. **5-Methylbenzo[4,5]imidazo[2,1-***a*]**phthalazine (Va).** Procedure *b*. To a solution of 1.25 g (0.005 mol) of 4-methyl-2-(2-nitrophenyl)-1,2-dihydro-1-phthalazinone **(IIIa)** in 20 g of PPA heated to 100°C was added by portions at stirring 1.25 g of iron powder. After all iron ^{*} Here and hereinafter the protons of aryl substituent in position 2 are marked with a dash. KUZNETSOV et al. was added the reaction mixture was heated for 15 min to 140°C. On cooling the mixture was diluted with water to a 10-fold volume, alkalinized with aqueous NaOH to strongly alkaline reaction, and reaction products were extracted into chloroform (5×50 ml). The combined extracts were dried with Na₂SO₄, filtered, and evaporated. On recrystallization from a mixture chloroform—ethanol we obtained 0.76 g (65%) of compound **Va**, colorless crystals, mp 159–161°C (publ.: 163°C [1]). ¹H NMR spectrum (DMSO), δ , ppm: 2.75 s (CH₃), 7.42 m (H⁸, H⁹), 7.71–8.02 m (H², H³, H⁴, H⁷, H¹⁰), 8.52 d (H⁵). Mass spectrum, m/z ($I_{\rm rel}$, %): M^+ 233 (100). Found, %: C 77.24, 77.45; H 4.54, 4.63; N 18.13, 18.26. C₁₅H₁₁N₃. Calculated, %: C 77.23; H 4.75; N 18.01. **5-Methyl-10-aminobenzo**[**4,5**]**imidazo**[**2,1-***a*]**-phthalazine** (**Vb**). Likewise from 1.7 g of 2-(2,4-dinitrophenyl)-4-methyl-1,2-dihydro-1-phthalazinone (**IIIb**) and 1.7 g of iron powder after recrystallization from a mixture chloroform—ethanol we obtained 0.73 g (58%) of compound **Vb**, colorless crystals, mp >270°C (decomp.). ¹H NMR spectrum (CDCl₃), δ, ppm: 2.84 s (CH₃), 3.83 s (NH₂), 6.85 d (H⁹), 7.21 s (H⁷), 7.64–7.96 m (H², H³, H⁴), 7.98 d (H¹⁰), 8.65 d (H⁵). Found, %: C 72.36, 72.59; H 4.54, 4.67; N 22.21, 22.43. $C_{15}H_{12}N_4$. Calculated, %: C 72.56; H 4.87; N 22.57. 5-Methyl-9-chloroObenzo[4,5]imidazo[2,1-a]**phthalazine (Vc).** (a) In 20 g of PPA 1.4 g (0.005 mol) of 2-(2-amino-5-chlorophenyl)-4-methyl-1,2-dihydro-1phthalazinone (IVa) was heated at 140°C. On cooling the reaction mixture was diluted with water to a 10-fold volume, alkalinized with aqueous NaOH to strongly alkaline reaction, and reaction products were extracted into chloroform (3×30 ml). The combined extracts were dried with Na₂SO₄, filtered, and evaporated. On recrystallization from a mixture chloroform-ethanol we obtained 0.9 g (71%) of compound Vc, colorless crystals, mp 180–181°C. ¹H NMR spectrum (DMSO), δ, ppm: 2.68 s (CH₃), 7.35 d (H⁸), 7.81–8.00 m (H², H³, H⁴, H⁷, H^{10}), 8.41 d (H^5). Mass spectrum, m/z (I_{Otv} , %): M^+ 267 (100). Found, %: C 67.43, 67.56; H 3.39, 3.63; N 15.53, 15.78. C₁₅H₁₀ClN₃. Calculated, %: C 67.30; H 3.77; N 15.70. (b) From 1.6 g (0.005 mol) of 2-(2-nitro-5-chlorophenyl)-4-methyl-1,2-dihydro-1-phthalazinone (\mathbf{HIc}) and 1.6 g of iron powder we obtained 0.73 g(58%) of compound \mathbf{Vc} . 5-Phenyl-9-chloroObenzo[4,5]imidazo[2,1-a]phthalazine (Vd). Procedure (a). In 15 g of PPA 1.5 g (0.0043 mol) of 2-(2-amino-5-chlorophenyl)-4-phenyl-1,2dihydro-1-phthalazinone (IVb) was heated at 130°C. On cooling the reaction mixture was diluted with water to a 10-fold volume, alkalinized with aqueous NaOH to strongly alkaline reaction, and reaction products were extracted into chloroform (3×30 ml). The combined extracts were dried with Na₂SO₄, filtered, and evaporated. On recrystallization from a mixture chloroform-ethanol we obtained 0.9 g (64%) of compound Vd, colorless crystals, mp 223-225°C. ¹H NMR spectrum (DMSO), δ , ppm: 7.41 d (H⁸), 7.58–8.00 m (H², H³, H⁴, H⁷, H¹⁰), 8.62 d (H⁵). Mass spectrum, m/z ($I_{\text{rel.}}$, %): M^+ 329 (100). Found, %: C 72.58, 72.81; H 3.39, 3.47; N 12.83, 12.91. C₂₀H₁₂ClN₃. Calculated, %: C 72.84; H 3.67; N 12.74. (b) From 1.9 g of 2-(2-nitro-5-chlorophenyl)-4-phenyl-1,2-dihydro-1-phthalazinone (**IIIc**) and 1.9 g of iron powder we obtained 1.1 g (64%) of compound Vc. Melting points were measured on a Boëtius heating block. ¹H NMR spectra were registered on spectrometer Bruker AMX-400 (400 MHz), as internal references served signals of residual protons (¹H) of deuterated solvents. Mass spectra were recorded on a mass spectrometer Kratos MS 890 at a direct admission of a sample into the ion source, ionizing electrons energy 70 eV, temperature in the ionization chamber 200°C. The reaction progress was monitored by TLC on Silufol UV-254 plates, spots were visualized by UV irradiation. All solvents used in the study were purified and dried by standard procedures. ## REFERENCES - 1. Rowe, F.M., Adams, D.A.W., Peters, A.T., and Gillam, A.E., *J. Chem. Soc.*, 1937, p. 90. - 2. Razvi M. and Ramalingam T., *Indian. J. Chem.* 1992, 31B, p. 788. - 3. Grimmett, M.R., *Imidazole and Benzimidazole Synthesis*, Leningrad: Academic Press, 1997, 265 p.